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Abstract In this paper, a new generalized nonlin-
ear Schrodinger (GNLS) equation is investigated by
Darboux matrix method. Firstly, the n-fold Darboux
transformation (DT) of the GNLS equation is con-
structed. Then, the soliton solutions, breather solutions,
and rogue wave solutions of the GNLS equation are
studied based on the DT by choosing different seed
solutions. Furthermore, the dynamic features of these
solutions are explicitly delineated through some figures
with the help of Maple software.
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1 Introduction

Itis well known that the standard nonlinear Schrédinger
(NLS) equation

ity + yuce +oulu> =0, o = £1 (1.1)

is one of the most important integrable systems among
many branches of applied mathematics and physics,
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especially in optics, water wave and so on [1-3]. In
Eq. (1.1), u = u(x, t) is a complex smooth function
of x and ¢, the subscripts denote partial derivatives and
the parameter y is real constant.

In 1995, Fokas [4] studied an integrable generalized
nonlinear Schrédinger (GNLS) equation by means of
bihamiltonian operators based on the NLS equation

iUy — VUgxy + YUy +a|u|2(u +ivuy) =0, 0 = %1,
(1.2)

where y and v are real constants. In fact, Eq. (1.2)
can be transformed into Eq. (1.1) when the parameter
v =0.

In 2010, Lenells [5] did further investigation to
Eq. (1.2) by the dressing method, and Eq. (1.2) is trans-
formed into a new form

Uy + ozﬂzu —2iafBuy — duy, + Gia,B2|u|2ux =0,
o ==l (1.3)

under the transformation of

u— ﬂ\/&eiﬁxu, o =—o0,

wherea = £ >0, 8 = %

There are many methods to get the exact solutions to
the integrable equations, for instance, Darboux trans-
formation method (DT) [6,7], inverse scattering trans-
formation [8], Hirota method [9], bilinear method [10]
and so on. DT possesses a lot of advantages compared
with other methods. It is a more valid and powerful
tool to study the exact solutions of an integrable system
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from a seed solution. We can investigate solutions of
different kinds when choosing different seed solution
and analysis the relations among them. One can make
the DT once again and get another set of new solutions
if the obtained solutions are taken as the new starting
point. Therefore, the high-order solutions can be con-
structed through iterations of the DT. In this paper, we
construct the exact solutions of Eq. (1.3) by means of
DT, including the soliton solutions, breather solutions,
and rogue wave solutions.

Before discussing the DT, we shall briefly introduce
the rogue waves. Rogue waves (RWs) appear in both
the shallow water and deep ocean, which are notori-
ous for causing a large number of disasters for peo-
ple. As is known to all, storms and tsunamis associated
with typhoon can be predicted hours in advance; how-
ever, the oceanic RWs suddenly appear from nowhere
and disappear without a trace [11]. Consequently, RWs
attract more and more attention to many scientists
and have been studied extensively in a lot of other
fields, such as in optics [12—14], physics (for exam-
ple acoustic turbulence in He II) [15], femtosecond
plus propagation [16,17], hydromechanics [18], mete-
orology [19] and even finance [20]. Nowadays, it is
widely accepted that the modulation instability (MI)
is the fundamental mechanism for the generation of
the rogue waves [3,21]. The foremost description of a
single rogue wave is the rational solution of the NLS
equation which features a localized peak whose ampli-
tude is three times larger than that of the average height
[22]. The high-order rogue wave solutions of the NLS
equation have been studied in [23,24]. Gradually, the
rogue wave has been found in many other systems
(e.g., the Hirota equation [25], Boussinesq equation
[26], Sasa-Satsuma equation [27], Fokas—Lenells equa-
tion [28], the Manakov system [29], coupled Hirota
equations [30,31], NLS-Maxwell-Bloch system [32]
and Yajima—Oikawa system [33]). Moreover, it is con-
firmed that the high-order rogue waves have some inter-
esting patterns [34,35], for instance, fundamental pat-
tern, ring structure, triangular structure and so on.

The rest of the paper is organized as follows. In
Sect. 2, we give the Lax pair and construct the corre-
sponding classical DT and generalized DT of Eq. (1.3).
In Sect. 3, the multisoliton solutions, breather solutions,
and rogue wave solutions are derived by making use of
the DT with the help of Maple. In Sect. 4, conclusions
are given.
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2 Lax pair and Darboux transformation
2.1 Lax pair

Without losing generality, let 0 = —1,then Eq. (1.3)
will become the following form:

Upx +ot,62u—2ioz/3ux — Oy —ioe,B2|u|2ux =0, 2.1)

and the Lax pair (i.e., linear spectral problem) [36] of
Eq. (2.1)is

R, =UR, R, =VR,

U= —iAZ huy)
A A2 )0 (2.2)
. 2 : 2
V- —%ur—in2 %M""O‘)‘”X
—%r+aer %ur—}—in2 ’

where n = Ja(A — 2%), r = —u*, “«” denotes the
complex conjugate and the vector R = (f, g)7 is an
eigenfunction associated with A and potential u, which
consists of two complex functions f = f(x,#) and
g =8(x,1).

Trough direct calculations, we can verify that the
integrability condition U; — Vi + [U, V] = 0 exactly
gives Eq. (2.1), where [U, V] =UV — VU.

