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Abstract In this paper, an adaptive practical stabi-
lization problem is investigated for a class of nonlinear
systems via sampled-data control. The systems under
study possess uncertain dynamics and unknown gain
functions. During sampled-data controller design pro-
cedure, a dynamic signal is introduced to dominate the
unmeasured states existed in the external disturbances,
and neural networks are adopted to approximate the
unknown nonlinear functions. By choosing appropriate
sampling period, the designed sampled-data controller
can render all states of the resulting closed-loop sys-
tem to be semi-globally uniformly ultimately bounded.
Two examples are given to demonstrate feasibility and
efficacy of the proposed methods.

Keywords Nonlinear systems · Adaptive practical
stabilization · Sampled-data control · Dynamic signal ·
Neural networks

1 Introduction

It is well known that real-world systems are inevitable
to contain uncertainties. Driven by practical require-
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ments and theoretical challenges, adaptive controller
design of nonlinear systems has become an important
research domain recently. An adaptive fault-tolerant
tracking control problemof a class of nonlinear systems
with multiple delayed state perturbations was investi-
gated in [1]. Adaptive tracking and stabilization prob-
lems of the nonlinear large-scale systemswith dynamic
uncertainties was discussed in [2–5], where the inverse
dynamics of the subsystems considered in [4,5] were
required to be stochastic input-to-state stable. Finite-
time stabilization of a class of switched stochastic non-
linear systems under arbitrary switchings was investi-
gated in [6] by adopting the adding a power integra-
tor technique, subsequently, a tracking control method
was proposed in [7] for a class of switched stochas-
tic nonlinear systems with unknown dead-zone input
by using the common Lyapunov function method. Two
additional factors of adaptive control in nonlinear sys-
tems were considered in [8,9], where time delay was
considered in [8], and unmeasured dynamic uncer-
tainties was considered in [9]. Adaptive fuzzy output-
constrained tracking fault-tolerant control was focused
in [10], where the barrier Lyapunov function was used
to guarantee that all the signals in the closed-loop sys-
tem were bounded in probability and the system out-
puts was constrained in a given compact set. Two novel
adaptive finite-time control schemes were developed
in [11,12] for high-order nonlinear systems, where the
result presented in [11] was the first time to solve the
finite-time control problem of the nonlinear systems
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with uncertain time-varying control coefficients and
unknown nonlinear perturbations. Under some appro-
priate assumptions, adaptive practical finite-time sta-
bilization for a class of switched nonlinear systems in
pure-feedback form was investigated in [13].

However, it should be emphasized that all the
aforementioned results were based on continuous-time
control. In the past decades, due to the remarkable
development in digital technology, it becomes a com-
monly known standard that sampled-data controllers
with analog-to-digital and digital-to-analog devices for
interfacing are being digitally implemented into prac-
tical systems, such as aircraft systems [14] and multi-
robot systems [15]. The three main approaches for the
design of sampled-data controllers are (e.g., see [16–
18]):

1. Design based on a continuous-time plant model
plus a controller discretization (the CTD method);

2. Design based on the exact or approximate discrete-
time plant model ignoring inter-sample behavior
(respectively, theDTDmethod and the approximate
DTD method);

3. Design based on the sampled-data model of the
plant which takes into account the inter-sample
behavior in thedesignprocedure (theSDDmethod).

The majority of work for the sampled-data control of
nonlinear systems uses the CTD method, and various
sampled-data control algorithms for nonlinear systems
depicted in continuous dynamics were presented in
many existing literature, for example, two sampled-
data control schemes were developed in [16,19] to
realize global practical tracking of nonlinear systems,
a systematic design scheme was developed in [20] to
construct a linear sampled-data output feedback con-
troller that semi-globally asymptotically stabilizes a
class of uncertain systems with both higher-order and
linear growth nonlinearities. By designing observers,
sampled-data control methods were proposed for the
nonlinear systems with improved maximum allow-
able transmission delay [21] and input delay [22]. An
observer, which was featured with a special feedfor-
ward propagation structure, was constructed in [23] to
estimate the unmeasured states of a class of uncertain
nonlinear systems with uncontrollable and unobserv-
able linearizations, and global sampled-data stabiliza-
tion of the nonminimum-phase nonlinear systems were
addressed in [24]. Using the small gain approach, a
result concerning the sampled-data observer design for

a wide classes of nonlinear systems with delayed mea-
surements was considered in [25]. Stabilization for the
sampled-data systems under noisy sampling interval
was investigated in [26]. A memory sampled-data con-
trol scheme which involved a constant signal transmis-
sion delaywas proposed in [27] for the chaotic systems.
Sampled-data stabilization and exponentially synchro-
nization were, respectively, investigated in [28,29] for
the T–S fuzzy systems and the Markovian neural net-
works. Reliable dissipative control and non-fragile H∞
control for the Markov jump systems were focused in
[30,31].

Although sampled-data control has received much
attention, there are fewworks on sampled-data adaptive
practical stabilization for uncertain nonlinear systems,
which is mainly due to the complexity arising from the
design of adaptive laws for sampled-data controller,
that is, under sampled-data situation that system states
can only be measured at the sampling points, adaptive
laws cannot be constructed like continuous-time con-
trol by using system states which are measured every-
where. Thus, an issue naturally arises: under that situa-
tion, how to design an adaptive controller to practically
stabilize such nonlinear systems by only using the sam-
pled system states? In this paper, we will try to give an
answer, and the main contributions can be summarized
as follows:

(i) An adaptive practical stabilization problem is con-
sidered in this paper for a class of uncertain non-
linear systems via sampled-data control. Different
from some existing nonlinear sampled-data control
results, such as [16,19], our scheme can be obtained
under a weaker assumption that the diffusion terms
of the considered systems are not required to satisfy
any linear growth and bounded conditions.

