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Abstract In this paper, a new generalized nonlin-
ear Schrödinger (GNLS) equation is investigated by
Darboux matrix method. Firstly, the n-fold Darboux
transformation (DT) of the GNLS equation is con-
structed. Then, the soliton solutions, breather solutions,
and rogue wave solutions of the GNLS equation are
studied based on the DT by choosing different seed
solutions. Furthermore, the dynamic features of these
solutions are explicitly delineated through somefigures
with the help of Maple software.
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1 Introduction

It iswell known that the standard nonlinear Schrödinger
(NLS) equation

iut + γ uxx + σu|u|2 = 0, σ = ±1 (1.1)

is one of the most important integrable systems among
many branches of applied mathematics and physics,
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especially in optics, water wave and so on [1–3]. In
Eq. (1.1), u = u(x, t) is a complex smooth function
of x and t , the subscripts denote partial derivatives and
the parameter γ is real constant.

In 1995, Fokas [4] studied an integrable generalized
nonlinear Schrödinger (GNLS) equation by means of
bihamiltonian operators based on the NLS equation

iut − νutx + γ uxx + σ |u|2(u + iνux ) = 0, σ = ±1,

(1.2)

where γ and ν are real constants. In fact, Eq. (1.2)
can be transformed into Eq. (1.1) when the parameter
ν = 0.

In 2010, Lenells [5] did further investigation to
Eq. (1.2) by the dressing method, and Eq. (1.2) is trans-
formed into a new form

utx + αβ2u − 2iαβux − αuxx + σ iαβ2|u|2ux = 0,

σ = ±1 (1.3)

under the transformation of

u → β
√

αeiβxu, σ = −σ ,

where α = γ
ν

> 0, β = 1
ν
.

There are manymethods to get the exact solutions to
the integrable equations, for instance, Darboux trans-
formation method (DT) [6,7], inverse scattering trans-
formation [8], Hirota method [9], bilinear method [10]
and so on. DT possesses a lot of advantages compared
with other methods. It is a more valid and powerful
tool to study the exact solutions of an integrable system
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from a seed solution. We can investigate solutions of
different kinds when choosing different seed solution
and analysis the relations among them. One can make
the DT once again and get another set of new solutions
if the obtained solutions are taken as the new starting
point. Therefore, the high-order solutions can be con-
structed through iterations of the DT. In this paper, we
construct the exact solutions of Eq. (1.3) by means of
DT, including the soliton solutions, breather solutions,
and rogue wave solutions.

Before discussing the DT, we shall briefly introduce
the rogue waves. Rogue waves (RWs) appear in both
the shallow water and deep ocean, which are notori-
ous for causing a large number of disasters for peo-
ple. As is known to all, storms and tsunamis associated
with typhoon can be predicted hours in advance; how-
ever, the oceanic RWs suddenly appear from nowhere
and disappear without a trace [11]. Consequently, RWs
attract more and more attention to many scientists
and have been studied extensively in a lot of other
fields, such as in optics [12–14], physics (for exam-
ple acoustic turbulence in He II) [15], femtosecond
plus propagation [16,17], hydromechanics [18], mete-
orology [19] and even finance [20]. Nowadays, it is
widely accepted that the modulation instability (MI)
is the fundamental mechanism for the generation of
the rogue waves [3,21]. The foremost description of a
single rogue wave is the rational solution of the NLS
equation which features a localized peak whose ampli-
tude is three times larger than that of the average height
[22]. The high-order rogue wave solutions of the NLS
equation have been studied in [23,24]. Gradually, the
rogue wave has been found in many other systems
(e.g., the Hirota equation [25], Boussinesq equation
[26], Sasa-Satsuma equation [27], Fokas–Lenells equa-
tion [28], the Manakov system [29], coupled Hirota
equations [30,31], NLS–Maxwell–Bloch system [32]
and Yajima–Oikawa system [33]). Moreover, it is con-
firmed that the high-order roguewaves have some inter-
esting patterns [34,35], for instance, fundamental pat-
tern, ring structure, triangular structure and so on.

The rest of the paper is organized as follows. In
Sect. 2, we give the Lax pair and construct the corre-
sponding classical DT and generalized DT of Eq. (1.3).
InSect. 3, themultisoliton solutions, breather solutions,
and rogue wave solutions are derived by making use of
the DT with the help of Maple. In Sect. 4, conclusions
are given.

2 Lax pair and Darboux transformation

2.1 Lax pair

Without losing generality, let σ = −1,then Eq. (1.3)
will become the following form:

utx +αβ2u−2iαβux −αuxx − iαβ2|u|2ux = 0, (2.1)

and the Lax pair (i.e., linear spectral problem) [36] of
Eq. (2.1) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rx = UR, Rt = V R,

U =
(−iλ2 λux )

λrx iλ2

)

,

V =
(

− iαβ2

2 ur − iη2 iαβ2

2λ u + αλux
− iαβ2

2λ r + αλrx
iαβ2

2 ur + iη2

)

,

(2.2)

where η = √
α(λ − β

2λ ), r = −u∗, “∗” denotes the
complex conjugate and the vector R = ( f, g)T is an
eigenfunction associated with λ and potential u, which
consists of two complex functions f = f (x, t) and
g = g(x, t).

Trough direct calculations, we can verify that the
integrability condition Ut − Vx + [U, V ] = 0 exactly
gives Eq. (2.1), where [U, V ] = UV − VU .

2.2 The classical DT

The DT is an effective approach used to solve the soli-
ton equations [37–39]. We can obtain the soliton solu-
tions, breather solutions by the classical DT and get
the rogue wave solutions by the generalized DT. In the
following, we will construct the two DTs.