2.2 The classical DT

The DT is an effective approach used to solve the soli-
ton equations [37-39]. We can obtain the soliton solu-
tions, breather solutions by the classical DT and get
the rogue wave solutions by the generalized DT. In the
following, we will construct the two DTs.

(1) One-fold classical DT

The DT is a special gauge transformation,

R[1] =T[1]R, (2.3)
with
T[1]= T[l](k)=A1A2+Blk+I, (2.4)

where [ denotes the identity matrix, and A; =
(@ij[0D2x2, B1 = (bi;j[0])2x2 are 2 x 2 matrices. The
DT (2.3) transforms the old Lax pair (2.2) into a new
Lax pair
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{ R[1], = U[1]R[1], (2.5)

R[1]; = V[1]R[1],

where U[1], V[1] have the similar forms as U, V in
Eq. (2.2) withu replacedby u[1],and U[1], V[1] satisfy
UNT[1]=TI[1], + T[1]U, 2.6)
VT[] =T[1], + T[1]V. ’

Furthermore, by direct computations and comparing
the coefficients of A (i is the power of 1) based on
Eq. (2.6) [40], we can obtain the forms of A and B

_ (aul0] O _( 0 b2[0]
Al_( 0 azz[m)’ Bl_(bzl[m 0 )

2.7

and get the relation between potential functions u[1]
and u:

ull] = u + b2 [0]. 2.8)

Next, in order to determine the exact form of 7'[1],
we assume that Ry = (fi, gl)T is an eigenfunction
of the Lax pair (2.2) at A = A; when u = u[0] is
the initial seed solution, and then, R = (—g7, fl*)T
is also an eigenfunction of the Lax pair (2.2) at A =
A7 and u[0], and the two eigenfunctions all satisfy the
following algebraic equations

{ T[1](M) =1, R1 =0, (2.9)

T = R, = 0.
Solving Eq. (2.9), we can get

|A1PAE + 11120

al][o]z_ )
A112(f11PA0 + |g112AT)
2 29 %
A A
0] = — |2fl| ;-:Igll i
[Ar1=( f1I=AT + lg1l°A1)
* )\'2_)\'*2
baf0] = JSIA 4D
A= fil=Ar + [g11#A])
* AZ_)\*Z
by1[0] = glf]( 1 1 )

SRGARSEAIIZIN

So the one-fold classical DT of Eq. (2.1) is defined
as

R[1] = T[1]R, u[1] = u[0] + b12[0],
1] = ai[01A2+ 1 bp[0]x

"\ o appop2+1) 10
£1I01g1[01* (A3 — A7%)

b1»[0] = ,
2l = R AP + a0

where we set R1[0] = (f1[0], g1l0D" = (f1, gn)” for
the uniform symbol representation in later words.

(2) Two-fold classical DT

To do the second step of classical DT, we assume
that Ry = (f2, g2)T is a solution of Eq. (2.2) at A, and
u[0], then we employ R»[1], which is mapped to

Ro[1] = (fal11, g201D)T = T[11(M)azs, R2,

and R;[1] is the solution of Eq. (2.2) at A = A, and
u[1], as well as Rz[l]/ = (—g2[1]%, fz[l]*)T is also
the solution for Eq. (2.2) at A = A3 and u[1] [6]. Next,
by the similar process as the one-fold classical DT, we
can construct the two-fold classical DT

R[2] = T[2]R[1] = T[2]T[1]R,
ul2] = ul1] + ba[1] = u[0] + (b12[0] + bra[1]),
an[1A2+1  bpafl]r
T2] = s
bolllx  an[1A?+1
po[l] = —2llsalll(3 —45%)
! 2P A0 + (g%

@2.11)

(3) n-fold classical DT

If n distinct solutions R; = (f;,g), 1 <j <n
of Eq. (2.2) are given, then the classical DT may be
iterated. Continuing the above iteration process, we get
the n-fold classical DT and have the following theorem.

Theorem 1 Let Ry, R», ..., R, bendistinct solutions
of Eq. 2.2)at A1, L2, ..., Ay, respectively. Then the n-
fold classical DT for the GNLS equation (2.1) is defined
as

R[n] =T[n]T[n—1]...T[1]R,
uln] = u[0] + Y, bialj — 11,

- ()

Al gl - e =)

TGRS = 1P+ gl — 1175
(2.12)

bialj —1]
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and Ri[0] = (f1[0], &1l0D" = (f1,¢n),

Rilj —11=(f;lj — 1. g;[j — 1DT

=T —UT[j —2]...T[1Dlx=x, R},
(2.13)

where u[0] is the initial seed solution of Eq. (2.2), and
R;[j—1],j =1,2,3,...nisthe solution of Eq. (2.2)
ath = Ajandulj —1].

Obviously, the iteration process of the DT can be
simply described as

TI1] T12]

R R[] Tin]

r21 2L R -1 HM

R[n],
and then

ul0] — ul[l] — ul[2] — ...u[n — 1] — u[n].

2.3 The generalized DT

In the high-order iteration process of DT, the classical
DT must be performed under the distinct eigenvalues
Aj (j = 1,2,...,n). However, for getting the high-
order rogue wave solutions of the soliton equations,
the iteration process of DT must be performed under
the same eigenvalues, that is the generalized DT. Next,
we manage to construct the generalized DT.

