
Nonlinear Dyn (2018) 92:1921–1933
https://doi.org/10.1007/s11071-018-4171-8

ORIGINAL PAPER

Suppression of chaos in a generalized Duffing oscillator with
fractional-order deflection

Lin Du · Yunping Zhao · Youming Lei ·
Jian Hu · Xiaole Yue

Received: 23 July 2017 / Accepted: 23 February 2018 / Published online: 16 March 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract A generalized Duffing oscillator with
fractional-order deflection can be used to model the
oscillatory motion of a buckled beam with simply sup-
ported or hinged ends. In this work, the problem of
suppression of chaos in such a Duffing oscillator is
considered. We show the appropriate range of param-
eters for the control of horseshoe chaos by introducing
external periodic resonant excitation and parametric
excitation as chaos-suppressing perturbation. Through
the Melnikov technique, we obtain that in addition to
the frequency, the phase difference between the chaos-
inducing excitation and the chaos-suppressing exci-
tation of systems plays a key role in chaos suppres-
sion. Given the optimum phase that satisfies the inhi-
bition theorems, we compare the chaos-suppressing
efficiency of external and parametric periodic pertur-
bations for the principal resonance case. Compared
with parametric (external) excitation, external (para-
metric) excitation with a frequency above (below) a
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critical value is more effective in suppressing homo-
clinic chaos because it provides a wider amplitude
range. The results hold for an arbitrary deflection order
as either an integer or a fraction, which depends on the
material and bending properties of the beam, as long as
its value is larger than 1. Moreover, the critical value of
the frequency will shift to a larger value as the deflec-
tion order increases.

Keywords Chaos · Homoclinic orbit · Melnikov
technique · Fractional-order deflection

1 Introduction

In this work, the generalized Duffing-type differential
equation with fractional-order deflection is considered:

ẍ − ax + bx |x |α−1 = −εδ ẋ + εγ cos ωt, (1)

where ẍ is an inertial term with unit mass, −εδ ẋ rep-
resents linear damping, and εγ cos ωt is an excitation
with period T = 2π

ω
. To satisfy theMelnikov technique

requirements, damping and excitation are assumed to
be small-amplitude perturbations, that is, 0 < ε << 1.
The restitution force −ax + bx |x |α−1 (a > 0, b > 0,
and α > 1) is composed of a linear feedback term and
a nonlinear feedback term with fractional-order deflec-
tion. Equation (1) can be used to model the oscillatory
motion for the modal displacement x (t) of a buckled
beam with simply supported or hinged ends [1]. The
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constant α is an integer or a fraction which depends on
the material and bending properties of the beam.

Many materials with elastic properties are not lin-
ear based on the value of α. For example, the elastic
properties of aircraft materials, such as aluminum and
titanium, are of Ramberg–Osgood type [2] where α is
a fraction higher than 1. For copper and copper alloys
with Ludwick elastic properties [3,4], α is a rational
number that is determined experimentally. The con-
stitutive models of wood [5,6], polymers [5,7], and
composite materials [5,8] are presented in polynomial
form where α = 3, and the differential equation of
a beam’s motion is of Duffing type with strong cubic
nonlinearity. The vibrations of a piano hammer, which
is a wooden beam coated with several layers of com-
pressed wool felts, are described with dynamic system
(1). The elastic force in the hammer is nonlinear, and
the exponent α has values that range from 2.2 to 3.5 for
used hammers and 1.5 to 2.8 for new hammers [9]. A
vibration model of an open-celled polyurethane foam
automotive seat cushion [10,11] has the form of Eq. (1)
with the experimentally obtainedvalueof exponentα as
5.945. In addition, Eq. (1) is used to describe numerous
electronic phenomena. The nonlinearity of restitution
force has an important role in micro-electromechanical
systems, such as micro-oscillators [12], micro-filters
[13], and micro-actuators [14]. The optimal value of α

is given in [15]. Thus, system (1) is of great importance
in practice.

In recent years, many studies have qualitatively and
quantitatively analyzed dynamics and the control of
system (1) in which α is an integer. Wiggins [16] pro-
vided detailed descriptions of themechanisms that give
rise to chaos in nonlinear systems with harmonic peri-
odic excitation and derived explicit techniques for the
detection of chaos-inducing mechanisms by introduc-
ing the Melnikov method to investigate global bifur-
cation and chaos. Moreover, the Melnikov method is
used to discuss the possibility of chaos suppression
through a small resonant parametric perturbation by an
analytical estimation, which is confirmed by numerical
computations [17–19]. Fronzoni et al. [20] analyzed a
large amount of actual data to find the control effect of
laminar phases in suppressing chaos under parametric
perturbation. Cicogna and Fronzoni [21,22] obtained
the same results as Fronzoni et al. by investigating
experimental devicemodels.Nonetheless, Cuadros and
Chacón [23] pointed out the differences between Mel-
nikov analysis and numerical calculation in the afore-