(1) One-fold classical DT
The DT is a special gauge transformation,

R[1] = T [1]R, (2.3)

with

T [1] = T [1](λ) = A1λ
2 + B1λ + I, (2.4)

where I denotes the identity matrix, and A1 =
(ai j [0])2×2, B1 = (bi j [0])2×2 are 2 × 2 matrices. The
DT (2.3) transforms the old Lax pair (2.2) into a new
Lax pair
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{
R[1]x = U [1]R[1],
R[1]t = V [1]R[1], (2.5)

where U [1], V [1] have the similar forms as U , V in
Eq. (2.2)withu replacedbyu[1], andU [1],V [1] satisfy
{
U [1]T [1] = T [1]x + T [1]U,

V [1]T [1] = T [1]t + T [1]V .
(2.6)

Furthermore, by direct computations and comparing
the coefficients of λi (i is the power of λ) based on
Eq. (2.6) [40], we can obtain the forms of A1 and B1

A1 =
(
a11[0] 0
0 a22[0]

)

, B1 =
(

0 b12[0]
b21[0] 0

)

,

(2.7)

and get the relation between potential functions u[1]
and u:

u[1] = u + b12[0]. (2.8)

Next, in order to determine the exact form of T [1],
we assume that R1 = ( f1, g1)T is an eigenfunction
of the Lax pair (2.2) at λ = λ1 when u = u[0] is
the initial seed solution, and then, R′

1 = (−g∗
1 , f ∗

1 )T

is also an eigenfunction of the Lax pair (2.2) at λ =
λ∗
1 and u[0], and the two eigenfunctions all satisfy the

following algebraic equations

{
T [1](λ)|λ=λ1R1 = 0,
T [1](λ)|λ=λ∗

1
R

′
1 = 0.

(2.9)

Solving Eq. (2.9), we can get

a11[0] = − | f1|2λ∗
1 + |g1|2λ1

|λ1|2(| f1|2λ1 + |g1|2λ∗
1)

,

a22[0] = − | f1|2λ1 + |g1|2λ∗
1

|λ1|2(| f1|2λ∗
1 + |g1|2λ1) ,

b12[0] = f1g∗
1(λ

2
1 − λ∗2

1 )

|λ1|2(| f1|2λ1 + |g1|2λ∗
1)

,

b21[0] = g1 f ∗
1 (λ21 − λ∗2

1 )

|λ1|2(| f1|2λ∗
1 + |g1|2λ1) .

So the one-fold classical DT of Eq. (2.1) is defined
as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R[1] = T [1]R, u[1] = u[0] + b12[0],

T [1] =
(
a11[0]λ2 + 1 b12[0]λ

b21[0]λ a22[0]λ2 + 1

)

,

b12[0] = f1[0]g1[0]∗(λ21 − λ∗2
1 )

|λ1|2(| f1[0]|2λ1 + |g1[0]|2λ∗
1)

,

(2.10)

where we set R1[0] = ( f1[0], g1[0])T = ( f1, g1)T for
the uniform symbol representation in later words.

(2) Two-fold classical DT
To do the second step of classical DT, we assume

that R2 = ( f2, g2)T is a solution of Eq. (2.2) at λ2 and
u[0], then we employ R2[1], which is mapped to

R2[1] = ( f2[1], g2[1])T = T [1](λ)|λ=λ2 R2,

and R2[1] is the solution of Eq. (2.2) at λ = λ2 and
u[1], as well as R2[1]′ = (−g2[1]∗, f2[1]∗)T is also
the solution for Eq. (2.2) at λ = λ∗

2 and u[1] [6]. Next,
by the similar process as the one-fold classical DT, we
can construct the two-fold classical DT
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R[2] = T [2]R[1] = T [2]T [1]R,

u[2] = u[1] + b12[1] = u[0] + (b12[0] + b12[1]),

T [2] =
(
a11[1]λ2 + 1 b12[1]λ

b21[1]λ a22[1]λ2 + 1

)

,

b12[1] = f2[1]g2[1]∗(λ22 − λ∗2
2 )

|λ2|2(| f2[1]|2λ2 + |g2[1]|2λ∗
2)

.

(2.11)

(3) n-fold classical DT
If n distinct solutions R j = ( f j , g j )

T , 1 ≤ j ≤ n
of Eq. (2.2) are given, then the classical DT may be
iterated. Continuing the above iteration process, we get
the n-fold classicalDT and have the following theorem.

Theorem 1 Let R1, R2, . . . , Rn be n distinct solutions
of Eq. (2.2) at λ1, λ2, . . . , λn, respectively. Then the n-
fold classical DT for theGNLS equation (2.1) is defined
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R[n] = T [n]T [n − 1] . . . T [1]R,

u[n] = u[0] + ∑n
j=1 b12[ j − 1],

T [ j] =
(
a11[ j − 1]λ2 + 1 b12[ j − 1]λ

b21[ j − 1]λ a22[ j − 1]λ2 + 1

)

,

b12[ j − 1] = f j [ j − 1]g j [ j − 1]∗(λ2j − λ∗2
j )

|λ j |2(| f j [ j − 1]|2λ j + |g j [ j − 1]|2λ∗
j )

,

(2.12)
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and R1[0] = ( f1[0], g1[0])T = ( f1, g1)T ,

R j [ j − 1] = ( f j [ j − 1], g j [ j − 1])T
= (T [ j − 1]T [ j − 2] . . . T [1])|λ=λ j R j ,

(2.13)

where u[0] is the initial seed solution of Eq. (2.2), and
R j [ j − 1], j = 1, 2, 3, . . . n is the solution of Eq. (2.2)
at λ = λ j and u[ j − 1].

Obviously, the iteration process of the DT can be
simply described as

R
T [1]−−→ R[1] T [2]−−→ R[2] T [3]−−→ . . . R[n − 1] T [n]−−→ R[n],

and then

u[0] −→ u[1] −→ u[2] −→ . . . u[n − 1] −→ u[n].

2.3 The generalized DT

In the high-order iteration process of DT, the classical
DT must be performed under the distinct eigenvalues
λ j ( j = 1, 2, . . . , n). However, for getting the high-
order rogue wave solutions of the soliton equations,
the iteration process of DT must be performed under
the same eigenvalues, that is the generalized DT. Next,
we manage to construct the generalized DT.

(1) One-fold generalized DT
Suppose that R1(λ1 + δ) is a basic solution for

Eq. (2.2) at λ = λ1 + δ, and we can expand it at δ = 0,
then we have form as follows:

R1 = R[0]
1 + R[1]

1 δ + R[2]
1 δ2 + · · ·+ R[n]

1 δn + · · · ,

(2.14)

where δ is a small parameter, R[k]
1 = ( f [k]

1 , g[k]
1 )T =

lim
δ→0

1
k!