(1) One-fold generalized DT

Suppose that Rj(A; + §) is a basic solution for
Eq. (2.2) at A = A1 + 8, and we can expand it at § = 0,
then we have form as follows:

Ry = R 4 RIUs 4 RIPs2 o p R

(2.14)

where § is a small parameter, R[k] = (f [k], g%k])T =

lim L2 (=0, 1,2, and R = (", g7
is a special solution of Eq. (2.2) at A = Ay when the
seed solution is # = u[0]. Thus, the first step of the
generalized DT for Eq. (2.1) is the same as the one-

fold classical DT, that is

R[1] = T[1]R, u[l] = u[0] + b12[0],

iy = (@0A° + 1 brz (0N
- bZI[O] anl02 + 1 2.15)
F1101g1[01* (A3 —212)
blZ[O] |)~1|2(|f1 \2)»1+|g1 PA*),
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where R[0] = (f1[0], g1[0)"
(2) Two-fold generalized DT
Now we make the two-fold generalized DT through
a limit process. After the transformation in Eq. (2.15),
we know that T[1]R; is a solution of Eq. (2.2) at A =
A1+ 8 and u[1]. Thus, through the limit process

0 0
= (f1% g7,

T[Ula=s,4sR1 (T[22, + C18 + C28H Ry

= lim
§—0 ) §—0 k)
= T[13=1, R + 1 RY"
= Ry[1],
(2.16)
with
o] _ _ (2a11[0]x1  b12[0]
T RE7 =0, €1 ‘( bail0] 2an[0];
_ (aul0] O
C2_< 0 axn[0]
(2.17)

we can find that R{[1] = (f1[1], gl[l])T is a solution
of Eq. (2.2) at A = A1 and u[1]. So the second step of
the generalized DT of Eq. (2.1) is defined as

R[2] = T[2]R[1] = T[2]T[1]R
u[2] = u[1] + b12[1] = u[0] + (b12[0] + b12[1]),
T[] = <6111[1]/\2 + 1 byp[l]a )

bu[lIh an[11A2+1)°

_ AlgIFed-a?)
bl = g -

(2.18)

(3) Three-fold generalized DT
Similarly, we have the limit

(TR2IT( D r=r+8 R
m
5—0 82

= lim —{(T[zm —iy 4 C38 + C48%).
(T[22, + C18 + C28*) Ry}
= (T[2IT[1])]5=, R
+ (T121l3=1, C1 + C3T[1]]3=1,) R
+ (C3C1 4 T21l=3,C2 + C4T 1523, R

= R1[2],
(2.19)
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with

Tz, R =0,

T2, Ty, R + €1 R = 0,

Ca = (Zaulllay bi2ll] c.— (aulll 0

3T bulll 2ap(tng) TAT\ 00 anin)
(2.20)

And Eq. (2.19) provides a solution R[2] =
(f1121, g112D7T for Eq. (2.2) at A = A; and u[2]. Thus,
we may do the third-step iteration of the generalized
DT as follows:

R[3] = T[3]R[2) = T[3IT[2IT[1]R.
ul3] = ul2] 4 bia[2] = ul0] + 30—, bialj — 11,
. (au[mz +1 bpl2)n >

bul2Ih  an[21A? +1)°

_ ARIRIFG3-A)
bil2l = (A RIPAFlgi IR

2.21)

(4) n-fold generalized DT

Continuing the above process and basing on the
classical DT, the high-order generalized DT is con-
structed. Thus, we can obtain the n-fold generalized
DT of Eq. (2.1):

R[n] = T[n]T[n — 1]... T[1R,

uln] = ul01+3%_ bialj — 11,

T1j] = <an[j — 121 bolj — 11 )
bolj — 1A axnlj— 1" +1

T R 10 g A 131V e S )
bilj —11= M PAAG =P+ =122

(2.22)

where R1[0] = (f1[0], g1[0D7 = (fl[O]’ gg()])T’

Rilj—11=(Ali =1, a1l — 1D

. (T[j—UT[j —=2]...T[1D|r=n,4+sR1
= l1im ;
5—0 §i-1

)

(2.23)

and Ri[j — 1], (j = 1,2, 3,...,n) is the solution of
Eq. (2.2)at A = Ap and u[j — 1].

3 Soliton solutions, breather solutions, and rogue
wave solutions

3.1 Multisoliton solutions

In this subsection, we present the multisoliton solutions
of Eq. (2.1) explicitly. Take u = u[0] = O, that is
zero initial seed solution for Eq. (2.2) and let « = 1,
B = —1. Then solving Eq. (2.2) by the Maple, we can
obtain the forms of eigenfunction withregardtoA = A
(G=12,...,n)

R; = (fj.g)".

) (2;\§+1>2 ) ) (2A§+1)2 )
—i Y t+ij i w2 t+ij
fj =e J g] =e J

)

3.1

(1) When n = 1, after simple calculations in
Eq. (2.10), we have
erl
us[11 = 4in1§ (3.2)

(A1ePst + 2P |n %
with
M=&+im, A =& —in,

—i
2 (4/\‘1‘(x +0) + @] + 1):) ,
1

Fs1=

At 41—t
D1 =2 _

s1= 2611 P
ug[1] is the one-soliton solution of Eq. (2.1), and it rep-
resents a bright single soliton whose dynamic features
are delineated in Fig. 1 when we take the parameter
M= 4—11 + 4—111'.