(ii) Unlike existing adaptive continuous-time control
schemes of nonlinear systems, such as [2–5], the
adaptive laws in this paper are designed based on
the sampled signals due to that the system states
can only be measured at the sampling points, and
then, we use the sampling values of the adaptive
parameters to construct the sampled-data controller
to practically stabilize the considerednonlinear sys-
tems.

(iii) The sampling period in this paper is non-periodic,
which is different from those in [18–24].

The remainder of the paper is organized as fol-
lows: in Sect. 2, we present the problem statements
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and somepreliminaries.An adaptive sampled-data con-
troller design are presented in Sect. 3. The main theo-
rem is shown in Sect. 4, where the stabilization proof is
also obtained using thewell-knownGronwall–Bellman
inequality. Numerical simulations and discussions are
shown in Sect. 5 to demonstrate the effectiveness of
the proposed method. Finally, conclusions are drawn
in Sect. 6.

Notations R denotes the set of all real numbers; Rn

indicates the real n-dimension-al space; Rm×n denotes
the real m × n matrix space; ‖·‖ denotes the Euclidean
norm; K denotes the set of all functions: R+ → R+,
which are continuous, strictly increasing and vanish at
zero; K∞ denotes the set of all functions which are
class K and unbounded; Ci denotes a set of functions
whose i th-order derivatives are continuous and differ-
entiable; the argument of the functions will be omitted
throughout the paper for simplicity whenever no con-
fusion arises, such as functions V, x1 and z2 to be used
hereafter.

2 Problem statement and preliminaries

Consider the following uncertain nonlinear system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż0 = q(z0, x1),
ẋi = gi (x̄i )xi+1 + fi (x̄i )

+Δi (x̄i , z0), i = 1, 2, . . . , n − 1,
ẋn = gn(x̄n)u + fn(x̄n) + Δn(x̄n, z0),
y = x1,

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn are the states which
can only be measured at the sampling points tk, k =
1, 2, . . . ,+∞, and x̄i = [x1, x2, . . . , xi ]T ∈ Ri , i =
1, 2, . . . , n; z0 ∈ Rn0 is an unmeasured state; u ∈ R
and y ∈ R are the control input and output, respec-
tively; fi (·), gi (·), i = 1, 2, . . . , n, are unknown non-
linear smooth functions, and fi (0, . . . , 0) = 0;Δi (·),
i = 1, 2, . . . , n, are external disturbances, and
Δi (0, . . . , 0) = 0; q(·) is an unknown Lipschitz func-
tion.

Remark 1 In practical engineering, some nonlinear
systems, such as thruster assisted positionmooring sys-
tems [32], levitated ball systems [33], flexible crane
systems [34] and single-link manipulator systems [35],
can be described as or converted into system (1). There-
fore, it is of importance to investigate system (1).

Remark 2 Note that, for strict-feedback nonlinear sys-
tems, the adaptive sampled-data stabilization prob-
lem has been addressed in [18] by designing the con-
troller for the systems’Euler approximate discrete-time
model; however, the diffusion terms of the systems con-
sidered in [18] are φT

i (x̄i )θ, i = 1, 2, . . . , n, where θ

is an unknown constant and φi (·) is a known nonlin-
ear function; furthermore, the control coefficients of
the former (i − 1) subsystems’ equations in [18] are
1; thus, system (1) is more general than the systems
investigated in [18], and the method proposed in [18]
maybe invalid for system (1).

We make the following assumptions.

Assumption 1 [36] The external disturbances Δi

(x̄i , z0), i = 1, 2, . . . , n, satisfy

|Δi (x̄i , z0)| � φi1(‖z0‖) + φi2(‖x̄i‖), (2)

where φi1(·) � 0 and φi2(·) � 0 are unknown contin-
uous functions.

Assumption 2 There exist two unknown constants
gmin
i and gmax

i such that 0 < gmin
i � |gi (·)| � gmax

i .
Without loss of generality, we assume 0 < gmin

i �
gi (·) � gmax

i .

Remark 3 It should be pointed out that continuous-
time control of the strict-feedback nonlinear systems
has been investigated in [4,7,12]; however, in those
literature, the upper and lower bounds of the time-
varying control coefficients gi (x̄i ), i = 1, 2, . . . , n, are
required to be known.

Assumption 3 [36] The dynamic ż0 = q(z0, x1)
is exp-ISPS (exponentially input-state-practically sta-
ble), that is, there exists a C1 function V0(z0) such that

ᾱ1(‖z0‖) � V0(z0) � ᾱ2(‖z0‖), (3a)
∂V0(z0)

∂z0
q(z0, x1) � −cV0(z0) + Γ (|x1|) + d, (3b)

where ᾱ1(·), ᾱ2(·) are class K∞ functions, Γ (·) is a
smooth function with Γ (0) = 0, and c > 0, d � 0 are
constants.

Remark 4 In the existing results on sampled-data con-
trol [19–24], the diffusion terms fi (x̄i ), i = 1, 2, . . . , n,

of the considered nonlinear systems are required to sat-
isfy the linear growth condition; however, in system
(1), such restriction for the diffusion terms has been
relaxed.

123



1682 J. Mao et al.

Lemma 1 ([37], Gronwall–Bellman inequality) Let
D := [a, b] ⊂ R be a real region. Suppose μ(t), ρ(t)
and ω(t) � 0 defined in D are real continuous func-
tions. If μ(t) satisfies the following inequality

μ(t) � ρ(t) +
∫ t

a
ω(s)μ(s)ds, (4a)

the following holds for t ∈ D:

μ(t) � ρ(t) +
∫ t

a
ρ(s)ω(s) exp

(∫ t

s
ω(r)dr

)

ds.

