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Abstract In this paper, the modeling and dynami-
cal response of a vibro-impact capsule system with
Hertzian contact and random environmental perturba-
tion is studied. The capsule system ismodeled as a two-
degree-of-freedom dynamical system composed of a
rigid capsule and a movable internal mass. The ran-
dom environmental perturbation is incorporated in the
models of the capsule system, which is more realis-
tic working condition of capsule robotic system. The
impact between the rigid capsule and the internal mass
will occur when the relative displacement is larger
than the gap between them. The impact interaction is
described by using the Hertzian contact model. The
resistance force between the capsule and the sliding
face is described by Coulomb friction model. The
response of the vibro-impact capsule system is obtained
through Monte Carlo simulation. A kind of random
stick–slip phenomena can be found in the response of
the proposed model, which is consistent with the actual
behavior of capsule system. At last, it is worthy noting
that stochastic P-bifurcation occurs when the parame-
ters of the system vary.
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1 Introduction

The capsule system is quite useful in clinic endoscopy
or enteroscope, and the mechanisms of the driven cap-
sule robot have caused extensive study in the past
decades [3,5,13]. Locomotion is an important aspect
that should be considered in capsule robot design.
However, the available products generally are passive
devices, which is driven by natural peristalsis. The
active capsule robot is driven by an actuator, which
can drive the capsule to the desired position. Though
several kinds of active capsule robot have been devel-
oped, it still needs further development and some
related problems such as drive, control, power supply
need more precise results. The modeling and analy-
sis of the dynamical behavior of capsule robot needs
further study. Kim et al. [8,9] studied a bio-inspired
earthworm-like intestine robot with cyclic extension
SMA spring actuators based on directional micronee-
dles. Zhang et al show an analytical friction model of
the capsule robot and studied the interaction between
capsule robot and the intestine [17,19]. Ciarletta et al.
[4] proposed a hyperelastic theory of the layered struc-
ture of the intestine to model the mechanical properties
of the intestine. Zhang et al. [20] proposed a wireless
drive and control method by using rotational magnetic
field on a capsule microrobot. The rectilinear motion
on a horizontal rough plane of a vibration-driven sys-
tem is considered by Bolotnik et al. [1]. The working
condition of the capsule robot is very complex in actual
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work condition. The random environmental perturba-
tion is not considered in themodeling of capsule system
in the previous studies. However, random perturbations
exist broadly in engineering [6] and is an unavoidable
part in the modeling of capsule systems. It is more real-
istic to incorporate the environmental perturbation into
the dynamical equations, and the effect of the random
noises on the response should be investigated.

A capsule system moving without external driving
mechanism is of great use in medicine and engineer-
ing. These systems can be used in complex environ-
ment such as cleaning robots inside tubes and sensors
in human bodies. The capsule system driven by a vibra-
tion excitor is originally proposed by Cherousko [2],
in which the motion is controlled by internal forces
excited by a periodic force. The optimal motion for
an internal mass moving inside a capsule is studied
by Li et al. [10]. The vibro-impact mechanism as the
excitor of capsule system has been proposed and used.
Liu et al studied the modeling of the vibro-impact cap-
sule system [12] and further investigated the responses
of capsule system with various friction models [11].
The vibro-impact system under random perturbation is
an important area of dynamical system and has been
studied intensively. The stationary responses of a vis-
coelastic system with impacts under random excitation
are analyzed by Zhao et al. [21]. By using the stochastic
averaging method for quasi-Hamiltonian systems, Wu
and Zhu studied vibro-impact systems under Poisson
white noise excitations [18]. Hertzian contact model is
a popular used model in describing the impact inter-
actions between the masses of the system [15,16]. By
using Hertzian contact law, Nayak and Jing studied the
stationary response of vibro-impact systems subject to
random excitations [7,14].

In this paper, the modeling and dynamical response
of a vibro-impact capsule robot under random envi-
ronmental perturbation is studied. The impact of the
capsule and the internal mass is described by Hertzian
contact model with nonlinear elastic force. The average
procession of the capsule robot is calculated based on
Monte Carlo simulation and the dynamical responses
of the capsule robot under random perturbation are
derived. By defining the relative displacement and the
relative velocity, the stochastic P-bifurcation of the cap-
sule robot system is investigated.