S

t
(@)

Fig. 1 a Evolution of one-soliton solution u,[1] via Eq. (3.2)
with parameter 1| = % + %i, b corresponding density plot
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(2) When n = 2 in Theorem 1, we can obtain the
following two-soliton solution of Eq. (2.1)

60i —2itF
(2] =52 (3.3)
DsZ . Ds3
with
Dy = (1 +D)e™ $H (1 — e d173,

Fio = (1+1) (23757

5
+2€2x —€4t 4x_e——t+ x)

+ (1 —=1) <2e 2x—2t+2e S
—e 75 +Z —g?t_%x>

Dy3 = (1 +1) (9e%x—?’ +16e*
+25e27F 51 — 40e 1)
+(1—i) (9e—%x+% + 166"

1 15 15 1
+ 25e‘7"‘7’—40e‘7f+ﬂ) ,

when we take A1 = 4—1‘ + %i,)»z = % + %i.

The dynamic features of the two-soliton solu-
tion ug[2] are displayed in Fig. 2. We find that the
two-soliton solution represents the elastic interaction
between two bell-shaped bright solitons, and the soli-
tonic shapes as well as amplitudes have not changed
after the interaction.

(3) When n = 3 in Theorem 1, similarly, we get the
three-soliton solution of Eq. (2.1)

f3121g3[21F (A3 — A3%)
IA312(1 f3[211743 + [g3[21174%)°
(3.4)

us[3] = us[2] +

where ugy[2] is given in Eq. (3.3), and R3[2] =
(f312, g3[2D" = (T[2T[1D]=2, R3 (Where R3 =
(f3,g3)7 is the solution of Eq. (2.2) at A = A3 and
u = u[0] = 0) is the solution of Eq. (2.2) at A = A3
and u = u4[2]. The explicit expression of Eq. (3.4) is
not given here because of its tedious formulas.

The three-soliton solution u[3] represents the over-
taking interaction among three bell-shaped bright soli-
tons, whose dynamic features are shown in Fig. 3, and
we find that the solitonic shapes as well as amplitudes
have not changed after the interaction.

@ Springer

Fig. 2 a Evolution of two-soliton solution u,[2] via Eq. (3.3)
with parameters A; = % + %i , A = % + %i , b corresponding
density plot

(b)

Fig. 3 a Evolution of three-soliton solution u[3] via Eq. (3.4)
with parameters A} = % + %i, Ay = % + %i, M =14+1i,b
corresponding density plot

We remark that we can also obtain the higher-order
soliton solutions of the new GNLS equation (2.1) by
continuing the iteration process of the classical DT in
Theorem 1.

3.2 Multibreather solutions

In this subsection, we take the plane wave seed solution
u = ul0] = e = @b of Eq. (2.1) with the
dispersion conditionb = (%(aoz,Bz—I-aza—FZaa,B +aB?).
Without loss of generality, we assume thato = 1, 8 =
—1,a = —1, thatis 6 = —(x + 3¢), then Eq. (2.2) is
solved by

Rj=(fj.8)".
fi = CletM+0) _ 00p3(-M+0) (3.5)

gj = Cle~ 1 (M+6) + C2e_%(_M+9),
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with
t
S=a+1, M=VSt+x-—),
: 2%
235 —VS -1
Cl=———— ¢c2=1, j=1,2,...,n.
oy

(1) When n = 1 in the classical DT of Theorem 1,
R is the eigenfunction of Eq. (2.2) corresponding to
A1 = &1 + i, and set || = |n1], so that Im(S) = 0.
Thus, the one-breather solution u,[1] is obtained as

f1101g1[0T* (A3 — A3%)

11 = u[O s
ol = 0l s A 01 A + g1 0124D)

(3.6)

and (1101, g110DT = (f1, g1)T.

From Eq. (3.6), we can obtain several different one-
breather solutions of Eq. (2.1) when taking different
parameters, including the Akhmediev breather solution
and the general breather solution.

Case 1 When Re(S) > 0, thatis [&| = || < 3, we
can obtain the Akhmediev breather solution of Eq. (2.1)
if we take some appropriate parameters. For example,
let A1 = % + %i, then

up—1[1] = €7 + ;, (3.7)

. 3@(25i:+16r+1ox)+g
800 2

— (3«/@ 4l —3«/4ﬁ—9) A

L (3J/AQ25i14161+16x)
! 300 2

)

— 40e
. 3\/ﬂ(7zsn+8t+8x)+g
400 2

ay = (3\/ﬂi +41i+3\/ﬂ+9) A

L (3VAlax) 0
—40e "\ 02

a3 =5 (wﬂi 19i — 341 — 41) ey
4 1281 ok (~25it-+161+16x)
_8i (3f+ 25) o Sl 25i1+161+16x)
_5 (3J4ﬁi +9i + 3«/Aﬁ+41) .

The dynamic features of the Akhmediev breather
solution in Eq. (3.7) are delineated in Fig. 4. And we

VBAVBLVBL\A\A A

) O O Al
y |
10 ' -20 -10 (i 10 20
(@ (b)
Fig. 4 a Evolution of the Akhmediev breather solution u;_1[1]
via Eq. (3.7) with parameter 1| = % + %i, b corresponding

density plot

can see that the Akhmediev breather solution is periodic
in space and localized in time.

