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Abstract A two-degree-of-freedom (2DOF) quarter-
car model with a piecewise leaf spring for the rear sus-
pension of a truck is presented. A leaf spring, which
contains a main leaf and an auxiliary leaf, can be
regarded as a model with piecewise-linear stiffness and
damping, and the model is built with two load states
according towhether the auxiliary leaf spring is at work
at the static equilibrium.The incremental harmonic bal-
ance method is used to obtain the nonlinear dynamics
of the presented quarter-car truck model. The accuracy
of this method is verified by comparing the nonlinear
responses, including the sub-harmonic resonance, with
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the Runge–Kutta method. Afterward, the effects of the
auxiliary leaf spring’s stiffness, the sprung mass ratio
and the main leaf spring’s damping on the dynamic
responses of the system are investigated. It is found
that the piecewise-linear systemshares similar dynamic
characteristics with a Duffing oscillator, and the proper
design of the auxiliary leaf spring can contribute to
the reduction in the fundamental resonance amplitudes
of the system. The frequency response curve shows
‘snap-back’ features in the sub-harmonic resonance
under a certain sprungmass and the leaf spring’s damp-
ing, which is due to the coupled nonlinearities of both
DOFs. In addition, the increase of themain leaf spring’s
damping can shrink or even eliminate the sub-harmonic
or chaos resonances.

Keywords Piecewise-linear · Sub-harmonic reso-
nance · Quarter-car model · Nonlinear response ·
Incremental harmonic balance method

1 Introduction

Nowadays, with the development of lightweight tech-
nology on vehicles, there are many applications of
leaf springs with variable stiffness on the design of
suspensions. Compared with traditional leaf springs,
these leaf springs have the advantages of lightness of
weight, comfortability in riding, enhancement of carry-
ing capacity, etc. In the vehicle design of a leaf spring
suspension, the suspension that contains a main leaf
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spring and an auxiliary leaf spring has often been used,
especially in trucks that carry a wide variety of loads.
Usually, the design on the lightness of weight would
cause a low performance on vibration; thus, the dynam-
ics of the suspension are an essential part of suspension
design and optimization [1]. Many scholars have pro-
posed the quarter-car model to analyze the dynamics
of the suspension system [2–7], which can be adopted
to evaluate a piecewise-linear leaf spring suspension
[8–12]. The perturbation methods seem to be a univer-
sal way to predict the responses of this type of vehicle
suspension system. Zhong et al. [8] proposed a 2-DOF
piecewise-linear leaf spring suspension model, and the
average method was used to investigate the nonlin-
ear dynamics of the system, and the transition sets; 40
groups of bifurcation curves were found with various
systemparameters. Li et al. [9] used the averagemethod
to study the effects of a mass variation of the dynamic
response of the SDOFpiecewise-linear suspension sys-
tem.Silveira et al. [10] discussed the 2-DOFquarter-car
model with piecewise-linear damping under harmonic
excitation, and the results showed that the piecewise
damping ratio directly influenced the maximum dis-
placement, speed and acceleration of the sprung mass.
Deshpande et al. [11] studied amore general piecewise-
linear vibration isolation system with secondary sus-
pension, the characteristic of the jump-free zones was
investigated and a boundary surface between no-jump
(unique response) and jump areas was established.

However, the perturbation methods are only suit-
able for weakly nonlinear problems. Bajkowski et al.
[12] showed that amplitude–frequency response curves
from the averaging method and the numerical method
became different when there were strong nonlineari-
ties in the system. Some piecewise-linear characteris-
tics, such as super-harmonic and sub-harmonic reso-
nance are difficult to obtain with these methods. The
IHBM thatwas proposed byCheung [13] is an effective
method for solving both weakly and strongly nonlinear
problems under periodic excitations [14–16]. Zhou [2]
studied the vehicle suspension system with nonlinear
stiffness anddamping through IHBMand thenumerical
method, and the results of these methods showed good
agreement. Regarding the piecewise-linear problems,
IHBM also provided a systematic procedure by intro-
ducing the step functions [18,19]. Various piecewise-
linear system dynamics have been investigated with
this method [17,20–28]. The accuracy of the IHBM
results of piecewise-linear systems has also been con-

sistent with the accuracy of the numerical method,
including super-harmonic and sub-harmonic resonance
[24]. In addition, to track the unstable response or sub-
harmonic resonance, many continuous methods have
been used to acquire the frequency response curves
including the incremental arc-lengthmethod combined
with a cubic extrapolation technique [13]; Broyden’s
method [16]; arc-length method [17,24,27], etc.