(4b)

Lemma 2 [36] If V0(z0) is a C1 function for ż0 =
q(z0, x1) such that (4a) and (4b) hold, then, for any
constant c̄ ∈ (0, c), any initial instant t0 > 0, any ini-
tial condition z0(t0), γ0 > 0, for any continuous func-
tion γ̄ (|x1|) such that γ̄ (|x1|) � Γ (|x1|), there exist
a finite T0 = max {0, ln(V0(z0)/γ0)/(c − c̄)} � 0, a
function D(t, t0) � 0 defined for all t � t0, and a
signal described by

v̇(t) = −c̄v(t) + γ̄ (|x1(t)|) + d, v(t0) = v0, ∀t � t0,

(5)

such that D(t, t0) = 0 for t � t0 + T0, and
D(t, t0) = max{0, e−c(t−t0)V0(z0)− e−c̄(t−t0)γ0} such
that V0(z0) � v(t)+ D(t, t0) for ∀t � t0. Without loss
of generality, we assume γ̄ (|x1|) = Γ (|x1|).
Lemma 3 [38] For any real-valued continuous func-
tion f (x, y), where x ∈ Rm, y ∈ Rn, there exist
smooth scalar functions ϕ1(x) � 0 and ϕ2(y) � 0,
such that

| f (x, y)| � ϕ1(x) + ϕ2(y). (6)

Lemma 4 ([39], Young’s inequality) Let x ∈ Rn, y ∈
Rn, and p > 1, q > 1 be two constants, (p − 1)(q −
1) = 1, given any real number ε > 1, the following
inequality holds:

xTy � 1

pε p
‖x‖p + εq

q
‖y‖q . (7a)

Specially, when p = q = 2, we have

xTy � 1

2ε2
‖x‖2 + ε2

2
‖y‖2. (7b)

Lemma 5 [40] Let H(z) be a continuous function
defined on a compact set Ωz , then a neural network
can be constructed as the following form to approxi-
mate it:

H(z) = W ∗T T (z) + D(z), ∀z ∈ Ωz, (8)

where T (z) = [T1(z), . . . , Tl(z)]T ∈ Rl is the basic
function vector with the node number l � 1,W ∗ =
[W ∗

1 ,W ∗
2 , . . . ,W ∗

l ]T ∈ Rl is the ideal weight vector,
D(z) is the approximate error satisfying |D(z)| � D∗

1
with bound D∗

1 > 0.
The basic function Ti (z) is taken as the Gaussian

function, which has the following form:

Ti (z) = exp

(

− (z − ci )T(z − ci )

μ∗2
i

)

, i = 1, 2, . . . , l,

where ci is the center of the radial basic function vector,
and μi > 0 is the width of the Gaussian function.

The value of the ideal weight vector W ∗ is deter-
mined byW that minimizes the approximate error D(z)
for all z ∈ Ωz:

W ∗ = arg min
W∈Rl

{

sup
z∈Ωz

∣
∣
∣H(z) − WT(z)T (z)

∣
∣
∣

}

.

The objective of the paper is to design the following
adaptive sampled-data controller

u(t) = u(tk) = K (x1(tk), x2(tk), . . . , xn(tk)),

∀t ∈ [tk, tk+1) (9)

for nonlinear system (1) such that all states of the result-
ing closed-loop system to be semi-globally uniformly
ultimately bounded.

3 Adaptive sampled-data controller design

In this section, an adaptive sampled-data controller
will be constructed by adopting the backstepping tech-
nique. The whole design procedure needs n steps,
which depends on the following changes of coordi-
nates: zi = xi − αi−1, i = 2, 3, . . . , n, where αi−1

is a virtual control law.

Step 1 In the first step, we choose the following Lya-
punov function candidate:

V1 = x21
2gmin

1

+ 1

2η1
θ̃21+ v2

2λ̄1
, (10)

where η1 > 0, λ̄1 > 0 are design parameters, θ̃1 =
θ1− θ̂1, θ̂1 is the estimate of θ1, θ1 will be defined later.
From Assumption 1, the time derivative of V1 satisfies
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V̇1 � gmax
1

gmin
1

|x1| |x2 − α1| + g1(x1)

gmin
1

x1α1 + x1 f1(x1)

gmin
1

+ |x1|
gmin
1

φ11(‖z0‖) + |x1|
gmin
1

φ12(|x1|) − 1

η1
θ̃1

˙̂
θ1

− c̄

λ̄1
v2+|x1|

λ̄1
�(|x1|)v + g∗

11

√
V1, (11)

where g∗
11 = d

√
2

λ̄1
, and �(·) � 0 is an unknown

smooth function.
According to Assumption 3, Lemmas 2 and 3, we

obtain, for ∀t � t0,

|x1| φ11(‖z0‖) � |x1| φ11 ◦ ᾱ−1
1 (v(t) + D(t, t0))

� |x1| (ϕ11(v(t)) + ϕ12(D(t, t0))),

(12)

where ϕ11(·) � 0 and ϕ12(·) � 0 are smooth func-
tions. Because D(t, t0) is a bounded function for
∀t � t0, there exists a constant θ∗

12 > 0 such that
ϕ12(D(t, t0)) � θ∗

12 holds, substituting (12) into (11)
results in

V̇1 � gmax
1

gmin
1

|x1z2| + g1(x1)

gmin
1

x1α1 + |x1| φ̄1(x1)

− 1

η1
θ̃1

˙̂
θ1 − c̄

λ̄1
v2 + g∗

11

√
V1, (13)

where φ̄1(X1) = | f1(x1)|
gmin
1

+ 1

gmin
1

(ϕ11(v) + θ∗
12 +

φ12(|x1|)) + v�(|x1|)
λ̄1

with X1 = [x1, v]T.
As mentioned in Lemma 5, neural network can

approximate any continuous function to any desired
accuracy; thus, a neural network is constructed as the
following form to approximate φ̄1(X1):

φ̄1(X1) = H∗T
1 S1(X1) + ε1(X1), (14)

where H∗
1 is an unknown weight vector, S1(X1) =

[S11(X1), S12(X1), . . . , S1L1(X1)]T ∈ RL1 is a basic
function vector and S1i (·), i = 1, 2, . . . , L1, are cho-
sen as Gaussian functions, ε1(X1) is the approximation
error satisfying |ε1(X1)| � ε∗

1 with ε∗
1 > 0.