Case 2 When Re(S) < 0 that is [&] = |mi| > 1.
similarly, let 11 = 20 + Ol then we get
) 101' 200 (H—x)b b
up_all] = ¢ — 21° -y (3.8)
b3
where
by = (¢4641i — 2217 + /4641 — 21)
5 ei(M(—logzrolgliﬂrulix)_i_%)
_l-(«/M(—lOOtJrlZlitJrlZlix)_g)
+220€ 24200 2 ,
by = (\/46411‘ —221i — /4641 + 21)
. ((/A641(50t+121it+121ix) @ 4641, , 6
() ()

by =11 («/46411’ —21i — /3641 + 221)

P <z+x)+2000wlg‘fgg(loozz+121r+121x)

4 20i ( T6AT — 121) o el (100i—1211—121x)

11 (\/46411' — 21i + /4641 — 221) .

Obviously, Eq. (3.8) is the general breather solution
of Eq. (2.1), and it is periodic both in space and in time
from Fig. 5.

(2) When n = 2, the two-breather solution u[2] is
also derived from the second step of classical DT in
Eq. (2.11),

@ Springer
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Fig. 5 a Evolution of the general breather solution u;,_,[1] via
Eq. (3.8) with parameter A} = % + % i, b corresponding density
plot

(b)

Fig. 6 a Evolution of the first kind of two-breather solution
up[2] via Eq. (3.9) with parameters 1| = % + %i, Ao = % + %i,
b corresponding density plot

HllgA11*(A3 — 132
a2 2(1 201120 + |2l 111223)
3.9)

up[2] = up[1] +

where (f>[1], g2[11)7 is the solution of Eq. (2.2) at A =
Az and up[1]. We can get distinct two-breather solutions
of Eq. (2.1) while we take different parameters (see
Figs. 6,7, 8). Assuming that A; = &; +1n;, j = 1,2,
and |§j| = |r;j|, that is Im(S|A:Aj) =0.

When Re(S];,) > 0, and Re(S|;,) < 0, the solu-
tion up[2] represents the elastic interaction between
two-breather solutions, in which one is a space-periodic
breather solution and the other one is a periodic breather
solution in both space and time (see Fig. 6).

When Re(S[y,) > 0, and Re(S|[,) > 0, the solu-
tion up[2] represents the elastic interaction between
two space-periodic breather solutions (see Fig. 7).

When Re(S];,) < 0, and Re(S|;,) < 0, the solu-
tion up[2] represents the elastic interaction between

@ Springer

b corresponding density plot

(b)

Fig. 8 a Evolution of the third kind of two-breather solution
up[2] via Eq. (3.9) with parameters A| = % + %i, A = % + %i,
b corresponding density plot

two-breather solutions, which are all periodic breather
solutions both in space and in time (see Fig. 8).

It is obvious that the higher-order breather solutions
of Eq. (2.1) can be obtained while we continue the
iteration of the classical DT in Theorem 1.

3.3 Rogue wave solutions

In this subsection, we construct the rogue wave solu-
tions of the new GNLS equation (2.1). This kind of
solution only appears in some special region of time
and space and then drowns into a fixed non-vanishing
plane. In fact, the rogue wave solutions can be obtained
by the limits of the eigenfunctions [41-43] or the limits
of the breather solutions [44-46].

From Eq. (3.5), we can get a new eigenfunction of
the Lax pair (2.2)
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Ri(e) = (f1.81)",
fi = ClesMH0) _ 023 (-M+0),
g1 = Cleié(MJrg) + C2e7L2.(7M+0),

222 — /S —1
Clzz—j\/—, C2=1, S=d*+1,

n
_ ! 2%
M—\/§<t+x—ﬁ+;sks ),
(3.10)
where ¢ is a small parameter, sy = my + ngi. If we fix

A= % + %i, and let A = % + %i + &2, then R1(¢e) can
be expanded at ¢ = 0, so we have

Ri(e) = R4 RG24 RIFT L RBIO L 3.11)

where
. i0

RO (G el ) (3.12)
i+ De2

i0

P

R =( 715, ). (3.13)
Qe

2 —LPe?

RV = (712717 ), (3.14)
3 01e" 2

3 — i Pe®

RPT =7 180729 ) (3.15)
T80 Q2e” 2

with

Py =2itx +ix? +2it — 2% — 2tx + 1 — i + 2t + 2x,

01 =2it? +2itx —2it +2x + x> + 1 —i — 2t — 2x,

Py =24t — 12x — 12 — 12i 4+ 4r* — x* — 18x% — 842
— 2dixmy — 12it2x% — 24it>x — 24itmy + 24itn,
— 4x® 4 4ir* —16ir% + 4ix> - 36ir% + 1202x2
+48it + 12ix — 24iny — 72tx + 24tn| + 24xn,
+24tmy — ix* 4+ 1663x — 6ix% — 241%x — 24m,
— 241x% — 8itx3,

05 = 16it3x + 12it2x% — 72itx + 24itm| + 24ixn,
4241 — 12x + 12 + 121 — 60it*> — 30ix* — 4¢*
+x* + 18x2 4+ 6012 — 4x3 — 24it%x + 24itn;
+4ir* —ix® — 16i13 4 4ix3 4 48ir + 12ix
— 24iny + 48tx — 24tn| — 24m| + 24xm; + 8tx>
+ 12622 — 241%x — 24¢x? + 24tm,,