∂k R1
∂δk

(k = 0, 1, 2, . . .), and R[0]
1 = ( f [0]

1 , g[0]
1 )T

is a special solution of Eq. (2.2) at λ = λ1 when the
seed solution is u = u[0]. Thus, the first step of the
generalized DT for Eq. (2.1) is the same as the one-
fold classical DT, that is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R[1] = T [1]R, u[1] = u[0] + b12[0],
T [1] =

(
a11[0]λ2 + 1 b12[0]λ

b21[0]λ a22[0]λ2 + 1

)

,

b12[0] = f1[0]g1[0]∗(λ21−λ∗2
1 )

|λ1|2(| f1[0]|2λ1+|g1[0]|2λ∗
1)

,

(2.15)

where R1[0] = ( f1[0], g1[0])T = ( f [0]
1 , g[0]

1 )T .
(2) Two-fold generalized DT
Now we make the two-fold generalized DT through

a limit process. After the transformation in Eq. (2.15),
we know that T [1]R1 is a solution of Eq. (2.2) at λ =
λ1 + δ and u[1]. Thus, through the limit process

lim
δ→0

T [1]|λ=λ1+δR1

δ
= lim

δ→0

(T [1]|λ=λ1 + C1δ + C2δ
2)R1

δ

= T [1]|λ=λ1 R
[1]
1 + C1R

[0]
1

= R1[1],
(2.16)

with

T [1]|λ=λ1R
[0]
1 = 0, C1 =

(
2a11[0]λ1 b12[0]
b21[0] 2a22[0]λ1

)

,

C2 =
(
a11[0] 0
0 a22[0]

)

,

(2.17)

we can find that R1[1] = ( f1[1], g1[1])T is a solution
of Eq. (2.2) at λ = λ1 and u[1]. So the second step of
the generalized DT of Eq. (2.1) is defined as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R[2] = T [2]R[1] = T [2]T [1]R,

u[2] = u[1] + b12[1] = u[0] + (b12[0] + b12[1]),
T [2] =

(
a11[1]λ2 + 1 b12[1]λ

b21[1]λ a22[1]λ2 + 1

)

,

b12[1] = f1[1]g1[1]∗(λ21−λ∗2
1 )

|λ1|2(| f1[1]|2λ1+|g1[1]|2λ∗
1)

.

(2.18)

(3) Three-fold generalized DT
Similarly, we have the limit

lim
δ→0

(T [2]T [1])|λ=λ1+δR1

δ2

= lim
δ→0

1

δ2
{(T [2]|λ=λ1 + C3δ + C4δ

2)·
(T [1]|λ=λ1 + C1δ + C2δ

2)R1}
= (T [2]T [1])|λ=λ1R

[2]
1

+ (T [2]|λ=λ1C1 + C3T [1]|λ=λ1)R
[1]
1

+ (C3C1 + T [2]|λ=λ1C2 + C4T [1]|λ=λ1)R
[0]
1

= R1[2],
(2.19)
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with

T [1]|λ=λ1 R
[0]
1 = 0,

T [2]|λ=λ1 (T [1]|λ=λ1 R
[1]
1 + C1R

[0]
1 ) = 0,

C3 =
(
2a11[1]λ1 b12[1]
b21[1] 2a22[1]λ1

)

, C4 =
(
a11[1] 0

0 a22[1]
)

.

(2.20)

And Eq. (2.19) provides a solution R1[2] =
( f1[2], g1[2])T for Eq. (2.2) at λ = λ1 and u[2]. Thus,
we may do the third-step iteration of the generalized
DT as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R[3] = T [3]R[2] = T [3]T [2]T [1]R,

u[3] = u[2] + b12[2] = u[0] + ∑3
j=1 b12[ j − 1],

T [3] =
(
a11[2]λ2 + 1 b12[2]λ

b21[2]λ a22[2]λ2 + 1

)

,

b12[2] = f1[2]g1[2]∗(λ21−λ∗2
1 )

|λ1|2(| f1[2]|2λ1+|g1[2]|2λ∗
1)

.

(2.21)

(4) n-fold generalized DT
Continuing the above process and basing on the

classical DT, the high-order generalized DT is con-
structed. Thus, we can obtain the n-fold generalized
DT of Eq. (2.1):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R[n] = T [n]T [n − 1] . . . T [1]R,

u[n] = u[0] + ∑n
j=1 b12[ j − 1],

T [ j] =
(
a11[ j − 1]λ2 + 1 b12[ j − 1]λ

b21[ j − 1]λ a22[ j − 1]λ2 + 1

)

,

b12[ j − 1] = f1[ j−1]g1[ j−1]∗(λ21−λ∗2
1 )

|λ1|2(| f1[ j−1]|2λ1+|g1[ j−1]|2λ∗
1)

,

(2.22)

where R1[0] = ( f1[0], g1[0])T = ( f [0]
1 , g[0]

1 )T ,

R1[ j − 1] = ( f1[ j − 1], g1[ j − 1])T

= lim
δ→0

(T [ j − 1]T [ j − 2] . . . T [1])|λ=λ1+δR1

δ j−1 ,

(2.23)

and R1[ j − 1], ( j = 1, 2, 3, . . . , n) is the solution of
Eq. (2.2) at λ = λ1 and u[ j − 1].

3 Soliton solutions, breather solutions, and rogue
wave solutions

3.1 Multisoliton solutions

In this subsection, we present themultisoliton solutions
of Eq. (2.1) explicitly. Take u = u[0] = 0, that is
zero initial seed solution for Eq. (2.2) and let α = 1,
β = −1. Then solving Eq. (2.2) by the Maple, we can
obtain the forms of eigenfunctionwith regard toλ = λ j

( j = 1, 2, . . . , n)

R j = ( f j , g j )
T ,

f j = e
−i

(
(2λ2j+1)

2

4λ2j
t+λ2j x

)

, g j = e
i

(
(2λ2j+1)

2

4λ2j
t+λ2j x

)

.

(3.1)

(1) When n = 1, after simple calculations in
Eq. (2.10), we have

us[1] = 4iη1ξ1
eFs1

(λ1eDs1 + λ∗
1)|λ1|2

, (3.2)

with

λ1 = ξ1 + iη1, λ∗
1 = ξ1 − iη1,

Fs1 = −i

2λ21

(
4λ41(x + t) + (4λ21 + 1)t

)
,

Ds1 = 2ξ1η1
4|λ1|4(x + t) − t

|λ1|4 .

us[1] is the one-soliton solution of Eq. (2.1), and it rep-
resents a bright single soliton whose dynamic features
are delineated in Fig. 1 when we take the parameter
λ1 = 1

4 + 1
4 i .