By using IHBM, the super-harmonic and sub-
harmonic resonance of piecewise-linear systems can
also be predicted. Wong et al. [18] showed that the
bifurcation of the 1/m sub-harmonic resonances can
be found on the right side of the fundamental reso-
nance’s peak and m super-harmonic resonances on the
left side in the SDOF piecewise-linear system by using
IHBM. Lau et al. [19] considered a SDOF system with
symmetric piecewise stiffness, it was found that the
sub-harmonic response shrinks into complicated closed
curves in the presence of damping. Kim et al. [24]
studied a reduced order torsional system with sym-
metric piecewise stiffness using IHBM with adaptive
arc-length continuation, and the results showed that the
appearance of sub-harmonic resonance depends on the
frequency separation between the primary harmonic
of the compliant side and the mean operating point
crossover position to the stiffness transitions. Duan et
al. [25] used multi-term IHBM to analyze a family of
isolated sub-harmonic branches in the nonlinear fre-
quency response of piecewise-linear systems and con-
cluded that the relationship between the linear mean
operating and transition points rather than asymmetric
piecewise stiffness appeared to be the key factor that
generated the isolated branches.

Although many articles have been devoted to SDOF
piecewise systems that consider sub/super-harmonic
resonances, the literature has reported few studies on
multiple DOF piecewise systems, especially when the
added DOFs could affect these resonances of the sys-
tem. In the present paper, considering the piecewise-
linear stiffness and damping of the suspension, the non-
linear responses, including the sub-harmonic response,
of a 2-DOF piecewise-linear quarter-car model are
studied with IHBM. Because of the different types of
local dynamic behaviors, the piecewise-linear suspen-
sion model is built by two load states according to
whether the auxiliary leaf spring is at work at the static
equilibrium. This paper is organized as follows. Sec-
tion 2 establishes a 2-DOF quarter-car model with a
piecewise-linear leaf spring for the rear suspension of
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Fig. 1 Schematic model of a piecewise-linear quarter-car model

a truck. In Sect. 3, IHBM is derived to obtain the nonlin-
ear motions of the present model subject to the external
road profile. The results of IHBM are validated by the
Runge–Kutta method, and the effect of some key sys-
tem parameters on the dynamic response of the present
models is studied in Sect. 4. Finally, Sect. 5 draws some
conclusions from the present work.

2 The quarter-car system

The dynamic system of a 2-DOF quarter-car truck
model with a piecewise-linear leaf spring is shown in
Fig. 1. When the sprung load on the leaf spring is
small, only the main leaf spring works. The distance
between the main leaf spring and the auxiliary leaf
spring decreases as the load increases. On the critical
sprung load where the distance becomes zero, the aux-
iliary leaf spring exactly begins to work. As the sprung
load continues to increase, both leaf springs work. In
this paper, the variable z1 represents the unsprungmass
vertical displacement, z2 is the sprungmass vertical dis-
placement, and z0 is the road profile. The road profile
is expressed by

z0 = r sin(ωt) (1)

where r andω are the amplitude and frequency, respec-
tively, of the harmonic road profile.

Other parameters that are shown in Fig. 1 are defined
as follows. m1 and m2 are the unsprung mass and the
sprungmass, respectively, of the truck. k1 and k∗

1 are the
nonlinear coefficients of the tire stiffness, and the tire
stiffness can be approximately regarded as a quadratic
curve-fittingmodel. Equation (2) gives the curve-fitting
form:

gN (x) = k1x + k∗
1x

2 (2)

where c1 is the tire damping, k2 and k3 are the stiffness
of the main and auxiliary leaf springs, respectively, c2
and c3 are the damping of the main and auxiliary leaf
springs, respectively, e represents the distance between
the main leaf spring and the auxiliary leaf spring when
the two leaf springs are at the no-load state, and d1
and d2 are the critical distances, namely, the distances
between the position where the sprung mass is loaded
at the state of static equilibrium and the critical position
where the auxiliary leaf spring exactly does not work.
d1 and d2 can be defined as

d1 = e − m2g

k2
, d2 = m2g − k2e

k2 + k3
(3)

To investigate the nonlinear motions of the 2-DOF sys-
tem, the relative displacements are used as follows:

z21 = z2 − z1

z10 = z1 − z0 (4)

In this work, the origin coordinates are set to the static
balance position to ignore the gravity of the system.
As seen in Fig. 2, the static balance position of system
is divided into two states because of the variation of
the sprung mass: the light load state and the heavy load
state. Additionally, the two different load states are also
relevant to the local dynamic behaviors of the primary
resonances, which are studied in Sect. 4.2. The critical
sprung mass can be obtained with Eq. (5).

m2cr = k2e

g
(5)

By applying the Newtonian law, the dynamic equations
of the light load state and the heavy load state can be
obtained.