P3 =360 — 1800r — x© + 2417 — 75x* — 180¢* — 48073

—270x? + 23401% — 360m, + 8i1® — 2417

— 40ir3x3 — 540it* + 15ix* 4 960i1> + 240i x*
— 540i1% + 270ix? — 180im? + 180in? + 360i1
+360ix + 180im| — 180in] — 360iny — 360itm»
— 1080itny — 180ixm1 — 180ix2n1 — 360ixmy
— 540ixn; + 60r*x2 + 6ix> — 30ir2x* — 6itx’
—120ir*x — 120i3x? + 30itx* — 720i13x
+240i13n; — 360tx — 60ix>m| — 60ix>n;

+ 1440i1%x — 360i12m| — 360it>n| + 720i1x>
+ 180ix%m| + 360itny — 720itx + 360t%n;

+ 360117 4 360xn7 + 360tmy — 301x* — 96013 x
+4083x3 — 61x° + 2417x + 60x3ny — 720txm;
— 60x3my + 360m ny — 360it>xm; — 180m;
—360itx2my — 720itxn; — 12063x% — 1202x3
— 36012 m| — 180x%n| + 24087m | + 24ir°x
—900£%x% 4 360t2xm| — 360tx> — 180x2m

— 180it2x% — 1080tm| — 540xm | + 180xn;
+360i12xn| — 180n] + 360rx2n| + 3601%xn

03 = — 360 + 60it*x? + 40it3x3 + 240i3m ;| — 15x*
—900i1%x? — 480itx> 4 60ix>n| 4 241> — 90x>
— 180n% + 180m? — 18007 + 5401* — 480
— 18072 + 240ix> — 360my + 6ix> + 960i13
+360it — 8¢9 — 24it> + 360ix + 180im;

— 180in; — 360iny + 360itny + 24it°x — 6itx>
— 120ir*x — 120i°x? + 30itx* — 720i13x

— 180m| — 60ix>my + 1440it>x — 360i1*m
—360it%n1 + 720itx”> + 180ix*m| — 241°x
+360xm2 + 60x>n1 + 3601x + 360i1%xn

— 720itxn| + 1260it% + 60x>m| — 630ix>
—60it* — 105ix* 4 360i12xm| + 360itx>n,
—1203x2 — 301x* 4 54012 x% + 1201 — ix®
—360t2m; — 180x2m — 180x%n; — 1201%x>
+ 720tm1 + 1080tn1 + 900xn| + 540xmy

— 180ix2n| — 1080itm| — 180n] + 360itm>
—900ixmq — 720txmy + 540ixnq + 360ixny
+ 96013 x + 720itn] + 360imin| + 360tx2m
+36012xm | — 360t%xn.
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It is clear that R EO] is a special solution of Eq. (2.2)
atu = u[0] = ¢! and & = 1 + }i.

(1) When n = 1, substituting u[0] = et o =
—@Bt+x) and A = % + %i into Eq. (2.15), we get
a trivial solution

ull] = —e'?, (3.16)
for Eq. (2.1) and

ai1[0] = =2, axnl0] = -2,
b12[0] = —2¢%, by [0] = 2¢77,
1—i = +i)ei9>

e ((1 +i)e i 1—i
(2) When n = 2, from Egs. (2.16)—(2.18), we have
. . i
R1[1]=<f1[1])= 4.(ll —.l—i-t.—i-x)e; ‘
gil1] 4Gt +ix —i —t)e2
(3.17)

Ry[1] is the solution of Eq. (2.2) at A = % + 4i and
u[1] = —e'?. Thus, we can obtain the first-order rogue
wave solution of Eq. (2.1)

up2l = —

ix +202 4 2tx +x2 -2t —x + 1
(3.18)

Figure 9 displays the evolution and density plots
of u1,[2], which shows that the first-order rogue wave
solution is localized in both space and time. Through
simple calculations, we find that the first-order rogue
wave solution reaches maximum amplitude |u1,[2]| =
3at (x,1) = (0, 1).

(3) When n = 3, by Egs. (2.19)—(2.21), we have

f1[2]>
Ri[2] = ,
o= (4
i0
Frie2
2 = — bl
Ul 3(ix +20242tx +x2 -2t —x + 1)
—if
Froe2
2] =~ :
sil2] 3(ix—202—2tx —x2+ 2t +x — 1)

(3.19)
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dit +3ix +1 -2 — 262 —2x —x2 42+ x ;
e

(b)
Fig. 9 a Evolution of the first-order rogue wave solution u1,[2]
via Eq. (3.18) with parameter A = % + %i , b corresponding
density plot
with

Fr1 = =321 4+ 1287 + 16x% — 192/ — 48x2 + 1201

+ 72x + 8ix* — 32ix> + 24im| — 240tx + 241n,
+ 8x* + 24xn| — 24tm; + 161x° — 3263x 4 32ir*
+ 72it + 1921%x + 96t x% — 24n| — 24i — 24itn,
+96it2x% + 48itx> — 24itm| — 24ixm| — 96it’x

+96i3x — 96itx? + 48itx,

Frp = 24ixn; + 8ix* + 48x — 32t* + 16i1x> + 24i — 96itx>
+ 12883 + 16x3 — 32ir* — 19217 — 32ix> + 48ix>
—72it —72ix + 24im| — 144tx + 24tn| + 24tm,

+ 24xmy — 48tx> — 9612x2 + 48irx — 9613 x + 961x2
— 8x* —24n| — 24itm + 24itn, — 32it>x — 96ir*x
+1921%x + 1201.