Substituting (14) into (13), and using Lemma 4, we
arrive at

V̇1 � gmax
1

gmin
1

|x1z2| + g1(x1)

gmin
1

x1α1 + x21θ1 − 1

η1
θ̃1

˙̂
θ1

− c̄

λ̄1
v2 +

2∑

i=1

g∗
1i

√
V1, (15)

where θ1 = ∥
∥H∗

1

∥
∥2L and g∗

12 = ε∗
1

√

2gmin
1 +

√

2gmin
1 θ1.

Choose a virtual control law and a “virtual adaptive
law” for Step 1 as follows:

α1 = − x1

√

1 + θ̂21 − c1x1, (16a)

˙̂
θ1 = η1x

2
1 − η1θ̂1, (16b)

where c1 > 0 is a design parameter. Furthermore, we
have the following relation from (10) and (16):

1

η1
θ̃1

˙̂
θ1 � x21 θ̃1 − θ̃1θ̂1 � x21 θ̃1 − θ1

√
2η1V1 + θ̃21 .

(17)

Substituting (16) and (17) into (15) yields

V̇1 � gmax
1

gmin
1

|x1z2| − θ̃21 − c̄

λ̄1
v2

+ (g∗
11 + g∗

12 + g∗
13)
√
V1 − c1x

2
1 , (18)

where g∗
13 = θ1

√
2η1.

Step 2 Choose a Lyapunov function candidate as the
following form:

V2 = V1 + z22
2gmin

2

+ 1

2η2
θ̃22 , (19)

where η2 > 0 is a design parameter, θ̃2 = θ2 − θ̂2, θ̂2
is the estimate of θ2, θ2 will be defined later. The time
derivative of V2 satisfies

V̇2 � V̇1 + gmax
2

gmin
2

|z2| |x3 − α2| + g2(x̄2)

gmin
2

z2α2

+ g2(x̄2)

gmin
2

|z2| (φ21(‖z0‖) + φ22(‖x̄2‖))

+ |z2| g
max
1

gmin
1

∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣ |x2| + |z2|

gmin
2

∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣ | f1(x1)|

+ η1 |z2|
gmin
2

∣
∣
∣
∣
∂α1

∂θ̂1

∣
∣
∣
∣

∣
∣
∣θ̂1

∣
∣
∣− 1

η2
θ̃2

˙̂
θ2

+ |z2|
gmin
2

| f2(x̄2)| + η1x21 |z2|
gmin
2

∣
∣
∣
∣
∂α1

∂θ̂1

∣
∣
∣
∣

+ |z2|
gmin
2

∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣ (φ11(‖z0‖) + φ12(|x1|)). (20)
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According to Assumption 3, Lemmas 2 and 3, we have,
for ∀t � t0,

|z2| φ21(‖z0‖) � |z2| φ21 ◦ ᾱ−1
1 (v(t) + D(t, t0))

� |z2| ϕ21(v(t)) + |z2| ϕ22(D(t, t0)),

(21)

where ϕ21(·) � 0 and ϕ22(·) � 0 are two smooth func-
tions. Furthermore, there exists a constant θ∗

22 > 0 such
that ϕ22(D(t, t0)) � θ∗

22 holds for ∀t � t0. Substituting
(21) into (20) leads to

V̇2 � V̇1 + gmax
2

gmin
2

|z2z3| + g2(x̄2)

gmin
2

z2α2+ |z2| φ̄2(X2)

− 1

η2
θ̃2

˙̂
θ2 − gmax

1

gmin
1

z22 |x1| , (22)

where

φ̄2(X2) = 1

gmin
2

(ϕ21(v) + θ∗
22 + φ22(‖x̄2‖))

+ gmax
1 |x2|
gmin
2

∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣+

| f1(x1)|
gmin
2

∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣

+ gmax
1

gmin
1

|z2x1|

+ 1

gmin
2

∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣ (ϕ11(v) + θ∗

12 + φ12(|x1|))

+ η1x21
gmin
2

∣
∣
∣
∣
∂α1

∂θ̂1

∣
∣
∣
∣+

η1

gmin
2

∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣

∣
∣
∣θ̂1

∣
∣
∣

+ | f2(x̄2)|
gmin
2

, X2 = [x̄T2 , θ̂1, v]T.

From Lemma 5, we adopt the following neural net-
work to approximate the unknown nonlinear continu-
ous function φ̄2(X2):

φ̄2(X2) = H∗T
2 S2(X2) + ε2(X2), (23)

where H∗
2 is an unknown weight vector, S2(X2) =

[S21(X2), S22(X2), . . . , S2L2(X2)]T ∈ RL2 is a basic
function vector, ε2(X2) is the approximation error sat-
isfying |ε2(X2)| � ε∗

2 with ε∗
2 > 0.

Substituting (23) into (22), and using Lemma 4, we
have

V̇2 � − c1x
2
1 + gmax

2

gmin
2

|z2z3| + g2(x̄2)

gmin
2

z2α2 + z22θ2

+ g∗
21

√
V2 − 1

η2
θ̃2

˙̂
θ2

+
(
gmax
1

4

√
2

gmin
1

+
3∑

i=1

g∗
1i

)
√
V1 − θ̃21 , (24)

where θ2 = ∥∥H∗
2

∥
∥2L and g∗

21 = ε∗
2

√

gmin
2 +

√

2gmin
2 θ2.