Fig. 1 a Evolution of one-soliton solution us [1] via Eq. (3.2)
with parameter λ1 = 1

4 + 1
4 i , b corresponding density plot
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(2) When n = 2 in Theorem 1, we can obtain the
following two-soliton solution of Eq. (2.1)

us[2] =60ie−2i t Fs2
Ds2 · Ds3

, (3.3)

with

Ds2 = (1 + i)e− 15
4 t+ 1

4 x+(1 − i)e
15
4 t− 1

4 x ,

Fs2 = (1 + i)
(
2e

1
2 x+ 15

2 t

+ 2e
3
2 x− 15

2 t−e
15
4 t− 1

4 x−e− 45
4 t+ 3

4 x
)

+ (1 − i)
(
2e− 1

2 x− 15
2 t + 2e− 3

2 x+ 15
2 t

−e− 15
4 t+ 1

4 x − e
45
4 t− 3

4 x
)

,

Ds3 = (1 + i)
(
9e

3
2 x− 15

2 t + 16e−x

+25e
1
2 x+ 15

2 t − 40e
15
4 t− 1

4 x
)

+ (1 − i)
(
9e− 3

2 x+ 15
2 t + 16ex

+ 25e− 1
2 x− 15

2 t−40e− 15
4 t+ 1

4 x
)

,

when we take λ1 = 1
4 + 1

4 i , λ2 = 1
2 + 1

2 i .
The dynamic features of the two-soliton solu-

tion us[2] are displayed in Fig. 2. We find that the
two-soliton solution represents the elastic interaction
between two bell-shaped bright solitons, and the soli-
tonic shapes as well as amplitudes have not changed
after the interaction.

(3) When n = 3 in Theorem 1, similarly, we get the
three-soliton solution of Eq. (2.1)

us[3] = us[2] + f3[2]g3[2]∗(λ23 − λ∗2
3 )

|λ3|2(| f3[2]|2λ3 + |g3[2]|2λ∗
3)

,

(3.4)

where us[2] is given in Eq. (3.3), and R3[2] =
( f3[2], g3[2])T = (T [2]T [1])|λ=λ3R3 (where R3 =
( f3, g3)T is the solution of Eq. (2.2) at λ = λ3 and
u = u[0] = 0) is the solution of Eq. (2.2) at λ = λ3
and u = us[2]. The explicit expression of Eq. (3.4) is
not given here because of its tedious formulas.

The three-soliton solution us[3] represents the over-
taking interaction among three bell-shaped bright soli-
tons, whose dynamic features are shown in Fig. 3, and
we find that the solitonic shapes as well as amplitudes
have not changed after the interaction.

Fig. 2 a Evolution of two-soliton solution us [2] via Eq. (3.3)
with parameters λ1 = 1

4 + 1
4 i , λ2 = 1

2 + 1
2 i , b corresponding

density plot

Fig. 3 a Evolution of three-soliton solution us [3] via Eq. (3.4)
with parameters λ1 = 1

4 + 1
4 i , λ2 = 1

2 + 1
2 i , λ3 = 1 + i , b

corresponding density plot

We remark that we can also obtain the higher-order
soliton solutions of the new GNLS equation (2.1) by
continuing the iteration process of the classical DT in
Theorem 1.

3.2 Multibreather solutions

In this subsection, we take the plane wave seed solution
u = u[0] = eiθ = ei(ax+bt) of Eq. (2.1) with the
dispersion conditionb = 1

a (aαβ2+a2α+2aαβ+αβ2).
Without loss of generality, we assume that α = 1, β =
−1, a = −1, that is θ = −(x + 3t), then Eq. (2.2) is
solved by

R j = ( f j , g j )
T ,

f j = C1e
i
2 (M+θ) − C2e

i
2 (−M+θ),

g j = C1e− i
2 (M+θ) + C2e− i

2 (−M+θ),

(3.5)
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with

S = 4λ4j + 1, M = √
S(t + x − t

2λ2j
),

C1 = 2λ2j − √
S − 1

2λ j
, C2 = 1, j = 1, 2, . . . , n.

(1) When n = 1 in the classical DT of Theorem 1,
R1 is the eigenfunction of Eq. (2.2) corresponding to
λ1 = ξ1 + η1i , and set |ξ1| = |η1|, so that Im(S) = 0.
Thus, the one-breather solution ub[1] is obtained as

ub[1] = u[0] + f1[0]g1[0]∗(λ21 − λ∗2
1 )

|λ1|2(| f1[0]|2λ1 + |g1[0]|2λ∗
1)

, (3.6)

and ( f1[0], g1[0])T = ( f1, g1)T .
From Eq. (3.6), we can obtain several different one-

breather solutions of Eq. (2.1) when taking different
parameters, including theAkhmediev breather solution
and the general breather solution.

Case 1 When Re(S) > 0, that is |ξ1| = |η1| < 1
2 , we

can obtain theAkhmediev breather solution of Eq. (2.1)
if we take some appropriate parameters. For example,
let λ1 = 2

5 + 2
5 i , then

ub−1[1] = eiθ +
i
4e

3
√
41

32 t a1a2
a3

, (3.7)

where

a1 =
(
3
√
41i + 41i − 3

√
41 − 9

)
e
i
(
3
√
41(25i t+16t+16x)

800 + θ
2

)

− 40e
−i

(
3
√
41(25i t+16t+16x)

800 − θ
2

)

,

a2 =
(
3
√
41i + 41i + 3

√
41 + 9

)
e
i
(
3
√
41(−25i t+8t+8x)

400 + θ
2

)

− 40e
−i

(
3
√
41(t+x)
50 − θ

2

)

,

a3 = 5
(
3
√
41i + 9i − 3

√
41 − 41

)
e
3
√
41
8 t

+ 128ie
3
√
41i

400 (−25i t+16t+16x)

− 8i
(
3
√
41 + 25

)
e

−3
√
41i

400 (25i t+16t+16x)

− 5
(
3
√
41i + 9i + 3

√
41+41

)
.

The dynamic features of the Akhmediev breather
solution in Eq. (3.7) are delineated in Fig. 4. And we

Fig. 4 a Evolution of the Akhmediev breather solution ub−1[1]
via Eq. (3.7) with parameter λ1 = 2

5 + 2
5 i , b corresponding

density plot

can see that theAkhmedievbreather solution is periodic
in space and localized in time.