mentioned results. Chacón showed that these differ-
ences resulted from an error in the calculation of the
Melnikov distance instead of the perturbed nature of
the method. In the above case, however, the effect of
phase control on chaos suppression is not explicit. Qu
et al. [24] and Yang et al. [25] utilized detailed numer-
ical methods to describe the effect of phase control
in a Duffing oscillator with a second external force
term. Leung and Liu [26] further studied the effect
of phase control on some nonlinear oscillators on the
basis of [24,25]. Furthermore, Chacón [27–31] derived
the strict criteria by applying the Melnikov method for
controlling homoclinic and heteroclinic chaos in a low-
dimensional, non-autonomous, and dissipative Duffing
oscillator, i.e., α = 3. By comparing parametric exci-
tation and external additional forcing terms as chaos-
suppressing perturbations,Chacón [28] showed that the
latter inhibits chaotic dynamics far more easily (i.e., for
a larger interval of amplitudes) than the previous for
small driving periods of the primary chaos-inducing
excitation and vice versa. Then the critical parameter
value for chaos with analytical methods is obtained and
the issue of chaos control whenα is a fraction is investi-
gated in references [5,32,33]. Beyond that, Lenci et al.
comprehensively analyzed complex dynamical behav-
iors (including chaos, bifurcation and manifolds) in
Duffing oscillators by using different theoretical tech-
niques and numerical methods [34–36], and applied to
a variety of systems in applications [37,38]. However,
few studies have addressed the issue of chaos suppres-
sion in system (1), where the order of deflection α is a
fraction. In particular, whether and how α would influ-
ence the control effect of chaos-suppressing excitations
should be considered.

In this work, we utilize the Melnikov technique and
introduce additional periodic excitation to study the
suppression of horseshoe chaos in a generalized Duff-
ing oscillator with fractional-order deflection under an
external excitation. The rest of the paper is organized
as follows: Section 2 presents the condition for the
chaos induction of dynamic system (1) by means of
the Melnikov technique. In Sect. 3, we describe the
application of the Melnikov technique in the inhibi-
tion of horseshoe chaos in system (1) by introducing
external or parametric periodic excitation as a chaos-
suppressing excitation. We find that the initial phase
differences between the chaos-inducing and chaos-
suppressing excitation has a key role in inhibiting
chaos. Section 4 provides a discussion on the com-
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parison of the effectiveness of chaos suppression by
external periodic excitation and parametric excitation
in the principal resonant case. Our primary conclusions
are presented in Sect. 5.

2 Chaos in a generalized Duffing
oscillator with fractional-order deflection

Melnikov analysis is a classical method for the mea-
surement of the splitting distance between invariant
manifolds for a wide variety of dynamic systems that
are close to integrable systems. It is an approximate or
limited method for the detection of chaos. If the Mel-
nikov function has a simple zero point, then invariant
manifoldswill intersect transversely, indicating the per-
sistence of homoclinic (or heteroclinic) orbits and the
presence of homoclinic (or heteroclinic) chaos. There-
fore, the equilibrium points and stability of the unper-
turbed system should be analyzed. To begin, by intro-
ducing ẋ1 = x2, system (1) can be written as the fol-
lowing first-order differential equations:

{
ẋ1 = x2,
ẋ2 = ax1 − bx1 |x1|α−1 + ε (−δx2 + γ cos ωt) .

(2)

For ε = 0, Eq. (2) can be recast into an unperturbed
system (3):

{
ẋ1 = x2,
ẋ2 = ax1 − bx1 |x1|α−1 .

(3)

System (3) is a Hamiltonian system that has three

equilibriumpoints forα>1: (x1, x2)1,2=(±( ab )
1

α−1, 0)
and o = (0, 0). The point o is a hyperbolic saddle
point which is connected to itself by two homoclinic
orbits �+ (t) and �− (t) when the initial condition

(x01 (t) , x02 (t)) = (± (
α+1
2

) 1
α−1 , 0) is satisfied.

It is known that the solutions of Eq. (2) for the homo-
clinic orbits are provided in explicit forms by

x±
1 (t) = ±

(
a (α + 1)

2b

) 1
α−1

×
(
sech

(√
a (α − 1)

2
t

)) 2
α−1

,

x±
2 (t) = ∓√

a

(
a (α + 1)

2b

) 1
α−1

×
(
sech

(√
a (α − 1)

2
t

)) 2
α−1

× tanh

(√
a (α − 1)

2
t

)
.

For the sake of simplicity, let

A =
(
a (α + 1)

2b

) 1
α−1

, B =
√
a (α − 1)

2
. (4)

Then, the homoclinic orbits can be written as the
following forms:

x±
1 (t) = ±A (sech (Bt))

2
α−1 ,

x±
2 (t) = ∓√

aA (sech (Bt))
2

α−1 (tanh (Bt)) , (5)

where sec h(·) and tanh (·) are hyperbolic functions.
Relations (5) are the general forms of the homoclinic
orbits for Eq. (2) and are valid for any value, either as
an integer or as a fraction, of the order of deflection α

as long as α > 1. The positive or negative sign refers
to the top or bottom homoclinic orbit of system (3).