Take a virtual control law and a “virtual adaptive
law” for Step 2 as follows:

α2 = − z2

√

1 + θ̂22 − c2z2, (25a)

˙̂
θ2 = η2z

2
2 − η2θ̂2, (25b)

where c2 > 0 is a design parameter.
Substituting (25) into (24) results in

V̇2 � − c1x
2
1 − c2z

2
2 + gmax

2

gmin
2

|z2z3|

+ (g∗
21 + g∗

22)
√
V2 + g∗

1

√
V1 − θ̃21 − θ̃22 , (26)

where g∗
1 =

3∑

i=1

g∗
1i +

gmax
1

4

√
2

gmin
1

and g∗
22 = θ2

√
2η2.

Step h(3 � h � n− 1) Consider a Lyapunov function
candidate as

Vh = Vh−1 + z2h
2gmin

h

+ 1

2ηh
θ̃2h , (27)

where ηh > 0 is a design parameter, θ̃h = θh − θ̂h, θ̂h is
the estimate of θh, θh will be given later. From (18), (26)
and Assumption 1, the time derivative of Vh satisfies

V̇h � V̇h−1 + gmax
h

gmin
h

|zh | |xh+1 − αh | + gh(x̄h)

gmin
h

zhαh

+ |zh |
gmin
h

(φh1(‖z0‖) + φh2(‖x̄h‖))

+
h−1∑

i=1

| fi (x̄i )| |zh |
gmin
h

∣
∣
∣
∣
∂αh−1

∂xi

∣
∣
∣
∣

+
h−1∑

i=1

gmax
h |zh |
gmin
h

∣
∣
∣
∣
∂αh−1

∂xi

∣
∣
∣
∣ |xi+1| + |zh |

gmin
h

| fh(x̄h)|

+
h−1∑

i=1

|zh |
gmin
h

∣
∣
∣
∣
∂αh−1

∂xi

∣
∣
∣
∣ (φi1(‖z0‖) + φi2(‖x̄i‖))

+
h−1∑

i=2

ηi z2i |zh |
gmin
h

∣
∣
∣
∣
∂αh−1

∂θ̂i

∣
∣
∣
∣−

1

ηh
θ̃h

˙̂
θh

+ η1x21 |zh |
gmin
h

∣
∣
∣
∣
∂α1

∂θ̂1

∣
∣
∣
∣+

h−1∑

i=1

ηi |zh |
gmin
h

∣
∣
∣
∣
∂αh−1

∂θ̂i

∣
∣
∣
∣

∣
∣
∣θ̂i

∣
∣
∣ .

(28)

Using Assumption 3, Lemmas 1 and 2, we obtain, for
∀t � t0,

|zh | φh1(‖z0‖) � |zh | φh1 ◦ ᾱ−1
1 (v(t) + D(t, t0))

� |zh | ϕh1(v(t)) + |zh | ϕh2(D(t, t0)),

(29)
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where ϕh1(·) � 0 and ϕh2(·) � 0 are two smooth func-
tions. Similar to Steps 1 and 2, there exists a constant
θ∗
h2 > 0 such that ϕh2(D(t, t0)) � θ∗

h2 holds. Substi-
tuting (29) into (28) leads to

V̇h � V̇h−1 + gmax
h

gmin
h

|zhzh+1| + gh(x̄h)

gmin
h

zhαh

+ |zh | φ̄h(Xh) − gmax
h−1

gmin
h−1

z2h |zh−1| − 1

ηh
θ̃h

˙̂
θh,

(30)

where

φ̄h(Xh) = 1

gmin
h

(
ϕh1(v) + θ∗

h2 + φh2(‖x̄h‖)
)

+
h−1∑

i=1

gmax
i

gmin
h

∣
∣
∣
∣
∂αh−1

∂xi

∣
∣
∣
∣ |xi+1| + η1x21

gmin
h

∣
∣
∣
∣
∂α1

∂θ̂1

∣
∣
∣
∣

+ | fh(x̄h)|
gmin
h

+
h−1∑

i=1

| fi (x̄i )|
gmin
h

∣
∣
∣
∣
∂αh−1

∂xi

∣
∣
∣
∣

+
h−1∑

i=1

1

gmin
h

∣
∣
∣
∣
∂αh−1

∂xi

∣
∣
∣
∣ (ϕi1(v)

+θ∗
i2 + φi2(‖x̄i‖))

+ gmax
h−1

gmin
h−1

|zh | |zh+1| +
h−1∑

i=2

ηi z2i
gmin
h

∣
∣
∣
∣
∂αh−1

∂θ̂i

∣
∣
∣
∣

+
h−1∑

i=1

ηi

gmin
h

∣
∣
∣
∣
∂αh−1

∂θ̂i

∣
∣
∣
∣

∣
∣
∣θ̂i

∣
∣
∣ , Xh

= [x̄Th , θ̂1, . . . , θ̂h−1, v]T.

To approximate the unknown nonlinear continuous
function φ̄h(Xh), we adopt the following neural net-
work:

φ̄h(Xh) = H∗T
h Sh(Xh) + εh(Xh), (31)

whereH∗
h is anunknown idealweight vector, Sh(Xh) =

[Sh1(Xh), Sh2(Xh), . . . , ShLh (Xh)] ∈ RLh is a basic
function vector, εh(Xh) is the approximation error sat-
isfying |εh(Xh)| � ε∗

h with ε∗
h > 0.

Substituting (31) into (30), and using Lemma 4, we
obtain

V̇h � −c1x
2
1 −

h−1∑

i=2

ci z
2
i + gmax

h

gmin
h

|zhzh+1|

+ gh(x̄h)

gmin
h

zhαh + z2hθh

+ g∗
h1

√
Vh − 1

ηh
θ̃h

˙̂
θh

+
h−2∑

i=1

g∗
i

√
Vi

+
(
gmax
h−1

4

√
2

gmin
h−1

+
2∑

i=1

g∗
h−1,i

)
√
Vh−1

−
h−1∑

i=1

θ̃2i , (32)

where θh = ∥
∥H∗

h

∥
∥2L and g∗

h1 = ε∗
h

√

2gmin
h +

√

2gmin
h θh .