Fig. 1 A sketch of capsule system

2 Dynamical modeling of vibro-impact capsule
system

2.1 Preliminary introduction of Vibro-impact capsule
system

The vibro-impact driven capsule robot can be mod-
eled as a two- degree-of-freedom dynamical system
as shown in Fig. 1, which contains a movable internal
massm1 and a rigid capsulem2. The internalmassm1 is
connected with the capsule with a linear elastic spring
with stiffness k1 and a viscous damper with damp-
ing coefficient c. x1 and x2 are the absolute displace-
ments of the internal massm1 and the rigid capsulem2,
respectively. The internal mass is driven by an external
force u(t). The external force is composed of two parts:
One is the driving harmonic force with amplitude Pd ,
and the other is the random environmental perturbation
ξ1(t), which is modeled by a Gaussian white noise with
correlation function E(ξ1(t)ξ1(t + τ)) = 2D1δ(τ ).

The impact phenomena between the inner mass and
the rigid capsule will occur when the relative displace-
ment x1 − x2 is larger or equals the gap Δ. The most
popular Hertzian contact model is adopted here, which
is a nonlinear elastic model. The impact force F is of
the following form

F = 0, x1 − x2 ≤ Δ,

F = kh(x1 − x2 − Δ)3/2, x1 − x2 ≥ Δ,
(1)

where kh is the ratio of the stiffness of the surface,
dependent on the elastic properties and the geome-
try of the colliding bodies. The random environmen-
tal excitations on the capsule is modeled by another
Gaussian white noise ξ2(t) with correlation function
E(ξ2(t)ξ2(t+τ)) = 2D2δ(τ ). The interaction between
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the sliding surface and the capsule is described by the
Coulomb friction model of the following form

f =
{
0, ẋ2 = 0,
− sign(ẋ2)Pf , ẋ2 �= 0

(2)

The capsule will be static when the sum of the exter-
nal force on it is smaller than the threshold of the dry
friction force (Pf ), and it will move when the sum of
the external force is larger than Pf . The driving force
is usually added to the inner mass and the capsule can
move without external driving mechanism, which is
essential in industrial use.

2.2 Dynamical equations

The relative displacement x1−x2 and the velocity of the
capsule ẋ2 are essential in the modeling of the dynam-
ical equations of the capsule robot. In light of impact
condition (1) and Coulomb friction property (2), the
impact condition is determinedby x1−x2 and themove-
ment of the capsule can be judged by the value of ẋ2.
Thus, there are four possible cases for the dynamical
motions of the capsule: stationary capsule without con-
tact between the internal mass and the capsule, Moving
capsule without contact, stationary capsule with con-
tact, moving capsule with contact. A detailed discus-
sion for different cases is given next.

Stationary capsule without contactWhen x1− x2 <

Δ, the internal mass and the capsule are not in contact.
When the force on the capsule is smaller or equal to the
threshold of the friction force (|k1(x1 − x2) + c(ẋ2 −
ẋ1) − ξ2(t)| ≤ Pf ), the capsule will be static. In this
case, the governing equations of the capsule robot are

m1 ẍ1 = Pd cos(Ωt) + k1(x2 − x1)

+ c(ẋ2 − ẋ1) + ξ1(t)ẋ2 = 0 (3)

Moving capsulewithout contactWhen x1−x2 < Δ, the
internal mass and the capsule are not in contact. When
the force on the capsule is bigger than the threshold of
the friction force (|k1(x1 − x2)+ c(ẋ2 − ẋ1)− ξ2(t)| >

Pf ), the capsule will move. In this case, the governing
equations of the capsule robot are

m1 ẍ1 = Pd cos(Ωt) + k1(x2 − x1)

+ c(ẋ2 − ẋ1) + ξ1(t)

m2 ẍ2 = −sign(ẋ2)Pf − k1(x2 − x1)