R1[2] is the solution of Eq. (2.2) at A = % + %i and

u1,[2]. Thus, we find the second-order rogue wave of

the first kind when taking the parameters m| = 0,n| =

0 in Eq. (3.19) as follows:

G

Dy1 Dy e

Dy = ix+22 +2tx +x> =2t —x + 1,

Dy1 = 16063 x> + 641%x — 448:°x — 7681°x> — 8001 x>
+3061% 4 117x% 4 3201°x3 — 108x% — 211263 %2
— 54483 %% — 2401%x° — 641x° + 48ir%x> + 96irx*
+25619%% 4+ 272*x* + 1441x° — 3241x* + 96i°x
+131263x3 + 57612 x% — 20401*x — 1128:2x°
+9 — 72itx? — 541 — 27x + 448:% + 20x° — 8161
—42x° 4 102x* 4 1032* — 7206332¢% + 161x7
—288ir3x% — 12817 4 134417 x 4 17761 x>
+206413x + 15841%x2 + 552tx% — 10801%x
—96it7x — 5761x% + 306tx + 32i1%x + 96ir x>
+144ir* 3 + 1282 x* + 72i1%x° + 24i1x°

uz—1[3] =
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—240it*x? + 144ir>x% + 128t7x — 192i1°x*
—72itx> — 96it3x? + 36ix> — 24itx> — T2it%x
—48it*x — 12ix% — 72itx + 4ix” — 36ix* + 24ix>
—36ix% 4+ 27ix + 2x% — 8x7,

Gr1 = 39201° 4 544x° — 5952¢° — 912x3 + 54121*
+909x* — 30723 — 792x3 4 1008¢> + 306x>
+1044itx — 641'0 — 3201%x — 800r8x? + 320¢°
— 128017 x% — 118417 + 136801° x + 223681* x>
+211048%x — 108x + 38761x> + 13632it>x*
—14401x* — 118487 x° — 7201*x% — 10012 x3
+11988:2x* — 20x° + 51001x% — 1165613 x*

+ 144018 x + 320017 x? + 44801%x> + 43201° x*
+29601*x> 4 144073 x5 + 4801%x7 + 11088%x>
+1007x® — 512¢7x — 641%x% + 1216177 + 2721x”
+ 185613 4 944r2x% + 21281 x* — 548810
—118087x% — 14840r*x> — 57247 x° — 16241x°
— 16560r*x — 2097613 x% — 14616:%x> — 55201x*
+ 1152tx — 1441 + 1178413 x — 504012 x — 31681x>
—2x'0 4 10x7 4 34x® — 206x7 + 384i1” 4 18ix°
—9436i — 1728ir® — 84ix® +3840i17 + 144ix’
—126ix® 4 3360i° — 198ix> — 672ir* + 468ix*
— 8641 — 4896it° — 636ix> + 792i1> + 414ix>
—288ir — 180ix + 1824ir8x + 4224it7 x> + 336i1°x
+6144ir°x* + 4368ir* x> 4 2208i3x® + 768ir*x7
+168irx® —7296i1"x — 14784i15x% — 18432i1°x>
—15360it*x* — 8736i13 x> — 3312i1x% — 768i1x’
+13440i1%x + 22080i1°x% — 1164i1x> — 3201 x"
+5472i1*x34560i13x? + 1296i1x® — 13584i15x
—16920it*x? — 11952i3 x> — 4968i12x* — 22418
+6456it*x + +2088i12x> 4 936it>x> — 504irx™
+6144i15x% + 1728i1x> — 2160i1>x — 2016i1x>
+21696it*x. (3.20)

We call this type of rogue wave as the fundamental
pattern and show the structure of Eq. (3.20) in Fig. 10.

Similarly, let the parameters m; = 200, n; = 0 in
Eq. (3.19), and then the second-order rogue wave of
the second kind is obtained as

+272t%%% + 160637 + 641250 + 481213 — 641x°
—448/5x — 76817 x2 — 352773ix — 800¢*x3 + 161x”
—54413x* — 24012x° — 309123 %2 — 25128123
—99241x* + 44784122 4 245521x3 — 2988012 x
+734706tx — 293761x% + 2x8 — 8x7 + 4ix” — 12ix®
+36ix7 + 24ix> — 14400ir* — 28800i12 + 28800i7°
+14400it — 14256it%x2 + 43128i1%x + 14328itx2

+ 3086413 x + 360009 — 3600i + 32it%x + 9617 x>

+ 144ir*x3 + 128i3x* + 72i12%% + 24itx0 + 96i1x*
—96it7x — 240it*x% — 288ir3x3 — 192ir2x* + 1441x°
+1164ix* — 7236ix2,

= —64¢'0 +320¢° — 224¢% — 118417 + 13966561

+39201% — 5456x° — 635521° — 741601*x
+691092x — 193632:*x% — 2188961° x> — 3312x°
—1290588:* — 339891x* + 27041281% — 3207 x
—27637921% — 1385694x2 + 1440r3x + 320017 x>
+448015x3 + 432017 x* + 29601*x> + 144013 x5
+25002i x> + 655608x> — 7272017 x — 132012¢2x*
—20tx° — 417241x° + 4801%x7 — 49356i1x — 7326i x5
+12168°x% 4 21281*x* + 18561 + 94412x°
+103761x° + 23312:%x — 800r8x% + 1051601 x°