Choose a virtual control law and a “virtual adaptive
law” for Step h as follows:

αh = − zh

√

1 + θ̂2h − chzh, (33a)

˙̂
θh = ηhz

2
h − ηh θ̂h, (33b)

where ch > 0 is a design parameter.
Substituting (33) into (32) yields

V̇h � −c1x
2
1 −

h∑

i=2

ci z
2
i + gmax

h

gmin
h

|zhzh+1|

+ (g∗
h1 + g∗

h2)
√
Vh +

h−1∑

i=1

g∗
i

√
Vi −

h∑

i=1

θ̃2i ,

(34)

where g∗
h−1 =

2∑

i=1

g∗
h−1,i + gmax

h−1

4

√
2

gmin
h−1

and g∗
h2 =

θh
√
2ηh .

Step n Consider the following Lyapunov function can-
didate as

Vn = Vn−1 + 1

2gmin
n

z2n + 1

2ηn
θ̃2n , (35)

where θ̃n = θn − θ̂n, θ̂n is the estimate of θn, θn will be
given later. From (18), (26) and (34), the time derivative
of Vn satisfies

V̇n � V̇n−1 + gmax
n

gmin
n

|zn| |u − αn| + gn(x̄n)

gmin
n

zn

+ |zn|
gmin
n

(φn1(‖z0‖) + φn2(‖x̄n‖))

+
n−1∑

i=1

gmax
i |zn|
gmax
n

∣
∣
∣
∣
∂αn−1

∂xi

∣
∣
∣
∣ |xi+1|

+
n−1∑

i=1

|zn|
gmin
n

∣
∣
∣
∣
∂αn−1

∂xi

∣
∣
∣
∣ | fi (x̄i )| − 1

ηn
θ̃n

˙̂
θn
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+
n−1∑

i=1

|zn|
gmin
n

∣
∣
∣
∣
∂αn−1

∂xi

∣
∣
∣
∣ (φi1(‖z0‖) + φi2(‖x̄i‖))

+
n−1∑

i=1

ηi |zn|
gmin
n

∣
∣
∣
∣
∂αn−1

∂θ̂i

∣
∣
∣
∣

∣
∣
∣θ̂i

∣
∣
∣

+ η1x21 |zn|
gmin
n

∣
∣
∣
∣
∂αn−1

∂θ̂i

∣
∣
∣
∣+

n∑

i=2

ηi |zn| z2i
gmin
n

∣
∣
∣
∣
∂αn−1

∂θ̂i

∣
∣
∣
∣

+ |zn|
gmin
n

| fn(x̄n)| . (36)

Under Assumption 1, for ∀t � t0, the following
inequality holds:

|zn| φn1(‖z0‖) � |zn| φn1 ◦ ᾱ−1
1 (v(t) + D(t, t0))

� |zn| ϕn1(v(t)) + |zn| ϕn2(D(t, t0)),

(37)

where ϕn1(·) � 0 and ϕn2(·) � 0 are smooth functions.
Note that D(t, t0) is a bounded function for ∀t � t0,

then we can obtain ϕn2(D(t, t0)) � θ∗
n2, where θ∗

n2 > 0
is a constant. Substituting (37) into (36) results in

V̇n � V̇n−1 + gmax
n

gmin
n

|zn| |u − αn| + gn(x̄n)

gmin
n

znαn

+ |zn| φ̄n(Xn) − 1

ηn
θ̃n

˙̂
θn

− gmax
n−1

gmin
n−1

z2n |zn−1| , (38)

where

φ̄n(Xn) =
n−1∑

i=1

1

gmin
n

∣
∣
∣
∣
∂αn−1

∂xi

∣
∣
∣
∣ | fi (x̄i )|

+
n−1∑

i=1

gmax
i

gmin
n

∣
∣
∣
∣
∂αn−1

∂xi

∣
∣
∣
∣ |xi+1| + gmax

n−1

gmin
n−1

|znzn−1|

+ | fn(x̄n)|
gmin
n

+ η1x21
gmin
n

∣
∣
∣
∣
∂αn−1

∂θ̂i

∣
∣
∣
∣

+
n∑

i=2

ηi z2i
gmin
n

∣
∣
∣
∣
∂αn−1

∂θ̂i

∣
∣
∣
∣

+
n−1∑

i=1

1

gmin
n

∣
∣
∣
∣
∂αn−1

∂xi

∣
∣
∣
∣ (ϕi1(v) + θ∗

i2

+φi2(‖x̄i‖))
+ 1

gmin
n

(
ϕn1(v) + θ∗

n2 + φn2(‖x̄n‖)
)

+ 1

gmin
n

n−1∑

i=1

ηi

∣
∣
∣
∣
∂αn−1

∂θ̂i

∣
∣
∣
∣

∣
∣
∣θ̂i

∣
∣
∣ , Xn

= [x̄Tn , θ̂1, . . . , θ̂n−1, v]T.

As same as the previous steps, we adopt a neural
network to approximate the unknown nonlinear con-
tinuous function φ̄n(Xn), that is,

φ̄n(Xn) = H∗T
n Sn(Xn) + εn(Xn), (39)

where H∗
n is anunknown idealweight vector, Sn(Xn) =

[Sn1(Xn), Sn2(Xn), . . . , SnLn (Xn)] ∈ RLn is a basic
function vector, εn(Xn) is the approximation error sat-
isfying |εn(Xn)| � ε∗

n with ε∗
n > 0.