− c(ẋ2 − ẋ1) + ξ2(t)

(4)

Stationary capsule with contactWhen x1−x2 ≥ Δ, the
internal mass and the capsule are in contact. When the
force on the capsule is smaller or equal to the threshold
of the friction force (|k1(x1−x2)+c(ẋ2− ẋ1)−kh(x1−
x2−Δ)3/2−ξ2(t)| ≤ Pf ), the capsule will be static. In
this case, the governing equations of the capsule robot
are

m1 ẍ1 = Pd cos(Ωt) + k1(x2 − x1) + c(ẋ2 − ẋ1)

− kh(x1 − x2 − Δ)3/2 + ξ1(t)

ẋ2 = 0

(5)

Moving capsule with contact When x1 − x2 ≥ Δ, the
internal mass and the capsule are in contact. When the
force on the capsule is bigger than the threshold of the
friction force (|k1(x1− x2)+c(ẋ2− ẋ1)−kh(x1− x2−
Δ)3/2 − ξ2(t)| > Pf ), the capsule will move. In this
case, the governing equations of the capsule robot are

m1 ẍ1 = Pd cos(Ωt) + k1(x2 − x1) + c(ẋ2 − ẋ1)

− kh(x1 − x2 − Δ)3/2 + ξ1(t)

m2 ẍ2 = −sign(ẋ2)Pf − k1(x2 − x1) − c(ẋ2 − ẋ1)

+ kh(x1 − x2 − Δ)3/2 + ξ2(t) (6)

2.3 Nondimensional equations

Introduce the dimensionless variables and parameters
in according to the following formulas:

t∗ = Ω0t, x
∗
i = k1

Pf
xi , yi = dx∗

i

dt∗
= k1

Ω0Pf
ẋi ,

ẏi = dyi
dt∗

= k1
Ω2

0 Pf
ẍiΩ0 =

√
k1
m1

, ω = Ω

Ω0
,

α = Pd
Pf

, ζ = c√
2m1Ω0

, δ = k1
Pf

Δ,

β = kh
k1

√
Pf

k1
, γ = m2

m1
, D∗

i = Di

P2
f

(7)

where i = 1, 2. For simplicity, proceedwith the dimen-
sionless variables and parameters in Eq. (7) and omit
the asterisks. To incorporate the four kinds of motions
into one equation, the following auxiliary functions are
adopted
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H1 = H(|(x2 − x1) + 2ζ(y2 − y1) − ξ2(t)| − 1)

H2 = H(|(x2 − x1) + 2ζ(y2 − y1)

− β(x1 − x2 − δ)3/2 − ξ2(t)| − 1)

H3 = H(x1 − x2 − δ)

(8)

where H(·) is theHeaviside functionwith the following
expression

H(x) =
⎧⎨
⎩
0 when x < 0,
1
2 when x = 0,
1 when x > 0

(9)

The equations of motion for vibro-impact capsule sys-
tem are

ẋ1 = y1
ẏ1 = αcos(ωt) + (x2 − x1) + 2ζ(y2 − y1)

− H3β(x1 − x2 − δ)3/2 + ξ1(t)

ẋ2 = y2(H1(1 − H3) + H2H3)

ẏ2 =
(
H1(1 − H3) + H2H3)(−sgn(y2) − (x2 − x1)

− 2ζ(y2 − y1) + H3β(x1 − x2 − δ)3/2 + ξ2(t)
)
/γ

(10)

3 Dynamical analysis of vibro-impact capsule
system

As shown in Eq. (10), the stochastic dynamical equa-
tion of capsule robotic system contains nonlinear and
nonsmooth terms,which is difficult to derive the analyt-
ical results. In this section, numerical results are given
for system (10) based on Monte Carlo simulation.