Case 2 When Re(S) < 0, that is |ξ1| = |η1| > 1
2 ,

similarly, let λ1 = 11
20 + 11

20 i , then we get

ub−2[1] = eiθ −
10i
121e

√
4641
200 (t+x)b1b2
b3

, (3.8)

where

b1 =
(√

4641i − 221i + √
4641 − 21

)

× e
i
( √

4641(−100t+121i t+121i x)
24200 + θ

2

)

+ 220e
−i

( √
4641(−100t+121i t+121i x)

24200 − θ
2

)

,

b2 =
(√

4641i − 221i − √
4641 + 21

)

× e
−i

( √
4641(50t+121i t+121i x)

12100 − θ
2

)

+ 220e
i
( √

4641
242 t+ θ

2

)

,

b3 = 11
(√

4641i − 21i − √
4641 + 221

)

× e
√
4641
50 (t+x) + 2000ie

√
4641

12100 (100i t+121t+121x)

+ 20i
(√

4641 − 121
)
e

−√
4641

12100 (100i t−121t−121x)

− 11
(√

4641i − 21i + √
4641 − 221

)
.

Obviously, Eq. (3.8) is the general breather solution
of Eq. (2.1), and it is periodic both in space and in time
from Fig. 5.

(2) When n = 2, the two-breather solution ub[2] is
also derived from the second step of classical DT in
Eq. (2.11),
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Fig. 5 a Evolution of the general breather solution ub−2[1] via
Eq. (3.8) with parameter λ1 = 11

20 + 11
20 i , b corresponding density

plot

Fig. 6 a Evolution of the first kind of two-breather solution
ub[2] via Eq. (3.9) with parameters λ1 = 2

5 + 2
5 i , λ2 = 3

5 + 3
5 i ,

b corresponding density plot

ub[2] = ub[1] + f2[1]g2[1]∗(λ22 − λ∗2
2 )

|λ2|2(| f2[1]|2λ2 + |g2[1]|2λ∗
2)

,

(3.9)

where ( f2[1], g2[1])T is the solution of Eq. (2.2) at λ =
λ2 and ub[1].We can get distinct two-breather solutions
of Eq. (2.1) while we take different parameters (see
Figs. 6, 7, 8). Assuming that λ j = ξ j + η j , j = 1, 2,
and |ξ j | = |η j |, that is Im(S|λ=λ j ) = 0.

When Re(S|λ1) > 0, and Re(S|λ2) < 0, the solu-
tion ub[2] represents the elastic interaction between
two-breather solutions, inwhich one is a space-periodic
breather solution and the other one is a periodic breather
solution in both space and time (see Fig. 6).

When Re(S|λ1) > 0, and Re(S|λ2) > 0, the solu-
tion ub[2] represents the elastic interaction between
two space-periodic breather solutions (see Fig. 7).

When Re(S|λ1) < 0, and Re(S|λ2) < 0, the solu-
tion ub[2] represents the elastic interaction between

Fig. 7 a Evolution of the second kind of two-breather solution
ub[2] via Eq. (3.9) with parameters λ1 = 2

5 + 2
5 i , λ2 = 11

25 + 11
25 i ,

b corresponding density plot

Fig. 8 a Evolution of the third kind of two-breather solution
ub[2] via Eq. (3.9) with parameters λ1 = 11

20 + 11
20 i , λ2 = 3

5 + 3
5 i ,

b corresponding density plot

two-breather solutions, which are all periodic breather
solutions both in space and in time (see Fig. 8).

It is obvious that the higher-order breather solutions
of Eq. (2.1) can be obtained while we continue the
iteration of the classical DT in Theorem 1.

3.3 Rogue wave solutions

In this subsection, we construct the rogue wave solu-
tions of the new GNLS equation (2.1). This kind of
solution only appears in some special region of time
and space and then drowns into a fixed non-vanishing
plane. In fact, the rogue wave solutions can be obtained
by the limits of the eigenfunctions [41–43] or the limits
of the breather solutions [44–46].

From Eq. (3.5), we can get a new eigenfunction of
the Lax pair (2.2)
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R1(ε) = ( f1, g1)
T ,

f1 = C1e
i
2 (M+θ) − C2e

i
2 (−M+θ),

g1 = C1e− i
2 (M+θ) + C2e− i

2 (−M+θ),

C1 = 2λ2 − √
S − 1

2λ
, C2 = 1, S = 4λ4 + 1,

M = √
S

(

t + x − t

2λ2
+

n∑

k=1

skε
2k

)

,

(3.10)

where ε is a small parameter, sk = mk + nki . If we fix
λ1 = 1

2 + 1
2 i , and let λ = 1

2 + 1
2 i + ε2, then R1(ε) can

be expanded at ε = 0, so we have

R1(ε) = R[0]
1 +R[1]

1 ε2+R[2]
1 ε4+R[3]

1 ε6+· · · , (3.11)

where

R[0]
1 =

(
(i − 1)e

iθ
2

(i + 1)e
−iθ
2

)

, (3.12)

R[1]
1 =

(
P1e

iθ
2

Q1e
−iθ
2

)

, (3.13)

R[2]
1 =

(
− 1

12 P1e
iθ
2

1
12Q1e− iθ

2

)

, (3.14)

R[3]
1 =

(
− 1

180 P2e
iθ
2

1
180Q2e− iθ

2

)

, (3.15)