The homoclinic orbits are obtained on the basis of
the above equations.When theweak damped term εδx2
and the external periodical excitation term εγ cos (ωt)
participate in the unperturbed system, the homoclinic
orbits will be broken, i.e., homoclinic chaos will occur.
Therefore, we can discuss the conditions for generating
chaos by applying the Melnikov technique to Eq. (2).
The Melnikov function of system (2) is:

M± (t0) =
∫ +∞

−∞
x±
2 (t)

× [−δx±
2 (t) + γ cos ω (t + t0)

]
dt. (6)

Given that x±
2 (t) is an odd function, Eq. (6) is trans-

formed into the following form:

M± (t0) = −δ

∫ +∞

−∞
(
x±
2 (t)

)2
dt − γ sin (ωt0)

×
∫ ∞

−∞
sin (ωt) x±

2 (t)dt. (7)

By substituting Eq. (5) into Melnikov function (7),
the Melnikov function can be written as:

M± (t0) = −C ± D sin (ωt0) ,

where

C = δ

∫ +∞

−∞
(
x±
2 (t)

)2
dt

= 4aδA2

α + 3

∫ +∞

0
(cosh (Bt))−

4
α−1 dt, (8)
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and

D = √
aγ A

∫ +∞

−∞
sin (ωt) (sech (Bt))

2
α−1 tanh (Bt)dt

= ωγ A√
a (α − 1)

2
2

α−1

�
(

2
α−1

)

×�

( √
a + iω√
a (α − 1)

)
�

( √
a − iω√
a (α − 1)

)
. (9)

where Eqs. (8–9) are calculated through partial inte-
gration, and the exact analytical solution for α > 1 is
given in Ref. [5].

Thus, when theMelnikov function exists as a simple
zero point, the necessary condition for horseshoe chaos
for Eq. (2) and a sufficiently small ε is D−C ≡ r > 0.

3 Suppression of chaos with harmonic periodic
excitation

Given that the existence of a simple zero point in the
Melnikov function signifies horseshoe chaos, we con-
sider the controlled system by introducing external and
parametric harmonic periodic excitations, which can
inhibit the occurrence of chaos in system (2). Then,
Eq. (2) is rewritten as the following controlled system

⎧⎨
⎩
ẋ1 = x2,
ẋ2 = ax1 − bx1 |x1|α−1

+ ε (−δx2 + γ cos ωt) + e (t) .

(10)

In this system, e (t) is the control excitation, which
has two types:

a (t) = ε f cos (	t + ϕ) ,

or

p (t) = ε f x1 cos (	t + ϕ) ,

where f , 	, and ϕ are the dimensionless amplitude
coefficient, frequency, and initial phase of control exci-
tation, respectively. The former is an additional external
excitation, whereas the latter is parametric excitation.
In the following work, we will show the conditions of
the parameters for chaos suppression by means of the
Melnikov technique.

3.1 Suppression of chaos with external periodic
excitation

To begin with, an external periodic excitation is taken
as a chaos-suppressing perturbation to drive system
(2), which gives rise to horseshoe chaos, i.e., e (t) =
a (t) = ε f cos (	t + ϕ) in system (10). Then, system
(10) can be transformed into the following form:

⎧⎨
⎩
ẋ1 = x2,
ẋ2 = ax1 − bx1 |x1|α−1 + ε (−δx2 + γ cos ωt)

+ ε f cos (	t + ϕ) .

(11)

Based on Eq. (11), theMelnikov control for this per-
turbed system will be designed to compel the chaotic
system to follow a regular periodic trajectory. By sub-
jecting Eq. (11) to Melnikov analyses, we obtain the
following Melnikov function:

M± (t0) = −C±D sin (ωt0)±E sin (	t0 + ϕ) , (12)

where the positive or negative sign denotes the upper or
lower homoclinic orbit associatedwith the unperturbed
Hamilton oscillator system (3); C and D are given in
formulae (8) and (9), and

E = √
a f A

∫ +∞

−∞
sin (	t) (sech (Bt))

2
α−1 tanh (Bt)dt

= 	 f A√
a (α − 1)

2
2

α−1

�
(

2
α−1

)

�

( √
a + i	√
a (α − 1)

)
�

( √
a − i	√
a (α − 1)

)
. (13)

The three constants can be calculated through partial
integration, and the exact analytical solutions forα > 1
are given in Ref. [5]. Therefore, C > 0, D > 0, E > 0
for all the parameters in the range of interest.

Given that the Melnikov function (12) measures
the distance between the perturbed stable and unstable
manifolds in the Poincaré section at t0, the conditions
of control can be deduced in detail. The cases M± (t0)
will be studied separately in the next section.

3.1.1 Inhibition of manifold transverse intersections
near the upper homoclinic orbit

If the external periodical excitation acts on the system
in such a way that provides a condition for M+ (t0) to
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retain its sign, then horseshoe chaoswill be suppressed.
Fortunately, the combination of D − C − E < 0 and
−D − C + E < 0 provides a necessary condition for
M+ (t0) to retain its sign, specifically, M+ (t0) < 0.
Note that Chacón has discussed the first case in detail
and the second case is omitted in Ref. [28].