For the light load state,

m2(z̈0 + z̈10 + z̈21) + c2 ż21 + k2z21

+ f1(z21, ż21) = 0
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Fig. 2 Load state
definitions of the
piecewise-linear spring leaf
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m1(z̈0 + z̈10) − c2 ż21

− k2z21 − f1(z21, ż21) + c1 ż10 + gN (z10) = 0

(6)

For the heavy load state,

m2(z̈0 + z̈10 + z̈21) + (c2 + c3)ż21

+ (k2 + k3)z21 + f2(z21, ż21) = 0

m1(z̈0 + z̈10) − (c2 + c3)ż21 − (k2 + k3)z21

− f2(z21, ż21) + c1 ż10 + gN (z10) = 0 (7)

where the overhead dot represents the differentiation
with respect to time t . f1(z21, ż21) and f2(z21, ż21) are
the piecewise-linear functions that represent the auxil-
iary leaf spring forces:

f1(z21, ż21)=
{
c3 ż21 + k3(z21 + d1) z21 < − d1
0, z21 ≥ − d1

(8)

f2(z21, ż21)=
{
0, z21 < d2
− c3 ż21 − k3(z21 − d2), z21 ≥ d2

(9)

To simplify the above equations, the following dimen-
sionless quantities are introduced:

ω1 =
√

k1
m1

, ξ = c1
2
√
m1k1

, t ′ = ω1t, ν2

= k2
k1

, ν3 = k3
k1

, η2 = c2
c1

, η3 = c3
c1

,

x1 = z10
r

, x2 = z21
r

, D = e

r
, α = k∗

1

k1
r, ν

= m1g

k1r
, μ = m2

m1
,Ω = ω

ω1
,

μcr = k2e

m1g
,Δ1 = −d1

r
,Δ2 = d2

r
(10)

For the piecewise-linear equations, the step function is
used to make the derivation simpler [18]:

h(x2−	1) =
{
1 x2 < Δ1

0 x2 ≥ Δ1
(11)

h(x2−	2) =
{
0 x2 < Δ2

− 1 x2 ≥ Δ2
(12)

Thus, the step functions have a unified form for both
states:

h(x2−Δ) =
{
h(x2−Δ1)μ < μcr, Δ = Δ1

h(x2−Δ2)μ ≥ μcr, Δ = Δ2
(13)

Letting

c =
{

η2, μ < μcr

η2 + η3, μ ≥ μcr
(14)

k =
{

ν2, μ < μcr

ν2 + ν3, μ ≥ μcr
(15)

G = h(x2−	)(ν3(x2 − Δ) + 2ξη3 ẋ2) (16)

q = [
x1 x2

]T = [
q1 q2

]T
(17)

M̄ =
[

μ μ

1 0

]
(18)

C̄L =
[
0 2ξc
2ξ − 2ξc

]
(19)

K̄L =
[
0 k
1 − k

]
(20)

ḠNL =
[

G
−G + αx21

]
(21)

F̄ =
[

μ

1

]
(22)

By substituting Eqs. (13)–(22) into Eqs. (6)–(9), the
dynamic equations can be rewritten with the matrix
form:

M̄q̈ + C̄L q̇ + K̄Lq + ḠNL = Ω2 sin(Ωt ′)F̄ (23)
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where the overhead dot represents the differentiation
with respect to time t ′.

3 IHBM for piecewise-linear system

3.1 IHBM scheme

In this section, the IHBM procedures are adopted to
solve Eq. (23). Letting τ = Ωt ′, Eq. (23) can be rewrit-
ten as

Ω2M̄q̈ + ΩC̄L q̇ + K̄Lq + ḠNL − Ω2 sin(τ )F̄ = 0

(24)

where the overhead dot represents the differentiation
with respect to time τ , and Ω is the non-dimensional
excitation frequency of relevance. Let qi0 and Ω0

denote the state of vibration in hand, and the neighbor-
ing state can be expressed by adding the corresponding
increments to them [13]:

q = q0 + 	q,Ω = Ω0 + 	Ω (25)

where q = [q10,q20]T and 	q = [	q1,	q2]T.
By substituting Eq. (25) into Eq. (24), the following

incremental equation can be obtained by neglecting the
high-order incremental terms:

Ω2
0M̄	q̈ + Ω0(C̄L + C̄NL)	q̇

+ (K̄L + K̄NL)	q = R̄ + R̄mc	Ω (26)

Here, the unknown matrices can be expressed as fol-
lows:

C̄NL =
[
0 2h(q20−Δ)ξc
0 − 2h(q20−Δ)ξc

]
(27)

K̄NL =
[

0 h(q20−Δ)k
2αq10 − h(q20−Δ)k

]
(28)

ĒN =
[

h(q20−Δ)k(q20 − Δ)

− h(q20−Δ)k(q20 − Δ) + αq210

]
(29)

R̄ = − (Ω2
0M̄q̈0 + Ω0(C̄L + C̄NL)q̇0 + K̄Lq0)

− ĒN + Ω2
0 sin(τ )F̄ (30)