with

P1 = 2i t x + i x2 + 2i t − 2t2 − 2t x + 1 − i + 2t + 2x,

Q1 = 2i t2 + 2i t x − 2i t + 2t x + x2 + 1 − i − 2t − 2x,

P2 = 24t − 12x − 12 − 12i + 4t4 − x4 − 18x2 − 84t2

− 24i xm1 − 12i t2x2 − 24i t2x − 24i tm1 + 24i tn1

− 4x3 + 4i t4 − 16i t3 + 4i x3 − 36i t2 + 12t2x2

+ 48i t + 12i x − 24in1 − 72t x + 24tn1 + 24xn1

+ 24tm1 − i x4 + 16t3x − 6i x2 − 24t2x − 24m1

− 24t x2 − 8i t x3,

Q2 = 16i t3x + 12i t2x2 − 72i t x + 24i tm1 + 24i xn1

+ 24t − 12x + 12 + 12I − 60i t2 − 30i x2 − 4t4

+ x4 + 18x2 + 60t2 − 4x3 − 24i t2x + 24i tn1

+ 4i t4 − i x4 − 16i t3 + 4i x3 + 48i t + 12i x

− 24in1 + 48t x − 24tn1 − 24m1 + 24xm1 + 8t x3

+ 12t2x2 − 24t2x − 24t x2 + 24tm1,

P3 = 360 − 1800t − x6 + 24t5 − 75x4 − 180t4 − 480t3

− 270x2 + 2340t2 − 360m2 + 8i t6 − 24i t5

− 40i t3x3 − 540i t4 + 15i x4 + 960i t3 + 240i x3

− 540i t2 + 270i x2 − 180im2
1 + 180in21 + 360i t

+ 360i x + 180im1 − 180in1 − 360in2 − 360i tm2

− 1080i tn1 − 180i xm1 − 180i x2n1 − 360i xm2

− 540i xn1 + 60t4x2 + 6i x5 − 30i t2x4 − 6i t x5

− 120i t4x − 120i t3x2 + 30i t x4 − 720i t3x

+ 240i t3n1 − 360t x − 60i x3m1 − 60i x3n1

+ 1440i t2x − 360i t2m1 − 360i t2n1 + 720i t x2

+ 180i x2m1 + 360i tn2 − 720i t x + 360t2n1

+ 360tn2 + 360xn2 + 360tm2 − 30t x4 − 960t3x

+ 40t3x3 − 6t x5 + 24t5x + 60x3n1 − 720t xm1

− 60x3m1 + 360m1n1 − 360i t2xm1 − 180m1

− 360i t x2m1 − 720i t xn1 − 120t3x2 − 120t2x3

− 360t2m1 − 180x2n1 + 240t3m1 + 24i t5x

− 900t2x2 + 360t2xm1 − 360t x3 − 180x2m1

− 180i t2x2 − 1080tm1 − 540xm1 + 180xn1

+ 360i t2xn1 − 180n1 + 360t x2n1 + 360t2xn1,

Q3 = − 360 + 60i t4x2 + 40i t3x3 + 240i t3m1 − 15x4

− 900i t2x2 − 480i t x3 + 60i x3n1 + 24t5 − 90x2

− 180n21 + 180m2
1 − 1800t + 540t4 − 480t3

− 180t2 + 240i x3 − 360m2 + 6i x5 + 960i t3

+ 360i t − 8t6 − 24i t5 + 360i x + 180im1

− 180in1 − 360in2 + 360i tn2 + 24i t5x − 6i t x5

− 120i t4x − 120i t3x2 + 30i t x4 − 720i t3x

− 180m1 − 60i x3m1 + 1440i t2x − 360i t2m1

− 360i t2n1 + 720i t x2 + 180i x2m1 − 24t5x

+ 360xm2 + 60x3n1 + 360t x + 360i t2xn1

− 720i t xn1 + 1260i t2 + 60x3m1 − 630i x2

− 60i t4 − 105i x4 + 360i t2xm1 + 360i t x2n1

− 120t3x2 − 30t x4 + 540t2x2 + 120t x3 − i x6

− 360t2m1 − 180x2m1 − 180x2n1 − 120t2x3

+ 720tm1 + 1080tn1 + 900xn1 + 540xm1

− 180i x2n1 − 1080i tm1 − 180n1 + 360i tm2

− 900i xm1 − 720t xm1 + 540i xn1 + 360i xn2

+ 960t3x + 720i tn1 + 360im1n1 + 360t x2m1

+ 360t2xm1 − 360t2xn1.
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It is clear that R[0]
1 is a special solution of Eq. (2.2)

at u = u[0] = eiθ and λ = 1
2 + 1

2 i .
(1) When n = 1, substituting u[0] = eiθ , θ =

−(3t + x) and λ = 1
2 + 1

2 i into Eq. (2.15), we get
a trivial solution

u[1] = −eiθ , (3.16)

for Eq. (2.1) and

a11[0] = −2, a22[0] = −2,

b12[0] = −2eiθ , b21[0] = 2e−iθ ,

T [1]|λ= 1
2+ 1

2 i
=

(
1 − i −(1 + i)eiθ

(1 + i)e−iθ 1 − i

)

.

(2) When n = 2, from Eqs. (2.16)–(2.18), we have

R1[1] =
(
f1[1]
g1[1]

)

=
(

4(i t − i + t + x)e
iθ
2

4(i t + i x − i − t)e
−iθ
2

)

.

(3.17)

R1[1] is the solution of Eq. (2.2) at λ = 1
2 + 1

2 i and
u[1] = −eiθ . Thus, we can obtain the first-order rogue
wave solution of Eq. (2.1)

u1r [2] = −4i t + 3i x + 1 − 2i − 2t2 − 2t x − x2 + 2t + x

i x + 2t2 + 2t x + x2 − 2t − x + 1
eiθ .

(3.18)

Figure 9 displays the evolution and density plots
of u1r [2], which shows that the first-order rogue wave
solution is localized in both space and time. Through
simple calculations, we find that the first-order rogue
wave solution reaches maximum amplitude |u1r [2]| =
3 at (x, t) = (0, 1

2 ).
(3) When n = 3, by Eqs. (2.19)–(2.21), we have

R1[2] =
(

f1[2]
g1[2]

)

,

f1[2] = − Fr1e
iθ
2

3
(
i x + 2t2 + 2t x + x2 − 2t − x + 1

) ,

g1[2] = − Fr2e
−iθ
2

3
(
i x − 2t2 − 2t x − x2 + 2t + x − 1

) ,

(3.19)

Fig. 9 a Evolution of the first-order rogue wave solution u1r [2]
via Eq. (3.18) with parameter λ = 1

2 + 1
2 i , b corresponding

density plot

with

Fr1 = −32t4 + 128t3 + 16x3 − 192t2 − 48x2 + 120t

+ 72x + 8i x4 − 32i x3 + 24im1 − 240t x + 24tn1

+ 8x4 + 24xn1 − 24tm1 + 16t x3 − 32t3x + 32i t4

+ 72i t + 192t2x + 96t x2 − 24n1 − 24i − 24i tn1

+ 96i t2x2 + 48i t x3 − 24i tm1 − 24i xm1 − 96i t2x

+ 96i t3x − 96i t x2 + 48i t x,

Fr2 = 24i xn1 + 8i x4 + 48x − 32t4 + 16i t x3 + 24i − 96i t x2

+ 128t3 + 16x3 − 32i t4 − 192t2 − 32i x3 + 48i x2

− 72i t − 72i x + 24im1 − 144t x + 24tn1 + 24tm1

+ 24xm1 − 48t x3 − 96t2x2 + 48i t x − 96t3x + 96t x2

− 8x4 − 24n1 − 24i tm1 + 24i tn1 − 32i t3x − 96i t2x

+ 192t2x + 120t.