First, the case

D − C − E < 0, (14)

is considered. By substituting the parameters in Eq.
(12) into Eq. (14), we obtain

f >

(
1 − C

D

)
T, (15)

where

T = f D

E
. (16)

However, Eq. (14) is only one possible condition for
M+ (t0) to retain its sign, specifically, M+ (t0) < 0. To
obtain the sufficient condition of M+ (t0) < 0, we will
introduce the following lemmas [26] for M+ (t0) to be
always negative.

Lemma 1 Suppose 	/ω is irrational. Then, there
exists a t ′0 such that

D sin
(
ωt ′0

) + E sin
(
	t ′0 + ϕ

)
> D − E .

Lemma 2 Suppose	/ω = k/ l, where k, l are positive
integers . Then, there exists a t ′0 such that sin

(
ωt ′0

) =
− sin

(
	t ′0 + ϕ

) = 1 if and only if

k

l
= 4 j − 1 − 2ϕ/π

4i + 1
,

where i , j are some integers.

Lemma 3 Suppose

g (t, k, l) = 1 − cos (kt/ l)

1 − cos (t)
,

where t is any real number and k, l are two irreducible
positive integers. Then, the function g (t, k, l) is finite
if and only if l = 1. Moreover, if l = 1, we have 0 ≤
g (t, k, 1) ≤ k2.

Theorem 1 Suppose 	/ω = k, where k is a positive
integer, and integers i and j are such that

k = 4 j − 1 − 2ϕ/π

4i + 1
.

Then, we always have M+ (t0) < 0 if fmin < f <

fmax, where fmin = (
1 − C

D

)
T and fmax = T

k2
.

Proof Equation (15) is only one condition for
M+ (t0) < 0. Hence, a sufficient condition is required
to inhibit chaos. Supposing that Eq. (15) is a sufficient
condition for M+ (t0) to be negative for all t0, one must
have

D sin (ωt0) + E sin (	t0 + ϕ) < D − E, ∀t0 ∈ R.

(17)

Let k = 4 j−1−2ϕ/π
4i+1 . Then, from Lemma 2, Eq.

(17) can be rewritten as 1−cos (kt)
1−cos (t) < D

E , where t =
ωt0 − 5π/2. In fact, if f < fmax, then f < T

k2
, that is,

k2 < T
f = D

E given in Eq. (16). Fortunately, Lemma 3

provides the condition 1−cos (kt)
1−cos (t) ≤ k2 to be fulfilled for

all t . 1−cos (kt)
1−cos (t) < D

E can be derived from the two facts.
Therefore, Eq. (17) is always satisfied.

On the other hand, the second case

−D − C + E < 0 (18)

is considered. Similarly, Eq. (18) can be transformed
into the following equivalent condition:

f <

(
1 + C

D

)
T, (19)

where T is given in Eq. (16).
However, Eq. (18) is also not a sufficient condition

for M+ (t0) to remain negative for all t0. Similar to
Lemma 1 and Theorem 1, we can obtain the following
lemma and theorem:

Lemma 4 Suppose 	/ω is irrational. Then, there
exists a t ′0 such that

D sin
(
ωt ′0

) + E sin
(
	t ′0 + ϕ

)
> −D + E .

Theorem 2 Suppose	/ω = 1/k,where k is a positive
integer, and integers i and j are such that

k = 4i − 1

4 j + 1 − 2ϕ/π
.

Then,we always have M+ (t0) < 0 if f ′
min < f < f ′

max
is satisfied, where f ′

min = T k2 and f ′
max = (

1 + C
D

)
T .
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According to Theorems 1 and 2, to inhibit transverse
intersections between the stable and unstable mani-
folds near the upper homoclinic orbit �+ (t) in sys-
tem (10), we can introduce external excitation as the
chaos-suppressing perturbation as long as its frequency
satisfies the resonant condition 	/ω = k or 	/ω =
1/k; its initial phase is such that k = 4 j−1−2ϕ/π

4i+1 or

k = 4i−1
4 j+1−2ϕ/π

where k, i , j are some integers, and
fmin < f < fmax or f ′

min < f < f ′
max. The condi-

tions show that in addition to the frequency, the phase
of the chaos-suppressing excitation has a key role in
suppressing chaos. Clearly, if the parameters in system
(10) satisfy the three requirements, we always have
M+ (t0) < 0. Unfortunately, we cannot ensure that
M+ (t0) > 0 with similar considerations and deriva-
tions.

3.1.2 Inhibition of manifold transverse intersections
near the lower homoclinic orbit

The same approach holds for M− (t0) < 0. The com-
bination of Eqs. (14) and (18) provides a necessary
condition for M− (t0) to retain its sign. Specifically,
M− (t0) < 0. Therefore, we can obtain the following
lemmas and theorems.

Lemma 5 Suppose 	/ω is irrational. Then, there
exists a t ′0 such that

−D sin
(
ωt ′0

) − E sin
(
	t ′0 + ϕ

)
> D − E .

Lemma 6 Suppose	/ω = k/ l, where k, l are positive
integers. Then, there exists a t ′0 such that− sin

(
ωt ′0

) =
sin

(
	t ′0 + ϕ

) = 1 if and only if

k

l
= 4 j + 1 − 2ϕ/π

4i − 1
,

where i , j are integers.