R̄mc = − 2Ω0M̄q̈0 − (C̄L + C̄NL)q̇0 + 2Ω0 sin(τ )F̄

(31)

Then, the harmonic balance procedure is adopted.
Given the periodic solution with a truncated finite
Fourier series,

q j0(τ ) = 1

2
a j0 +

N∑
i=1

(
a ji cos

iτ

m
+ b ji sin

iτ

m

)

= CsA j (32)

	q j (τ ) = 1

2
	a j0 +

N∑
i=1

(
	a ji cos

iτ

m
+ 	b ji sin

iτ

m

)

= Cs	A j (33)

where N is the number of the harmonic terms used in
the solution, and m is the order of the sub-harmonic
solution. Other parameters are expressed below:

Cs =
[
1

2
, cos

τ

m
, . . . , cos

Nτ

m
, sin

τ

m
, . . . , sin

Nτ

m

]
(34)

S = diag [Cs ,Cs ] (35)

A j = [
a j0, a j1, . . . , a j N , b j1, . . . , b j N

]T
, j = 1, 2

(36)

	A j = [
	a j0,	a j1, . . . ,	a j N , 	b j1, . . . , 	b j N

]T
,

j = 1, 2 (37)

A = [A1,A2]
T ,	A = [	A1, 	A2]

T (38)

According to the above equations, the vectors of the
non-dimensional displacement unknowns and their
increments can be expressed as

q0 = SA,	q = S	A (39)

The positive integer m and N introduced in Eqs. (32)
and (33) should be chosen according to the number of
period-m bifurcations that the system has undergone
[15]. m = 1 and N = Nm for the period-1 solution,
and m = p and N = pNm for the period-p solution
(where p = 2, 3,…). Nm is determined in terms of
the required computing accuracy, which is studied in
Sect. 4.1.

The Galerkin procedure is performed as follows:
∫ 2mπ

0

[
Ω2

0M̄	q̈ + Ω0(C̄L + C̄NL)	q̇ + (K̄L

+ K̄NL)	q
]
δ (	q) dτ

=
∫ 2mπ

0

(
R̄ + R̄mc	Ω

)
δ (	q)dτ (40)

By substituting Eqs. (32) and (33) into Eq. (40), the
following 2N + 1 sets of linear equations with 2N + 2
unknowns can be obtained:

C	A = R + 	ΩRmc (41)
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where

C = Ω2
0M + Ω0(CL + CNL) + (KL + KNL) (42)

R = −
[
Ω2

0M + Ω0(CL + CNL) + KL

]
A

−EN + Ω2
0F (43)

Rmc = − [2Ω0M + (CL + CNL)]A + 2Ω0F (44)

The unknown matrices derived in Eqs. (42)–(44) can
be expressed as follows:

M =
[

μM1 μM1

M1 0

]
, CL =

[
0 2ξcC1

2ξC1 − 2ξcC1

]
,

KL =
[

0 kK1

K1 − kK1

]
,F =

[
μF1

F1

]
,

CNL =
[
0 2ξcC2

0 − 2ξcC2

]
,

KNL =
[

0 kK2

2αK3 − kK2

]
, EN =

[
kE1

− kE1 + αE2

]

where

M1 =
∫ 2mπ

0
CT

SC
′′
Sdτ, C1 =

∫ 2mπ

0
CT

SC
′
Sdτ,

K1 =
∫ 2mπ

0
CT

SCSdτ,

F1 =
∫ 2mπ

0
CT

S sin(τ )dτ,

C2 =
∫ 2mπ

0
h(x20−Δ)CT

SC
′
Sdτ,

K2 =
∫ 2mπ

0
h(x20−Δ)CT

SCSdτ,

K3 =
∫ 2mπ

0
x10CT

SCSdτ,

E1 =
∫ 2mπ

0
h(x20−Δ)(x20 − Δ)CT

S dτ,

E2 =
∫ 2mπ

0
x210C

T
S dτ.

The elements of the above integration matrices can be
referred to Appendix.

Because the number of unknowns is greater than the
equations, one unknown should be set in advance as the
control increment. To obtain the amplitude–frequency
curves of the systemby solvingEq. (41),manymethods
have been proposed [13,17–19] . The simplest way is
to set	Ω = 0, and then, the Newton-Raphson interac-
tions can be processed until the corrective vector norm
‖R‖ is smaller than a given convergence parameter.

However, the unstable solutions cannot be obtained by
this method. For a more universal approach, the arc-
length method is adopted to track the unstable equilib-
rium paths that involve the “snap-backs” phenomena.
In this paper, Crisfield’s procedure [29–31] is used to
solve Eq. (41).