R1[2] is the solution of Eq. (2.2) at λ = 1
2 + 1

2 i and
u1r [2]. Thus, we find the second-order rogue wave of
the first kind when taking the parametersm1 = 0, n1 =
0 in Eq. (3.19) as follows:

u2r−1[3] = Gr1

Dr1Dr2
eiθ ,

Dr2 = i x + 2t2 + 2t x + x2 − 2t − x + 1,

Dr1 = 160t3x5 + 64t2x6 − 448t6x − 768t5x2 − 800t4x3

+ 306t2 + 117x2 + 320t5x3 − 108x3 − 2112t3x2

− 544t3x4 − 240t2x5 − 64t x6 + 48i t2x3 + 96i t x4

+ 256t6x2 + 272t4x4 + 144t x5 − 324t x4 + 96i t3x

+ 1312t3x3 + 576t2x4 − 2040t4x − 1128t2x3

+ 9 − 72i t x2 − 54t − 27x + 448t6 + 20x6 − 816t5

− 42x5 + 102x4 + 1032t4 − 720t332t8 + 16t x7

− 288i t3x3 − 128t7 + 1344t5x + 1776t4x2

+ 2064t3x + 1584t2x2 + 552t x3 − 1080t2x

−96i t5x − 576t x2 + 306t x + 32i t6x + 96i t5x2

+144i t4x3 + 128i t3x4 + 72i t2x5 + 24i t x6
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− 240i t4x2 + 144i t2x2 + 128t7x − 192i t2x4

−72i t x5 − 96i t3x2 + 36i x5 − 24i t x3 − 72i t2x

−48i t4x − 12i x6 − 72i t x + 4i x7 − 36i x4 + 24i x3

−36i x2 + 27i x + 2x8 − 8x7,

Gr1 = 3920t6 + 544x6 − 5952t5 − 912x5 + 5412t4

+ 909x4 − 3072t3 − 792x3 + 1008t2 + 306x2

+ 1044i t x − 64t10 − 320t9x − 800t8x2 + 320t9

− 1280t7x3 − 1184t7 + 13680t5x + 22368t4x2

+ 21104t3x3 − 108x + 3876t x5 + 13632i t3x4

− 1440t6x4 − 1184t5x5 − 720t4x6 − 100t2x8

+ 11988t2x4 − 20t x9 + 5100t x3 − 11656t3x4

+ 1440t8x + 3200t7x2 + 4480t6x3 + 4320t5x4

+ 2960t4x5 + 1440t3x6 + 480t2x7 + 11088t2x2

+ 100t x8 − 512t7x − 64t6x2 + 1216t5x3 + 272t x7

+ 1856t3x5 + 944t2x6 + 2128t4x4 − 5488t6x

− 11808t5x2 − 14840t4x3 − 5724t2x5 − 1624t x6

− 16560t4x − 20976t3x2 − 14616t2x3 − 5520t x4

+ 1152t x − 144t + 11784t3x − 5040t2x − 3168t x2

− 2x10 + 10x9 + 34x8 − 206x7 + 384i t9 + 18i x9

− 9 + 36i − 1728i t8 − 84i x8 + 3840i t7 + 144i x7

− 126i x6 + 3360i t5 − 198i x5 − 672i t4 + 468i x4

− 864i t3 − 4896i t6 − 636i x3 + 792i t2 + 414i x2

− 288i t − 180i x + 1824i t8x + 4224i t7x2 + 336i t3x

+ 6144i t5x4 + 4368i t4x5 + 2208i t3x6 + 768i t2x7

+ 168i t x8 − 7296i t7x − 14784i t6x2 − 18432i t5x3

− 15360i t4x4 − 8736i t3x5 − 3312i t2x6 − 768i t x7

+ 13440i t6x + 22080i t5x2 − 1164i t x5 − 320t3x7

+ 5472i t2x54560i t3x2 + 1296i t x6 − 13584i t5x

− 16920i t4x2 − 11952i t3x3 − 4968i t2x4 − 224t8

+ 6456i t4x + +2088i t2x2 + 936i t2x3 − 504i t x4

+ 6144i t6x3 + 1728i t x3 − 2160i t2x − 2016i t x2

+21696i t4x3. (3.20)

We call this type of rogue wave as the fundamental
pattern and show the structure of Eq. (3.20) in Fig. 10.

Similarly, let the parameters m1 = 200, n1 = 0 in
Eq. (3.19), and then the second-order rogue wave of
the second kind is obtained as