Substituting (39) into (38), and using Lemma 4, we
obtain

V̇n � −c1x
2
1 −

n−1∑

i=2

ci z
2
i + gmax

n

gmin
n

|zn| |u − αn|

+ gn(x̄n)

gmin
n

znαn + z2nθn − 1

ηn
θ̃n

˙̂
θn

+ g∗
n1

√
Vn

+
(
gmax
n−1

4

√
2

gmin
n−1

+
2∑

h=1

g∗
n−1,h

)

×√Vn−1 −
n−1∑

i=1

θ̃2i , (40)

where θn = ∥
∥H∗

n

∥
∥2L and g∗

n1 = ε∗
n

√

2gmin
n +

√

2gmin
n θn .

A virtual control law and a “virtual adaptive law”
for the last step are chosen as

αn = − zn

√

1 + θ̂2n − cnzn, (41a)

˙̂
θn = ηnz

2
n − ηn θ̂n, (41b)

where cn > 0 is a design parameter.
Substituting (41) into (40) results in

V̇n � −c1x
2
1 −

n∑

i=2

ci z
2
i + gmax

n

gmin
n

|zn| |u − αn|

−
n∑

i=1

θ̃2i +
n∑

i=1

g∗
i

√
Vi , (42)

where g∗
n−1 =

2∑

i=1

g∗
n−1,i + gmax

n−1

4

√
2

gmin
n−1

and g∗
n =

g∗
n1 + θn

√
2ηn .
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Note that the states of system (1) are measurable at
the sampling points, hence, from (16), (25), (33) and
(41), for ∀t ∈ [tk, tk+1), k = 0, 1, . . . ,+∞, we design
the adaptive sampled-data controller as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t) = u(tk)

= −
n∑

i=1

[
n∏

h=i

(√

1 + μ2
h(tk) + ch

)]

xi (tk),

μ̇1(t) = η1x21 (tk) − η1μ1(t),
μ̇l(t) = ηl�

2
l (tk) − ηlμl(t), l = 2, 3, . . . , n,

(43)

where �l(tk) = xl(tk) + �l−1(tk)
(√

1 + μ2
l−1(tk) +

cl−1
)
, �1(tk) = x1(tk).

For each sampling interval
[
tk, tk+1), relation (42)

can be further represented as

V̇n(t) � −c̃Vn(t) + gmax
n

gmin
n

|zn(t)| |u(tk) − αn(t)|

+ ḡ
√
Vn(t), ∀t ∈ [tk, tk+1), (44)

where

c̃ = min
{
2gmin

1 c1, 2g
min
2 c2, . . . , 2g

min
n cn, 2η1, 2η2, . . . ,

2ηn, 2c̄
}
and ḡ =

n∑

i=1

g∗
i .

Remark 5 It should be mentioned that the term x21θ in
(15) was necessary for the adaptive sampled-data con-
troller design since such term can deal with the uncer-
tainties existed in the first step with virtual controller
(16) [see (14)–(18)], and such way to deal with the
uncertainties was motivated by the existing literature
on the adaptive continuous-time control, such as [2–4].

Remark 6 In comparison with the design of adaptive
laws in continuous-time control, it can be seen from
(43) that the adaptive laws were constructed just based
on the sampled values of the system states, which
means that the proposed adaptive design can better save
the recourses and helps to reduce the computation bur-
den of the controller.

4 Stability analysis

In what follows, the stability of the closed-loop sys-
tem under sampled-data controller (43) will be demon-
strated by using the Gronwall–Bellman inequality.

Theorem 1 Suppose system (1) satisfies Assumptions
1–3, for the given allowable sampling period and

any bounded initial condition, sampled-data controller
(43) will render all states of the resulting closed-
loop system to be semi-globally uniformly ultimately
bounded.

Proof Choose the following Lyapunov function candi-
date

V = Vn +
n∑

i=1

μ̃2
i

2βi
= x21

2gmin
1

+
n∑

i=2

z2i
2gmin

i

+
n∑

i=1

θ̃2i

2ηi
+

n∑

i=1

μ̃2
i

2βi
+ v2

2λ̄1
, (45)

where μ̃i = μi − θi , βi > 0 is a design parameter. 
�
Let p > 0 be a constant, where p � V (t0); and

define a compact set as

Ω ≡
{

x21
2gmin

1

+
n∑

i=2

z2i
2gmin

i

+
n∑

i=1

θ̃2i

2ηi

+
n∑

i=1

μ̃2
i

2βi
+ v2

2λ̄1
� p

}

,

next, we will demonstrate that V (t) � p is an invariant
set for ∀t � t0 and V (t0) � p.

Under the situation that V (t) � p, we know that the
following derivations hold: according to (45), we have
that x1(t), z2(t), . . . , zn(t), θ̂1(t), θ̂2(t), . . . , θ̂n(t) and
v(t) are bounded, which implies that there exist con-
stants �1, �2, . . . , �n, Δ̄1, Δ̄2, . . . , Δ̄n and H̄ such
that |x1(t)| � �1, |z2(t)| � �2, . . . , |zn(t)| �
�n,

∣
∣
∣θ̂1(t)

∣
∣
∣ � Δ̄1,

∣
∣
∣θ̂2(t)

∣
∣
∣ � Δ̄2, . . . ,

∣
∣
∣θ̂n(t)

∣
∣
∣ � Δ̄n

and |v(t)| � H̄ hold; furthermore, according to (16),
(25), (33) and (41), we know that the virtual con-
trol laws are all bounded, noting that zi = xi −
αi−1, i = 2, 3, . . . , n, we can obtain the bounded-
ness of x1(t), x2(t), . . . , xn(t), i.e., there exist con-
stantsσ ∗