3.2 Stability of the periodic solution

Once the periodic solution is determined, the solution’s
stability can be investigated by the Floquet theory [17].
First, the small perturbation δq of q0 at Ω0 can be
expressed as

q = q0 + δq (45)

By substituting Eq. (1) into Eq. (26), the linearized
equation can be obtained for the small perturbation δ q
as follows:

Ω2
0M̄ δ q̈+Ω0(C̄L + C̄NL) δ q̇ + (K̄L+K̄NL)δq= 0

(46)

Transforming above equations into linear ordinary dif-
ferential equations,

Ż = Q(τ )Z (47)

where

Z = [
δ q1, δ q2

]T
,Q(τ )

=
[

0 I

− K̄L+K̄NL
Ω2

0 M̄
− C̄L+C̄NL

Ω0M̄

]
(48)

0 is the 2×2 null matrix, and I is the 2×2 unit matrix. It
can be seen that matrix Q(τ) has the same period with
q0 [15]. Friedmann [32] proposed an efficient numer-
ical approach to approximate the periodic matrix with
a set of step functions, namely the matrix Q(τ ) keeps
the same figure in a relatively small range of time. In
this case, period 2m π is divided into Nk intervals for
numerical computation, and the kth interval is [τk−1,
τk] with the interval length of Δk = τk − τk−1. Thus,
the constant matrix Ck can be written as

Ck = 1

	k

∫ τk

τk−1

Q (τ ) dτ (49)

After the constant matrix Ck is obtained, the transi-
tion matrix or the monodromy matrix, which is used to
decide the stability of the system, can be expressed:
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P=
Nk∏
i=1

exp(Ck	k) (50)

The terms exp(Ck	k) are expanded with the Taylor
formula for programming:

P =
Nk∏
i=1

⎛
⎝I +

M∑
j=1

[ΔiCi ] j

j !

⎞
⎠ (51)

whereM is the number of terms in the approximation of
the constant matrix exponential [18]. In this paper, M
is set to 4. The stability of the solution can be decided
by the eigenvalues ofmatrixPwhich are called Floquet
multipliers [17]. If any of the Floquet multipliers has
a module that is greater than one, then the solution is
unstable. Namely [15],

(1) A real Floquet multiplier moves out of the unit
circle, and the remaining Floquet multipliers stay
inside the unit circle; and

(2) A pair of conjugate Floquet multipliers move out
of the unit circle, and the remaining Floquet mul-
tipliers stay inside the unit circle.

For sub-harmonic resonances, a proper value of m can
be set to acquire the 1/m sub-harmonic resonance of the
system, and the stability of these responses can also be
checked by the above procedure.

4 Numerical simulation and discussion

4.1 Numerical simulation and validation

To demonstrate the accuracy of IHBM, the amplitude–
frequency curves and phase diagrams of the piecewise-

Table 1 System parameters

ParameterDescription/units Value

m1 Unsprung mass (kg) 472.5

k1/k∗
1 Stiffness of the tire (N/mm/ N/mm2) 560.0 /1.2

c1 Damping of the tire (Ns/mm) 2.10

k2/k3 Stiffness of the suspension (N/mm) 159.87 /206.23

c2/c3 Damping of the suspension (Ns/mm) 1.392/1.580

e Original distance between springs
(mm)

60

r Amplitude of the road profile (mm) 10

Table 2 Computation results of IHBM on different values of
Nm for μcr = 2.0698 and Ω = 0.36

Number of the har-
monic terms, Nm

Amplitude of the
displacements

Amplitude of
the velocities

x1 x2 x1 x2

1 3.7417 7.7137 3.7417 7.7137

2 3.9345 8.0130 4.9810 8.4133

3 4.0653 7.6549 5.0153 9.0176

6 4.0033 7.4661 4.8157 8.8966

12 3.9983 7.4630 4.8169 8.9293

RKM 3.9946 7.4595 4.8114 8.9346

linear quarter-car model are solved by both IHBM and
the Runge–Kutta method (RKM). System parameters
used in the simulation are given in Table 1.

Here, the simulations are presented with the sprung
mass ratio of μcr = 2.0698 (m2 = m2cr). First, the
number of the harmonic terms Nm in the simulation is
investigated. It can be seen from the Table 2 that the
results of IHBM are close to the solution presented by
RKMwith increasing value of Nm. When Nm = 1, the
solution obtained with IHBM, which can be regarded
as the solution obtained with the average method, does
not match well with the result of RKM. To improve
the accuracy of simulation and to save the computation
consumption, Nm is set to 6 in this paper.

Then, Figs. 3 and 4 show the nonlinear dynamic
responses of the quarter-carmodel by using both IHBM
and RKM, and the results are in good agreement with
one another. Figure 3 shows the phase diagrams of both
DOFs at the non-dimensional frequencies Ω = 0.36
and Ω = 1.20, which indicate the two peaks of the
frequency response curves. In Fig. 3, the solid line ‘-’
denotes the IHBM solutions, and the dot denotes the
RKM solutions. In the primary resonance peak, more
than one harmonic term contributes to the vibration
of both DOFs under one external harmonic excitation,
which shows nonlinear characteristics of the system.
However, in the second resonance peak, only one har-
monic termworks which indicates that the nonlinearity
is weak at the presented state.