Theorem 3 Suppose 	/ω = k, where k is a positive
integer, and there are integers i , j such that

k = 4 j + 1 − 2ϕ/π

4i − 1
.

Then, we always have M− (t0) < 0 if fmin < f <

fmax, where fmin = (
1 − C

D

)
T and fmax = T

k2
.

Lemma 7 Suppose 	/ω is irrational. Then, there
exists a t ′0 such that

−D sin
(
ωt ′0

) − E sin
(
	t ′0 + ϕ

)
> −D + E .

Theorem 4 Suppose	/ω = 1/k,where k is a positive
integer, and there are integers i , j such that

k = 4i + 1

4 j − 1 − 2ϕ/π
.

Then,we always have M− (t0) < 0 if f ′
min < f < f ′

max
is satisfied, where f ′

min = T k2 and f ′
max = (

1 + C
D

)
T .

From Theorems 3 and 4, to inhibit transverse inter-
sections between the stable and unstable manifolds
near the lower homoclinic orbit �− (t) in system (10),
we can introduce external excitation as the chaos-
suppressing perturbation as long as its frequency sat-
isfies the resonant condition 	/ω = k or 	/ω =
1/k; its initial phase is such that k = 4 j+1−2ϕ/π

4i−1 or

k = 4i+1
4 j−1−2ϕ/π

where k, i , j are some integers, and
fmin < f < fmax or f ′

min < f < f ′
max. The condi-

tions show that in addition to the frequency, the phase
of the chaos-suppressing excitation has a key role in
suppressing chaos. Clearly, if the parameters in system
(10) satisfy the three requirements, we always have
M− (t0) < 0. Unfortunately, we cannot ensure that
M− (t0) > 0 with similar considerations and deriva-
tions.

Remark 1 In light of the arguments presented above,
introducing the external resonant excitation as the
chaos-suppressing perturbation can indeed inhibit
transverse intersections between stable and unstable
manifolds and thus suppress horseshoe chaos in system
(10). For example, in suppressing horseshoe chaos near
the upper (or lower) homoclinic orbit �+ (t) or �− (t),
we can employ the periodic perturbation with its fre-
quency satisfying 	/ω = k (where k is a positive inte-
ger) and fmin < f < fmax. Note that at the same time,
we have to select an suitable phase: ϕ = 3π

2 or ϕ = π
2

for k = 4m, where m is a nonnegative integer; ϕ = π

for k = 4m+1; ϕ = π
2 or ϕ = 3π

2 for k = 4m+2; and
ϕ = 0 for k = 4m+3.This shows that in chaos suppres-
sion, the initial phase of the chaos-suppressing excita-
tionmust be selected accordingly. Furthermore, we can
observe that with the increase in resonance order k, the
interval of amplitudes [ fmin, fmax] for chaos suppres-
sion quickly contracts given the other parameters that
satisfy the inhibition theorems. Alternatively, we can
also utilize periodic perturbation with a frequency that
satisfies	/ω = 1/k (where k is a positive integer) and
f ′
min < f < f ′

max. In this case, we can select the phase
ϕ = π if k = 1. However, if k ≥ 2, f ′

min > f ′
max
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always exists such that suppression of horseshoe chaos
cannot be accomplished.

3.2 Suppression of chaos with parametric periodic
excitation

For comparison with Sect. 3.1, we impose the paramet-
ric excitation p (t) on the control excitation in system
(10). Then, the controlled system is rewritten as:

⎧⎨
⎩
ẋ1 = x2,
ẋ2 = ax1 − bx1 |x1|α−1 + ε (−δx2 + γ cos ωt)

+ε f x1 cos (	t + ϕ) .

(20)

TheMelnikov function for this perturbed system can
be indicated by the following form:

M± (t0) = −C±D sin (ωt0)+F sin (	t0 + ϕ) , (21)

where

F = 2a
3
2 A2 f

∫ +∞

0
sin (	t) (sec h (Bt))

4
α−1 tanh (Bt)dt

=
√
a f	A2

2 (α − 1)

2
4

α−1

�
(

4
α−1

)

× �

(
2
√
a + i	√

a (α − 1)

)
�

(
2
√
a − i	√

a (α − 1)

)
, (22)

and F > 0 for the parameters in the range of interest.

3.2.1 Inhibition of manifold transverse intersections
near the upper homoclinic orbit

Similar to the external periodic excitation case, the
parametric excitation acts on system (10) in such a way
that provide a condition for M+ (t0) to retain its sign,
specifically M+ (t0) < 0. Then, horseshoe chaos will
suppressed. The combination D − C − F < 0 and
−D − C + F < 0 provides a necessary condition for
M+ (t0) to retain its sign, specifically M+ (t0) < 0.

First, the case

D − C − F < 0, (23)

is considered. This relationship provides half of the
necessary condition for M+ (t0) to retain its sign,

specifically M+ (t0) < 0. Now, by substituting the
parameters in Eq. (21) into formula (23), we obtain

f >

(
1 − C

D

)
T ′, (24)

where

T ′ = f D

F
. (25)

However, Eq. (24) is only one possible condition
for M+ (t0) to maintain the same sign, specifically
M+ (t0) < 0. To obtain a sufficient condition of
M+ (t0) < 0, we will introduce the following lemmas
[26] for the function M+ (t0) to be always negative.