+ 8434413 x* — 768i1x” 4 272tx" + 7459217 x>
—641%x% — 128017 x> — 1440%x* — 11841°x°
—7201*x% — 3203x7 — 100:2x® — 2097613 x>

+ 144ix" — 33696i° + 897601 + 3420ix + 10x°
— 101472ir* — 46332ix™ + 56736i1> + 49764ix>

— 6408it> — 13986ix> — 7488i1 + 199440i1%x

— 352809 + 1824ir3x — 271152i13 x> — 18432i1° x°
+6144i1°x3 + 6144ir°x* + 4368ir* x> 4 2208i 1> x°
+768i1%x7 — 156168it>x* — 14784i15x% + 3636i
—26090161x — 15360it*x* — 8736i13x + 168itx®
—3312ir%x5 4 13440i1%x + 22080ir°x? + 42241 x?
+21696ir*x3 +13632i 1> x* + 5472i1> x> + 1296i1x°
—157584i1°x — 276120it*x? + 3987612x° + 100£x8
—51564itx° + 366456i1*x 4 522960i 1> x% + 994x7
+150696i1x* — 374064it>x — 415512i12x% — 512t x
—228672i1x> 4 156384itx? + 389736i1%x> + 34x5.

Gra o
uzr—2[3] = DraDys (321
Dy3 = —96i°x” — 12817 4 448(° 4 20x° — 816° — 7201 This kind of rogue wave is called as the triangular
—48irx — 1242x° — 7200541 — 363627x + 3243 structure, and we display the structure of Eq. (3.21) in
+4902x* + 1032r* — 16440r* x — 4908x> — 24irx3 Fig. 11.
+367317x2 + 1776:%x2 4 720306 4 1312¢% %3 (4) When n = 4 in Egs. (2.22) and (2.23), we can

+57612x% + 134415 x — 28872itx — 28704it3x
—72itx + 1287 x + 256:%x2 + 32065x3 — 363627«

obtain the third-order rogue wave solution in the same
way as the above (1)—(3),
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X
(b)
Fig.10 The fundamental pattern. a Evolution of the first kind of
second-order rogue wave solution uy,—1[3] via Eq. (3.20) with

parameters A = 5 + %i, my; = 0, ny = 0, b corresponding
density plot

(b)
Fig. 11 The triangular structure. a Evolution of the second kind
of second-order rogue wave solution us,_>[3] via Eq. (3.21) with

parameters A = % + %i, mp = 200, n; = 0, b corresponding
density plot

Fig. 12 The fundamental pattern. a Evolution of third-order
rogue wave solution u3,[4] via Eq. (3.22) with parameters A =
% + %i, my; = 0,my = 0,n; =0, np = 0, b corresponding
density plot

fil31g1B31* (AT — A%)
A2 ABI2A + [g1[3117A7)°
(3.22)

w3 [4] = ua, (3] +

where Ri[3] = (fi[3], gi1[3])7 is the solution of
Eq. (2.2) atup[3]and A = § + 1i.

@ Springer

Fig. 13 The triangular structure. a Evolution of third-order
rogue wave solution u3,[4] via Eq. (3.22) with parameters A =
% + %i, my = 400, mp, = 0,n; = 0, ny = 0, b corresponding
density plot

(b)

Fig.14 Thering structure. a Evolution of third-order rogue wave
solution u3,[4] via Eq. (3.22) with parameters 1 = % + %i s
my = 0, my = 400, n; = 0, np = 0, b corresponding density

plot

The dynamics of Eq. (3.22) is displayed in Figs. 12-
14. We find that: when the parameters m; = 0,n; = 0,
my = 0, np = 0, we get the first kind of third-order
rogue wave which is the fundamental pattern (seen in
Fig. 12); when the parameters m; = 400, n; = 0,
my = 0, np = 0, we get the second kind of third-order
rogue wave which is the triangular structure (seen in
Fig. 13); what’s more, when the parameters m; = 0,
ny = 0, my = 400, ny = 0, we get the third kind of
third-order rogue wave which is the ring structure (seen
in Fig. 14). From Figs. 13 and 14, clearly, we see that
the triangular structure and the ring structure all have
six uniform peaks.

We remark that we can also construct the high-order
rogue wave solutions of Eq. (2.1) if continuing the iter-
ation of the generalized DT in Eqs. (2.18)—(2.20).
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4 Conclusions

The nonlinear partial differential equations (NPDEjs)
have been the subject of extensive studies in vari-
ous branches of nonlinear sciences. A class of ana-
lytical solutions for NPDE:s is of fundamental impor-
tance because lots of mathematical-physical models
are often described by such wave phenomena. Thus,
the investigation of explicit solutions is becoming more
and more attractive in nonlinear sciences. The inte-
grable GNLS equation models the propagation of non-
linear light pulses in optical fibers when certain high-
order nonlinear effects are taken into consideration
[47,48]. In this paper, we investigate the exact solu-
tions (including soliton solutions, breather solutions,
and rogue wave solutions) of a new GNLS equation
based on its Lax pair by using the DT method. First
of all, we construct the classical DT and the general-
ized DT of Eq. (2.1). Then, these exact solutions are
obtained from the corresponding n-fold DT by assum-
ing the suitable seed solution and depending on the
parameter choices. Moreover, the dynamical features
of these exact solutions are analyzed by their profile and
density plots with the help of Maple software. Finally,
we find that the higher-order solutions have rich and
interesting dynamics and structures.
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