An interesting phenomenon can be found when the
sprung mass ratio is close to a certain value. In Fig. 4,
the frequency response curves of both DOFs with a
mass ratio of μcr = 2.0698 are studied. The black cir-
cle represents the numerical results from RKM, and
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(b)(a)

Fig. 3 Phase diagrams of the system DOFs at a Ω = 0.4 and b Ω = 1.2

the solid line denotes the calculation solutions from
IHBM. It can be observed from Fig. 4c that between
Ω = 0.6803 and Ω = 0.7457, the fundamental solu-
tions lose stabilities with one of their Floquet multi-
pliers that leaves the unit circle. This finding is con-
sistent with Fig. 4a, b, and the period-1 solutions of
IHBM do not match with the period-1 solutions of
RKM in this unstable region, which means that sub-
harmonic or chaos resonances exist in this region. Fig-
ure 5 shows 1/2 sub-harmonic response of both DOFs
at Ω = 0.70, and it can be seen that the harmonic
terms 0.5Ω and 1.5Ω play an important role in vibra-
tion responses. In Fig. 6, the sub-harmonic resonances
of these unstable regions are investigated. The black
solid and dashed lines denote the stable and unsta-
ble solutions, respectively, of the fundamental reso-

nances with IHBM, and the red solid line represents
the sub-harmonic resonances with IHBM. The 1/2 sub-
harmonic resonances can be found with the “snap-
back” phenomenon,which indicates the strong coupled
nonlinearities of both DOFs in this region. This finding
is different from the SDOF piecewise-linear system.
Other 1/m sub-harmonic resonances are not found in
the frequency response curves, mainly because of the
existence of the second order resonance of the system.

4.2 Effect of the auxiliary leaf spring’s stiffness on
the dynamic response of the system

The auxiliary leaf spring’s stiffness that is discussed
in this section is an essential parameter for suspension
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(a)

(b)

(c)

Fig. 4 Response diagram forμ = 2.0698: a frequency response
curve of the amplitude of x1, b frequency response curve of the
amplitude of x2 and c the eigenvalues of the monodromy matrix
compared with Ω

design. As seen in Fig. 4, two resonance peaks exist
in the frequency response curves, and the primary res-
onance peak that represents the resonance of x2 has a
larger amplitude. To reduce the vibrations of themodel,
the effect of the auxiliary leaf spring’s stiffness ratio
ν3 on the primary resonance peak is discussed in this
section. The frequency response curves of the x2 of
different load states with five different auxiliary leaf
spring stiffness ratios, namely ν3 = 0. 184, 0.285,
0.368, 0.736 and 1.104, are shown in Figs. 7 and 8.
The black solid line denotes the system in which the

stiffnesses of the main and auxiliary leaf spring are the
same, and the black dash dot line represents the abso-
lute value of the critical distance of each case.

Usually, the stiffness of the auxiliary leaf spring is
set a larger value than that of the main leaf spring. It
can be seen from these figures that the existence of the
auxiliary leaf spring with larger stiffness will decrease
the maximum amplitude in both the light and heavy
load states. Thus, a proper design of the auxiliary leaf
spring can contribute to the reduction in the suspen-
sion vibration. In addition, at the light load state, when
the displacement of x2 increases, the spring of suspen-
sion becomes stiff as the stiffness changes from k2 to
k2 + k3. As a result, the system shows a “harden”
characteristic, which is similar to a “harden” Duffing
oscillator [33]. It can be seen from Fig. 7 that the res-
onance peak of the frequency response curve moves to
the right when the displacement of x2 is greater than
the absolute value of Δ1. The similarity of the heavy
load state system to the “soft” Duffing oscillator can
also be concluded.

4.3 Effect of the sprung mass ratio on the dynamic
response of the system

In this section, the effect of the sprung mass ratio μ

on the dynamic responses of the piecewise quarter-
car model is investigated with IHBM, and the other
parameters remain the same as in previous analyses.
From Fig. 9, when the sprung mass ratio μ is larger,
the amplitude of both x1 and x2 are larger for the pri-
mary resonance. It can be concluded that if the truck
is overloaded, it will be very dangerous because the
amplitude of the displacement can exceed the designed
dynamic deflection of the suspension.

In addition, the sub-harmonic resonances can be
found on some sprungmass ratios that are close to a cer-
tain value. The existence of an unstable region where
the frequency varies from 0.6 to 0.9 can be determined
by the Floquet multipliers for all of the possible sprung
mass ratios of μ from 1.25 to 3.0. This unstable region
that includes 1/m sub-harmonic resonances or chaotic
vibration will greatly increase the response amplitude
in this frequency region, which is shown in Fig. 9.