Lemma 8 Suppose	/ω is irrational. Then, a t ′0 exists
such that

D sin
(
ωt ′0

) + F sin
(
	t ′0 + ϕ

)
> D − F.

Lemma 9 Suppose 	/ω = k/ l (where k, l are
positive integers). Then, there exists a t ′0 such that
sin

(
ωt ′0

) = − sin
(
	t ′0 + ϕ

) = 1 if and only if

k

l
= 4 j − 1 − 2ϕ/π

4i + 1
,

where i , j are integers.

Theorem 5 Suppose 	/ω = k, where k is a positive
integer, and there are integers i , j such that

k = 4 j − 1 − 2ϕ/π

4i + 1
.

Then, we always have M+ (t0) < 0 if f min < f <

f max, where f min = (
1 − C

D

)
T ′, f max = T ′

k2
.

The second case

−D − C + F < 0, (26)

is considered. Similar to the above derivation process,
Eq. (26) can be transformed into the following equiv-
alent condition:

f <

(
1 + C

D

)
T ′, (27)

where T ′ is given in Eq. (25).
However, Eq. (27) is not a sufficient condition for

M+ (t0) to be negative for all t0. Thus, we present the
following lemma and theorem.
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Lemma 10 Suppose 	/ω is irrational. Then, there
exists a t ′0 such that

D sin
(
ωt ′0

) + F sin
(
	t ′0 + ϕ

)
> −D + F.

Theorem 6 Suppose	/ω = 1/k,where k is a positive
integer, and there are integers i and j such that

k = 4i − 1

4 j + 1 − 2ϕ/π
.

Then, the objective of M+ (t0) < 0 can be achieved if
f ′
min < f < f ′

max, where f ′
min = k2T ′, f ′

max =(
1 + C

D

)
T ′.

According to Theorems 5 and 6, to inhibit transverse
intersections between the stable and unstable manifold
near the upper homoclinic orbit �+ (t) in system (20),
we can introduce parametric excitation as the chaos-
suppressing perturbation as long as its frequency sat-
isfies the resonant condition 	/ω = k or 	/ω =
1/k; its initial phase is such that k = 4 j−1−2ϕ/π

4i+1 or

k = 4i−1
4 j+1−2ϕ/π

where k, i , j are some integers; and

f min < f < f max or f ′
min < f < f ′

max. These
conditions show that in addition to the frequency, the
phase of the chaos-suppressing excitation plays a key
role in chaos suppression. Clearly, if the parameters
in system (20) satisfy the three requirements, we will
always have M+ (t0) < 0. Unfortunately, we cannot
ensure that M+ (t0) > 0 with similar considerations
and derivations.

3.2.2 Inhibition of manifold transverse intersections
near the lower homoclinic orbit

The same approach holds for M− (t0) < 0. The com-
bination of Eqs. (23) and (26) provides the necessary
condition for M− (t0) to retain its sign, specifically
M− (t0) < 0. Therefore, we can obtain the following
lemmas and theorems.

Lemma 11 Suppose 	/ω is irrational. Then, there
exists a t ′0 such that

−D sin
(
ωt ′0

) + F sin
(
	t ′0 + ϕ

)
> D − F.

Lemma 12 Suppose 	/ω = k/ l, where k and l are
positive integers. Then, there exists a t ′0 such that
sin

(
ωt ′0

) = sin
(
	t ′0 + ϕ

) = −1 if and only if

k

l
= 4 j − 1 − 2ϕ/π

4i − 1
,

where i , j are integers.

Theorem 7 Suppose 	/ω = k, where k is a positive
integer, and there are integers i , j such that

k = 4 j − 1 − 2ϕ/π

4i − 1
.

Then, we will always have M− (t0) < 0 if f min < f <

f max, where f min = (
1 − C

D

)
T ′ and f max = T ′

k2
.

Lemma 13 Suppose 	/ω is irrational. Then, there
exists a t ′0 such that

−D sin
(
ωt ′0

) + F sin
(
	t ′0 + ϕ

)
> −D + F.

Theorem 8 Suppose	/ω = 1/k,where k is a positive
integer, and there are integers i , j such that

k = 4i + 1

4 j + 1 − 2ϕ/π
.

Then, there always exists M− (t0) < 0 if f ′
min < f <

f ′
max, where f ′

min = k2T ′ and f ′
max = (

1 + C
D

)
T ′.

According to Theorems 7 and 8, to inhibit trans-
verse intersections between the stable and unstable
manifolds near the lower homoclinic orbit �− (t) in
system (20), we can introduce parametric excitation
as the chaos-suppressing perturbation as long as its
frequency satisfies the resonant condition 	/ω = k
or 	/ω = 1/k; its initial phase is such that k =
4 j−1−2ϕ/π

4i−1 or k = 4i+1
4 j+1−2ϕ/π

where k, i , j are inte-

gers, and f min < f < f max or f ′
min < f < f ′

max.
These conditions show that in addition to the frequency,
the phase of the chaos-suppressing excitation has a key
role in chaos suppression. Clearly, if the parameters
in system (20) satisfy the three requirements, we will
always have M− (t0) < 0. Unfortunately, we cannot
ensure M− (t0) > 0 with similar considerations and
derivations.