u2r−2[3] = Gr2

Dr2Dr3
eiθ ,

Dr3 = −96i t3x2 − 128t7 + 448t6 + 20x6 − 816t5 − 720t3

− 48i t4x − 1242x5 − 720054t − 363627x + 32t8

+ 4902x4 + 1032t4 − 16440t4x − 4908x3 − 24i t x3

+ 367317x2 + 1776t4x2 + 720306t2 + 1312t3x3

+ 576t2x4 + 1344t5x − 28872i t x − 28704i t3x

− 72i t x5 + 128t7x + 256t6x2 + 320t5x3 − 363627x

+ 272t4x4 + 160t3x5 + 64t2x6 + 48i t2x3 − 64t x6

− 448t6x − 768t5x2 − 352773i x − 800t4x3 + 16t x7

− 544t3x4 − 240t2x5 − 30912t3x2 − 25128t2x3

− 9924t x4 + 44784t2x2 + 24552t x3 − 29880t2x

+ 734706t x − 29376t x2 + 2x8 − 8x7 + 4i x7 − 12i x6

+ 36i x5 + 24i x3 − 14400i t4 − 28800i t2 + 28800i t3

+ 14400i t − 14256i t2x2 + 43128i t2x + 14328i t x2

+ 30864t3x + 360009 − 3600i + 32i t6x + 96i t5x2

+ 144i t4x3 + 128i t3x4 + 72i t2x5 + 24i t x6 + 96i t x4

− 96i t5x − 240i t4x2 − 288i t3x3 − 192i t2x4 + 144t x5

+ 1164i x4 − 7236i x2,

Gr2 = −64t10 + 320t9 − 224t8 − 1184t7 + 1396656t

+ 3920t6 − 5456x6 − 63552t5 − 74160t4x

+ 691092x − 193632t4x2 − 218896t3x3 − 3312x5

− 1290588t4 − 339891x4 + 2704128t3 − 320t9x

− 2763792t2 − 1385694x2 + 1440t8x + 3200t7x2

+ 4480t6x3 + 4320t5x4 + 2960t4x5 + 1440t3x6

+ 25002i x5 + 655608x3 − 72720t5x − 132012t2x4

− 20t x9 − 41724t x5 + 480t2x7 − 49356i t x − 7326i x6

+ 1216t5x3 + 2128t4x4 + 1856t3x5 + 944t2x6

+ 10376t x6 + 23312t6x − 800t8x2 + 105160t4x3

+ 84344t3x4 − 768i t x7 + 272t x7 + 74592t5x2

− 64t6x2 − 1280t7x3 − 1440t6x4 − 1184t5x5

− 720t4x6 − 320t3x7 − 100t2x8 − 20976t3x2

+ 144i x7 − 33696i t6 + 89760i t5 + 3420i x + 10x9

− 101472i t4 − 46332i x4 + 56736i t3 + 49764i x3

− 6408i t2 − 13986i x2 − 7488i t + 199440i t2x

− 352809 + 1824i t8x − 271152i t3x3 − 18432i t5x3

+ 6144i t6x3 + 6144i t5x4 + 4368i t4x5 + 2208i t3x6

+ 768i t2x7 − 156168i t2x4 − 14784i t6x2 + 3636i

− 2609016t3x − 15360i t4x4 − 8736i t3x5 + 168i t x8

− 3312i t2x6 + 13440i t6x + 22080i t5x2 + 4224i t7x2

+ 21696i t4x3 + 13632i t3x4 + 5472i t2x5 + 1296i t x6

− 157584i t5x − 276120i t4x2 + 39876t2x5 + 100t x8

− 51564i t x5 + 366456i t4x + 522960i t3x2 + 994x7

+ 150696i t x4 − 374064i t3x − 415512i t2x2 − 512t7x

− 228672i t x3 + 156384i t x2 + 389736i t2x3 + 34x8.

(3.21)

This kind of rogue wave is called as the triangular
structure, and we display the structure of Eq. (3.21) in
Fig. 11.

(4) When n = 4 in Eqs. (2.22) and (2.23), we can
obtain the third-order rogue wave solution in the same
way as the above (1)–(3),

123



2034 Y. Tang et al.

Fig. 10 The fundamental pattern. a Evolution of the first kind of
second-order rogue wave solution u2r−1[3] via Eq. (3.20) with
parameters λ = 1

2 + 1
2 i , m1 = 0, n1 = 0, b corresponding

density plot

Fig. 11 The triangular structure. a Evolution of the second kind
of second-order roguewave solution u2r−2[3] via Eq. (3.21) with
parameters λ = 1

2 + 1
2 i , m1 = 200, n1 = 0, b corresponding

density plot

Fig. 12 The fundamental pattern. a Evolution of third-order
rogue wave solution u3r [4] via Eq. (3.22) with parameters λ =
1
2 + 1

2 i , m1 = 0, m2 = 0, n1 = 0, n2 = 0, b corresponding
density plot

u3r [4] = u2r [3] + f1[3]g1[3]∗(λ21 − λ∗2
1 )

|λ1|2(| f1[3]|2λ1 + |g1[3]|2λ∗
1)

,

(3.22)

where R1[3] = ( f1[3], g1[3])T is the solution of
Eq. (2.2) at u2r [3] and λ = 1

2 + 1
2 i .

Fig. 13 The triangular structure. a Evolution of third-order
rogue wave solution u3r [4] via Eq. (3.22) with parameters λ =
1
2 + 1

2 i , m1 = 400, m2 = 0, n1 = 0, n2 = 0, b corresponding
density plot

Fig. 14 The ring structure.aEvolutionof third-order roguewave
solution u3r [4] via Eq. (3.22) with parameters λ = 1

2 + 1
2 i ,

m1 = 0, m2 = 400, n1 = 0, n2 = 0, b corresponding density
plot

The dynamics of Eq. (3.22) is displayed in Figs. 12-
14. We find that: when the parametersm1 = 0, n1 = 0,
m2 = 0, n2 = 0, we get the first kind of third-order
rogue wave which is the fundamental pattern (seen in
Fig. 12); when the parameters m1 = 400, n1 = 0,
m2 = 0, n2 = 0, we get the second kind of third-order
rogue wave which is the triangular structure (seen in
Fig. 13); what’s more, when the parameters m1 = 0,
n1 = 0, m2 = 400, n2 = 0, we get the third kind of
third-order roguewavewhich is the ring structure (seen
in Fig. 14). From Figs. 13 and 14, clearly, we see that
the triangular structure and the ring structure all have
six uniform peaks.

We remark that we can also construct the high-order
rogue wave solutions of Eq. (2.1) if continuing the iter-
ation of the generalized DT in Eqs. (2.18)–(2.20).
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4 Conclusions

The nonlinear partial differential equations (NPDEs)
have been the subject of extensive studies in vari-
ous branches of nonlinear sciences. A class of ana-
lytical solutions for NPDEs is of fundamental impor-
tance because lots of mathematical–physical models
are often described by such wave phenomena. Thus,
the investigation of explicit solutions is becomingmore
and more attractive in nonlinear sciences. The inte-
grable GNLS equation models the propagation of non-
linear light pulses in optical fibers when certain high-
order nonlinear effects are taken into consideration
[47,48]. In this paper, we investigate the exact solu-
tions (including soliton solutions, breather solutions,
and rogue wave solutions) of a new GNLS equation
based on its Lax pair by using the DT method. First
of all, we construct the classical DT and the general-
ized DT of Eq. (2.1). Then, these exact solutions are
obtained from the corresponding n-fold DT by assum-
ing the suitable seed solution and depending on the
parameter choices. Moreover, the dynamical features
of these exact solutions are analyzed by their profile and
density plots with the help of Maple software. Finally,
we find that the higher-order solutions have rich and
interesting dynamics and structures.
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