3.1 Dynamical properties of vibro-impact capsule
system

Define the following parameter to measure the average
progression.

xaver = lim
t→∞

E
(
x2(t)

)
t

(11)

where E(·) denotes the probabilistic average. The
average progression xaver is an important index to

measure the dynamics of capsule system. As the
averaged response of the system can be worked out
throughMonteCarlo simulation, the expectation can be
obtained by the sample of x2(t) by simulating enough
times. The increases of x2(t) in per exciting period
will be a stationary random variable. Thus, the limit in
Eq. (11) can be achieved by setting t to be a large value.
To make the probabilistic average to be accurate, 400
samples of the orbit are calculated and the accuracy can
be guaranteed by the law of large number. Numerical
calculation is made with the following parameter val-
ues in this section: α = 0.60, δ = 0.02, ζ = 0.05, ω =
1.45, β = 6.0, γ = 3.0, D1 = D2 = D, otherwise
mentioned.

The average progression xaver as a function of driven
frequency ω for different noise intensities D (D =
0.005, 0.01, 0.02) is shown in Fig. 2a. It is seen that
the maximum average progression occurred when the
driven frequency is close to a critical value ω∗ = 1.45
for different values of D. The average progression will
increasewith the driven frequencyω, whileω is smaller
thanω∗. The average progressionwill decreasewith the
driven frequencyωwhileω is larger thanω∗. Generally,
the noise intensity D will slightly decrease the average
procession, while ω is small, and it will increase aver-
age procession, while ω is big. From Fig. 2a, we can
see, for certain value of ω , bigger value of D will lead
to bigger value of xaver , especially in the region near
the maximum point, which is of essential use in the
design of the capsule system. The time histories of dis-
placements of the mass x1 (solid line) and the capsule
x2 (dash red line) for different ω values (ω = 0.6, 1.1)
are shown in Fig. 2b. From Fig. 2b, it is seen that the
capsule will move forward with quasi-periodic behav-
ior. Generally, the capsule system will exhibit stick–
slip phenomena due to the Coulomb frictional force.
However, the presence of the random perturbation will
drive the capsule system with random walk behavior,
which can be viewed as random stick–slip phenomena
in Fig. 2b. The random stick–slip phenomena can be
explained by checking the velocity of the capsule in
Fig. 3, where the velocity of the capsule y2 stays near
0 with small random fluctuations in certain segment.
Due to the random perturbation excitation, there will
be negative values of the velocity (y2 < 0) in Fig. 3,
which means the capsule may even move backward.
This phenomenon is called random stick–slip phenom-
ena, which is more real in the actual capsule dynamics.
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Fig. 2 a xaver as a function of ω under noise intensities D = 0.005, 0.01, 0.02; b time histories of x1 and x2 for ω = 0.6 and ω = 1.1
under noise intensities D = 0.005
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Fig. 3 a The sample of the capsule velocity y2 for ω = 0.6 under noise intensities D = 0.005 and b the sample of the capsule velocity
y2 for ω = 1.1 under noise intensities D = 0.005

The average progression xaver as a function of
parameterβ for different noise intensities D is shown in
Fig. 4a. It is seen that themaximumaverageprogression
occurred when β is close to a critical value β∗ = 2.95
for different values of D. From Fig. 4a, we can see that
bigger value of D will lead to bigger value of xaver for
different values of β, which means that D is benefi-
cial in average progression for the selected parameter.
The average progressionwill increase with β while β is
smaller than β∗. When β is larger than β∗, the average

progression become flat with slight decrease. This is
universal as other parameter changed. Thus, it enable
us to find a optimal value of β in practical driven cap-
sule system. The time histories of displacements of the
mass x1 (solid line) and the capsule x2 (dash red line)
for different β values (β = 1.2, 3) are shown in Fig. 4b.
The random stick–slip and backward movement phe-
nomena (y2 < 0) in Fig. 4 are shown and checked in
Fig. 5.
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Fig. 4 a xaver as a function of β under noise intensities D = 0.005, 0.01, 0.02; b time histories of x1 and x2 for β = 1.2 and β = 3
under noise intensities D = 0.005
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Fig. 5 a The sample of the capsule velocity y2 for β = 1.2 under noise intensities D = 0.005 and b the sample of the capsule velocity
y2 for β = 3 under noise intensities D = 0.005