Remark 2 In light of the arguments presented above,
introducingparametric resonant excitation as the chaos-
suppressing perturbation can indeed inhibit transverse
intersections between stable and unstable manifolds
and thus suppress horseshoe chaos in system (20). For
example, in suppressinghorseshoe chaos near the upper
(or lower) homoclinic orbit �+ (t) (or �− (t)), we can
employ periodic perturbation with frequency that sat-
isfies 	/ω = k, where k is a positive integer, and
f min < f < f max. Note that at the same time we
have to select a suitable phase: ϕ = 3π

2 for k = 4m,
where m is a nonnegative integer; ϕ = π or ϕ = 0 for
k = 4m+1;ϕ = π

2 for k = 4m+2; andϕ = 0orϕ = π
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Fig. 1 Bifurcation diagram (a) and the maximum Lyapunov exponent (b) of generalized Duffing equation under external periodic
excitation with a = 1, b = 1, α = 5/3, δ = 2, γ = 3, ε = 0.1, 	 = 1, ω = 1, ϕ = π

for k = 4m + 3. This shows that in chaos suppres-
sion, the initial phase of the chaos-suppressing excita-
tionmust be selected accordingly. Furthermore, we can
observe that with the increase in resonance order k, the
interval of amplitudes [ f̄min, f̄max] for chaos suppres-
sion contracts quickly given the other parameters that
satisfy the inhibition theorems. Alternatively, we can
also utilize periodic perturbation with frequency that
satisfies 	/ω = 1/k where k is a positive integer and
f min < f < f max. In this case, we can select the phase
ϕ = π or ϕ = 0 if k = 1. However, if k ≥ 2, f ′

min >

f ′
max exists such that horseshoe chaos cannot be

suppressed.

3.3 Numerical simulation

In this part, we will provide numerical simulation to
validate analytical results regarding the effect of chaos
suppression with the addition of periodic excitations.
The parameters of the generalized Duffing-type differ-
ential equation with fractional-order deflection (2) are
set as a = 1, b = 1, α = 5/3, δ = 2, γ = 3, ω = 1.
Then, according to the theoretical analysis in Sect. 2,
the corresponding Melnikov function is in the form of
Eq. (7), whereC ≈ 2.17, D ≈ 3.9 and A ≈ 1.54, B ≈
0.33, which satisfy the necessary condition for sim-
ple zero point of the Melnikov function and system (2)
exhibits Smale horseshoe chaos.

On this basis, the Melnikov function of the system
under external periodic excitation (11) is described in
Eq. (12), whereC, D are the samewith the unperturbed
cases and E ≈ 2.74 is computed through numerical

integration by formula (13). For convenience, we con-
sider a special case with 	 = 1, ω = 1, so that k = 1.
Thus, obtained from theorems and remarks in Sect. 3.1,
the interval of amplitudes f for chaos suppression is
[(1 − C

D )T, T
k2

] ≈ [1.34, 3.0] or [T k2, (1 + C
D )T ] ≈

[3.0, 4.66], where T is given in Eq. (16).
For the case of chaos suppression under paramet-

ric excitation (20), the Melnikov function is described
in Eq. (21), where C, D are the same with the unper-
turbed cases and F = 3.4245 is computed by formula
(22). The frequency of excitations is the same with
	 = 1, ω = 1, so that k = 1. Thus, obtained from the-
orems and remarks in Sect. 3.2, the interval of ampli-
tudes f for chaos suppression is [(1 − C

D )T ′, T ′
k2

] ≈
[1.07, 2.40] or [T ′k2, (1 + C

D )T ′] ≈ [2.40, 3.73],
where T ′ is given in Eq. (25).

In numerical simulations, using fourth-orderRunge–
Kutta method and Wolf algorithm, we calculate bifur-
cation diagram and the maximum Lyapunov exponent
of generalized Duffing equation under external peri-
odic excitation (11) by varying with the amplitude f
of control excitation as shown in Fig. 1. Here, bifurca-
tion diagrams show the system state x1 for each value
of f by using the stroboscopic sampling method with
sampling period T = 2π . The Lyapunov exponent is a
universal quantitative index to evaluate the divergence
of nearby orbits in nonlinear dynamics.A positivemax-
imum Lyapunov exponent indicates the chaotic behav-
ior of the system. It can be observed that the bifurcation
diagram is in agreement with the numerical results of
themaximumLyapunov exponent graph. The diagrams
demonstrate that the chaotic attractor is suppressed to a
stable state through the addition of an external periodic
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Fig. 2 (Color Online) The global dynamics of generalized Duffing equation under external periodic excitation. The parameters are
a = 1, b = 1, α = 5/3, δ = 2, γ = 3, ε = 0.1, 	 = 1, ω = 1, ϕ = π . a f = 0, b f = 2.0

Fig. 3 Bifurcation diagram and the maximumLyapunov exponent of generalized Duffing equation under parametric periodic excitation
with a = 1, b = 1, α = 5/3, δ = 2, γ = 3, ε = 0.1, 	 = 1, ω = 1, ϕ = π

excitation in the range of f ∈ [0.27, 5.73], which con-
tains the amplitude range of suppressing Smale horse-
shoe chaos, that is [1.07, 2.40] or [2.40, 3.73], theoret-
ically.