From Fig. 10, the unstable region occurs when the
sprung mass ratio μ changes from 1.508 to 2.767. The
entire unstable region that comprises the frequency and
the mass ratio presents a ‘gourd’ shape, and the bound-
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(a) (b)

(c) (d)

Fig. 5 Vibration of 1/2 sub-harmonic response for Ω = 0.7: a time history of x1, b time history of x2, c Fourier spectrum of x1 and d
Fourier spectrum of x2

ary frequencies of the unstable region decreasewith the
mass ratio increases until μ ≈ 2.40 where the maxi-
mum difference between the upper and lower boundary
frequencies occurs. Afterward, the difference begins to
decrease and become zero when μ = 2.767.

4.4 Effect of the main leaf spring’s damping on the
dynamic response of the system

In Sect. 4.3 the unstable region is discussed for var-
ious sprung mass ratios, and these regions should be
avoided in engineering by changing the system param-
eters. The proper way to avoid these regions is to add
a vibration isolation system to increase the main leaf
spring’s damping of the suspension [19,25].

In this section, the effect of the main leaf spring’s
damping on the dynamic response of system is dis-
cussed, andother parameters remain the same.Figure 11
shows that with the increasing damping coefficient
of the main leaf spring, the fundamental tendency of
the frequency response curves remains unchanged, but
the amplitudes of the primary resonance and the sub-
harmonic resonance decreasemarkedly for both DOFs.
Meanwhile, the frequency interval of the unstable
region will be reduced with greater values of damping
coefficients, and when the damping coefficients η2 =
1.6000 (μ = μcr), an unstable region is not detected.

Based on the above analysis, the main leaf spring’s
damping will decrease the sub-harmonic resonance,
Fig. 12 illustrates the unstable region that is calculated
for different main leaf springs’ damping coefficients
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(a) (b)

Fig. 6 Partial enlarged plot of the unstable region of μcr = 2.0698: a frequency response curve of the amplitude of x1 and b Frequency
response curve of the amplitude of x2

Fig. 7 Partial enlarged plot of the frequency response curves of
the amplitude of x2 in the light load state case whereμ = 1.2698

for all of the possible sprung masses ofm2 from 600 to
1400kg (η2 = 0.3310, η2 = 0.6628, η2 = 0.9930, and
η2 = 1.6000). According to Fig. 12, when the value of
η2 grows, the unstable region quickly diminishes. For
η2 ≈ 1.617, all of the Floquet multipliers are in the
unit circle, which indicates that all of these solutions
are stable. This results can be instructive for the design
of a suspension vibration absorber.

5 Conclusion

In this study, the nonlinear dynamic behavior of a 2-
DOF quarter-car truck model with a piecewise-linear
leaf spring is studied with IHBM. The effect of the

Fig. 8 Partial enlarged plot of the frequency response curves of
the amplitudeof x2 in the heavy load state casewhereμ = 5.2910

auxiliary leaf spring’s stiffness, the sprung mass ratio
and the main leaf spring’s damping on the nonlinear
dynamic responses are discussed. The results can be
summarized as follows.

1. The periodic motion of the system is investigated
with IHBM, and the results obtained by IHBM
compare well with the results that are calculated
by the RKM. The sub-harmonic resonance on the
frequency response curve can be found with the
‘snap-back’ characteristic due to the coupled influ-
ence of both DOFs.

2. The effect of the auxiliary leaf spring’s stiffness
on the dynamic response of the system is investi-
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(a)

(b)

Fig. 9 Frequency response curves for different unsprung mass
ratios: a frequency response curve of the amplitude of x1 and b
frequency response curve of the amplitude of x2

Fig. 10 Unstable region calculated by the Floquet theory for
mass ratio from 1.25 to 3.0 and frequencies from 0.6 to 0.9 (the
shadow region refers to the unstable region)

gated. The piecewise-linear stiffness of a leaf spring
shares similar characteristics with the stiffness of a
Duffing oscillator. Additionally, the proper design
of an auxiliary leaf spring contributes to the reduc-
tion in the suspension vibration.

(a)

(b)

Fig. 11 Frequency response curves forμ = 2.0698: a frequency
response curve of the amplitude of x1 and b frequency response
curve of the amplitude of x2

Fig. 12 Unstable region calculated by the Floquet theory for
different main leaf springs’ damping coefficients

3. The effect of the sprung mass ratio on the dynamic
response of the system is investigated. The ampli-
tudes of both x1 and x2 for the primary resonance
are found to increase as the sprung mass increase.
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The unstable region will occur at certain sprung
mass ratios.