3.2 Bifurcation analysis

The capsule system will exhibit various nonlinear phe-
nomena under different parameters. The information
derived from the state variable x1, x2 contains the pro-
gression and the fluctuation around the trace of the pro-

gression. To get a better view of the statistical informa-
tion of the system, the following variables are defined

xr = x1 − x2

yr = y1 − y2
(12)

123



Dynamical analysis of vibro-impact capsule 1787

−1.5
−1

−0.5
0

0.5
1 −1.5

−1

−0.5
0

0.5

1
1.5

0

0.5

1

1.5

yr

xr

p
(x

r
,y

r
)

(a) (b)

Fig. 6 a The probabilistic density functions p(xr , yr ) for ω = 0.65 and b the probabilistic density functions p(xr , yr ) for ω = 1.1
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Fig. 7 a The phase trajectory of (xr , yr ) for ω = 0.65 and b the phase trajectory of (xr , yr ) for ω = 1.1

where xr , yr denotes the relative placement and rela-
tive velocity. The probabilistic density function (PDF)
p(xr , yr ) of xr , yr can be obtained from Monte Carlo
simulation. Numerical calculation is made with the fol-
lowing parameter values in this section: α = 0.60, δ =
0.02, ζ = 0.05, ω = 0.7, β = 4.0, γ = 3.0, D1 =
D2 = D, otherwise mentioned.

The PDF p(xr , yr ) of relative displacement xr and
relative velocity yr for ω = 0.65 and ω = 1.1 are
shown in Fig. 6a, b, respectively. It is seen that the
PDF changes from bimodal with two rings to unimodal

with one ring. This phenomenon is called stochas-
tic P-bifurcation, which means the shapes of the PDF
changed. To better understand this phenomenon, the
phase trajectories of (xr , yr ) forω = 0.65 andω = 1.1
are shown in Fig. 7a, b, respectively. The locations of
the impact surface (x1 − x2 = δ) are shown by the red
line. From Fig. 7, it is seen that the phase trajectories of
(xr , yr ) change from two random rings to one random
ring.

The PDF p(xr , yr ) of relative displacement xr and
relative velocity yr for the nonlinear impact coeffi-
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Fig. 8 a The probabilistic density functions p(xr , yr ) for β = 1.0 and b the probabilistic density functions p(xr , yr ) for β = 5.5

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
x1 − x2 = δ

xr

y
r

(a)

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x1 − x2 =δ

xr

y
r

(b)

Fig. 9 a The phase trajectory of (xr , yr ) for β = 1.0 and b the phase trajectory of (xr , yr ) for β = 5.5

cients β = 1.0 and β = 5.5 are shown in Fig. 8a,
b, respectively. It is seen that the PDF changes from
unimodal with one ring to bimodal with two rings,
which means that parameter β can also induce stochas-
tic P-bifurcation. The phase trajectories of (xr , yr ) for
β = 1.0 and β = 5.5 are shown in Fig. 9a, b, respec-
tively. It is seen from Fig. 7 that the phase trajectory of
(xr , yr ) changes from one random ring to two random
rings, and the bifurcation phenomena can be intuitively
observed.

4 Conclusion

The modeling and dynamical response of a vibro-
impact capsule system is studied in the present paper.
The interaction force of the impact is described by
Hertzian contact model, and the random environmen-
tal perturbation is considered in the established model.
The average procession of the capsule system is inves-
tigated. It is found that there exists critical value of
the driving frequency and the Hertzian contact param-
eter to maximize the average procession, which can
be used in the capsule robot design. Due to the ran-
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dom perturbation, the capsule system will exhibit ran-
dom stick–slip phenomena and may move backward,
which agrees with the actual motion of the capsule sys-
tem. The probability density function of the relative
displacement and the relative velocity is calculated to
demonstrate the bifurcation phenomena, and stochastic
P-bifurcation occurs, while the driven frequency or the
Hertzian contact parameter varies. The model estab-
lished in the present paper is more realistic in reflect-
ing the actual motion of capsule, and it may be used
in medicine such as cleaning robots inside intestine or
sensors in human bodies.
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