More exactly, to compare the effect of the control,
we present the global behavior of manifolds obtained
without and with the addition of the external periodic
excitation by employing the generalized cell mapping
methods [39,40] in Fig. 2. The domain is chosen as
D = {−2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2} with a cell struc-
ture of 1000×1000.60×60 points are evenly selected
within each cell. When the system is not suppressed
with f = 0 (Fig. 2a), there is a chaotic attractor in the
region A and region B is the basin of attraction, while

the chaotic attractor becomes two stable periodic-1
attractors denoted byA1 andA2 under the external peri-
odic excitation with f = 2.0 as shown in Fig. 2b. Here,
B1 and B2 are the basins of attraction corresponding to
the two attractors A1 and A2, respectively. B12 is the
basin boundary between basins of attractionB1 andB2.
S12 is the periodic saddle on the basin boundary B12.
UM is the unstable manifold of periodic saddle S12.

Similar results are given in Fig. 3 for the system
under parameter periodic excitation (20). The chaotic
attractor can also be suppressed to a stable periodic state
under parametric excitation within the range of sup-
pressing Smale horseshoe chaos theoretically. Numer-
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Fig. 4 Ratio for the largest
inhibition interval of
amplitudes between external
and parametric excitations S
versus principal resonance
frequency ω for different
deflection orders

ical simulations typically verify the correctness of the
analytical results presented above.

4 Comparison between external and parametric
periodic perturbations

Wenowcompare the inhibition efficiencies of the exter-
nal and parametric periodic perturbations for the prin-
cipal resonance case k = 1 because this case permits
the largest interval of amplitudes for chaos suppres-
sion. If k = 1 and given the optimum phase ϕ that sat-
isfies the inhibition theorems, we can observe that in
the external perturbation case, the inhibition interval of
amplitudes is ( fmin, f ′

max) and its width can be defined
as � f � f ′

max − fmin = 2C
D T , where C , D, T are

given in Eqs. (8), (9), and (16). By comparison, in the
parametric perturbation case, the inhibition interval of
amplitudes is ( f̄min, f̄ ′

max) and its width can be defined
as � f � f̄ ′

max − f̄min = 2C
D T ′, where T ′ satisfies Eq.

(25). We then obtain the ratio between the two interval
widths

S = � f

� f̄
= T

T ′ = F

E
. (28)

For the restitution force coefficients a = 1, b =
1, Fig. 4 shows the proportion of parametric extent
between the two periodical excitations versusω for dif-
ferent deflection orders where α > 1. The ratio for the
largest inhibition interval of amplitudes between the
two excitations S increases as ω increases. For α = 3

2

above (below) a critical value of frequency ωc ≈ 0.72,
external (parametric) excitation more effectively sup-
presses homoclinic chaos because it provides a wider
amplitude range than parametric (external) excitation.
Similar results hold for other deflection orders, α = 5

3 ,
2, 3 or 17

3 , that are integers or fractions. Moreover, the
critical value ωc will shift to a larger frequency value
with the increase in α.

5 Conclusions

We have provided the analytical expressions of chaos
suppression in a generalized Duffing oscillator with
fractional-order deflection by introducing an external
periodic resonant excitation and parametric excitation
as chaos-suppressingperturbation.Melnikov technique
is employed to show that to inhibit homoclinic chaos,
the amplitude of the chaos-suppressing perturbation
must be selected from a fixed range as long as its fre-
quency satisfies a resonant condition with the chaos-
inducing excitation. Note that the necessary condition
for Melnikov functions retains their signs, which is
omitted in Ref. [28]. Thus, we obtain a wider range for
the amplitude of suppression.We observed that as reso-
nance order increases, this range quickly contracts and
the principal resonance case admits the largest ampli-
tude interval for chaos suppression. Numerical results
typically indicate that the chaotic attractor can be sup-
pressed to a stable state within the range of theoreti-
cal analysis of excitation amplitude. Remarkably, the
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initial phase of the chaos-suppressing excitation has a
key role in suppressing chaos because it depends on
the resonant condition and must be selected accord-
ingly. Thus, to compare the chaos-suppressing effi-
ciency between the external and parametric periodic
perturbations, we select the optimum phase that satis-
fies the inhibition theorems for the principal resonance
case. In this case, external (parametric) excitation with
a frequency above (below) a critical value ismore effec-
tive in suppressing homoclinic chaos, for it provides a
wider amplitude range than parametric (external) exci-
tation. These results hold for an arbitrary deflection
order either as an integer or as a fraction as long as it
is larger than 1 depending on the material and bending
properties of the beam. Moreover, the critical value of
the frequency will shift to a larger value as the deflec-
tion order increases.
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