4. The effect of the main leaf spring’s damping on the
dynamic response of the system is investigated. It is
found that when the damping coefficient increases,
the amplitude of the response curve, as well as the
unstable region, has a significance decline. When
η2 ≈ 1.617, the unstable region is diminished.
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Appendix

The analytical expressions of the unknownmatrices are
listed below:

[M1]i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j2πδi j
m , i = 0, 1, . . . , N ; j = 0, 1, . . . , N

( j−N )2πδi j
m , i = N + 1, . . . , 2N ;

j = N + 1, . . . , 2N

[C1]i j =

⎧⎪⎨
⎪⎩

jπβi j , i = 0, 1, . . . , N ; j = 0, 1, . . . , N

( j − N )πβi j , i = N + 1, . . . , 2N ;
j = N + 1, . . . , 2N

[K1]i j = αimπδi j , i = 0, 1, . . . , N ; j = 0, 1, . . . , N

C2 =
[
Ccc
2 Ccs

2
Csc
2 Css

2

]
,K2 =

[
Kcc
2 Kcs

2
Ksc
2 Kss

2

]
,E1 =

[
Ec
1

Es
1

]

Consider a period 2π, where θ0 = 0 and θM+1 =
2π. There are M zeros of q20 = 	, denote as θ1,
θ2, . . . θM (θ1 < θ2 < . . . < θM).

[
Ccc
2

]
i j = − αi j

M∑
l=0

h(q20−Δ)(Bi j (θl+1)

− Bi j (θl )), i = 0, 1, . . . , N ; j = 0, 1, . . . , N

[
Ccs
2

]
i j = αi j

M∑
l=0

h(q20−Δ)(Ai j (θl+1)

− Ai j (θl )), i = 0, 1, . . . , N ; j = 1, . . . , N

[
Csc
2

]
i j = − j

M∑
l=0

h(q20−Δ)(Di j (θl+1)

− Di j (θl )), i = 1, . . . , N ; j = 0, 1, . . . , N

[
Css
2

]
i j = j

M∑
l=0

h(q20−Δ)(Ci j (θl+1)

−Ci j (θl )), i = 1, . . . , N ; j = 1, . . . , N

[
Kcc
2

]
i j = αiα jm

M∑
l=0

h(q20−Δ)(Ai j (θl+1)

− Ai j (θl )), i = 0, 1, . . . , N ; j = 0, 1, . . . , N

[
Kcs
2

]
i j = αim

M∑
l=0

h(q20−Δ)(Bi j (θl+1)

− Bi j (θl )), i = 0, 1, . . . , N ; j = 1, . . . , N

[
Ksc
2

]
i j = α jm

M∑
l=0

h(q20−Δ)(Ci j (θl+1)

−Ci j (θl )), i = 1, . . . , N ; j = 0, 1, . . . , N

[
Kss
2

]
i j = m

M∑
l=0

h(q20−Δ)(Di j (θl+1)

− Di j (θl )), i = 1, . . . , N ; j = 1, . . . , N

[
Ec
1
]
i = m

M∑
l=0

h(q20−	)

⎧⎨
⎩

N∑
j=0

α j
[
a1 j (Ai j (θl+1)

− Ai j (θl )) + b1 j (Bi j (θl+1) − Bi j (θl ))
]

− 	(Ei j (θl+1) − Ei j (θl ))
}
, i = 0, . . . , N

[
Es
1
]
i = m

M∑
l=0

h(q20−	)

⎧⎨
⎩

N∑
j=0

α j
[
a1 j (Ci j (θl+1)

−Ci j (θl )) + b1 j (Di j (θl+1) − Di j (θl ))
]

− 	(Fi j (θl+1) − Fi j (θl ))
}
, i = 1, . . . , N

[K3]i, j = mπ

4

⎧⎪⎪⎨
⎪⎪⎩

a10, i = 0; j = 0
2a1i , i �= 0; j = 0
2a1 j , i = 0; j �= 0
2(a1(i+ j) + ϕi j a1|i− j |), otherwise

q220 =
⎡
⎣1

2
a20+

N∑
i=1

(
a2i cos

iπ

m
+ b2i sin

iπ

m

)⎤
⎦
2

= G0+
2N∑
i=1

(
Gi cos

iπ

m
+ Hi sin

iπ

m

)

[E2]i = mπ

⎧⎨
⎩
G0, i = 0
Gi , i = 1, . . . , N
Hi−N , i = N + 1, . . . , 2N

where δi j =
{
1, i = j
0, i �= j

, αi =
{
0.5, i = 0
1, i �= 0

, βi j =⎧⎨
⎩

− 1, i = j + N
1, j = i + N
0, otherwise

, ϕi j =
{
2, i = j
1, i �= j

. And expres-

sions of Ai j , Bi j ,Ci j , Di j , Ei , Fi can be referred to
Wong [18].
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