2 , σ ∗
3 , . . . , σ ∗

n such that |x2(t)| � σ ∗
2 , |x3(t)| �

σ ∗
3 , . . . , |xn(t)| � σ ∗

n hold; then, for the sampling
points, we also have |x1(tk)| � �1, |x2(tk)| �
σ ∗
2 , . . . , |xn(tk)| � σ ∗

n .
On the other hand, under the situation thatV (t) � p,

the following derivations also hold: from (43),we know
that μ1(t) is bounded by the boundedness of x1(tk),
then the boundedness ofμ1(tk) can also be guaranteed,
which means that |μ1(t)| � μ̄1 and |μ1(tk)| � μ̄1

hold, where μ̄1 > 0 is a constant; since

�2(tk) = x2(tk) + x1(tk)

(√

1 + μ2
1(tk) + c1

)

,
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we can obtain the boundedness of �2(tk), that is,
|�2(tk)| � λ2 holds, where λ2 > 0 is a constant;
according to (43) again, we have the boundedness of
μ2(t), equally, μ2(tk) is bounded, which means that
|μ2(t)| � μ̄2 and |μ2(tk)| � μ̄2 hold, where μ̄2 > 0
is a constant; furthermore, we know that �3(tk) is
bounded due to the boundedness of x3(tk), μ3(tk) and
�2(tk), i.e., |ρ3(tk)| � λ3 holds for a constant λ3 > 0;
using (43) repeatedly, we can obtain the boundedness
of �3(tk), �4(tk), . . . , �n(tk), μ3(tk), . . . , μn(tk), that
is, there exist constantsλ3, λ4, . . . , λn, μ̄3, μ̄4, . . . , μ̄n

such that |�3(tk)| � λ3, . . . , |�n(tk)| � λn, |μ3(t)| �
μ̄3, . . . , |μn(t)| � μ̄n, |μ3(tk)| � μ̄3, . . . , |μn(tk)| �
μ̄n hold; furthermore, since x(t) and v(t) are bounded,
we know that there exists a constant H∗ > 0 such that

√
3

n∑

i=1

| fi (x̄i (t))|

+√
3

n∑

i=1

(

ϕi1(v(t)) + θ∗
i2 + φi2(‖x̄i (t)‖)

)

� H∗.

holds; then according to (44) and (45), the time deriva-
tive of V (t) satisfies the following relation:

V̇ (t) � −c̃V (t) + gmax
n

gmin
n

|zn(t)| |u(tk) − αn(t)|

+ ḡ
√
V (t) + η1x21 (tk)

β1
|μ̃1(t)|

+
n∑

i=2

ηiρ
2
i (tk)

βi
|μ̃i (t)| −

n∑

i=1

ηi

βi
μ̃2
i (t)

+
n∑

i=1

ηiθi

βi
|μ̃i (t)|

� −c̃V (t) + gmax
n

gmin
n

|zn(t)| |u(tk) − αn(t)|

+ d∗√V (t), ∀t ∈ [tk, tk+1), (46)

where d∗ = ḡ + �2
1η1

√
2

β1
+

n∑

i=2

λ2i ηi

√
2

βi
+

n∑

i=1

ηiθi

√
2

βi
.

Denote ξ(t)=[x̄Tn (t), θ̂1(t), θ̂2(t), . . . , θ̂n(t), μ1(t),
. . . , μn(t)]T, then we conclude from (16), (25), (33),
(41) and (43) that ξ̇ (t) = �(ξ(t), ξ(tk)),∀t ∈
[tk, tk+1). further, from Assumptions 1 and 2, for ∀t ∈
[tk, tk+1), we obtain

‖ξ(t) − ξ(tk)‖ �
√
n
∫ t

tk
‖�(ξ(s), ξ(tk))‖ds

�
∫ t

tk
(g∗√3n(n − 2) + α) ‖ξ(s) − ξ(tk)‖ ds

+(t − tk)β
∗(‖ξ(tk)‖ + 1), (47)

where α = 2nmax
{√

η1,
√

η2, . . . ,
√

ηn
}
, g∗ =

max
{
gmax
1 , . . . , gmax

n

}
, β∗ = max

{
Θ1,Θ2

}
with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ1 = g∗√3n(n − 2)

+ g∗√3n

(
n∑

i=1

n∏

h=i

√

1 + Δ̄2
h + ch

)

,

Θ2 = √
n

(

2
√
2�2

1 +
n∑

i=2

√
2�2

i +
n∑

i=2

√
2λ2i

)

+ H∗√n.

Furthermore, according to Lemma 4, we have the
following relation:
∫ t

tk

(
g∗√3n(n − 2)

)
‖ξ(s) − ξ(tk)‖ds

� Θ3(t − tk) (‖ξ(tk)‖ + 1) , ∀t ∈ [tk, tk+1),

(48)

where Θ3 = max
{
g∗√6n(n − 2), g∗√6n(n − 2)

(
�1 +∑n

i=2 σ ∗
i +∑n

i=1 μ̄i
)}
.

Substituting (48) into (47), we obtain, for ∀t ∈
[tk, tk+1),

‖ξ(t) − ξ(tk)‖ � Θ∗(t − tk)(‖ξ(tk)‖ + 1)

+α

∫ t

tk
‖ξ(s) − ξ(tk)‖ ds, (49)

where Θ∗ = Θ3 + β∗.
Using Lemma 1, relation (49) can be further rewrit-

ten as

‖ξ(t) − ξ(tk)‖
� (t − tk)Θ

∗(‖ξ(tk)‖ + 1)

+
∫ t

tk
α2(s − tk)Θ

∗ (‖ξ(tk)‖ + 1)eα(t−s)ds

� ᾱ
(√

V (tk)+1
) (

eα(t−tk ) − 1
)

,∀t ∈ [tk, tk+1) ,

(50)

where ᾱ = max

{√

2gmin
1 ,

n∑

i=2

σ ∗
i +

n∑

i=1

μ̄i + Θ∗
}

.

Noting that |xi (t) − xi (tk)| � ‖ξ(t) − ξ(tk)‖ , i =
1, 2, . . . , n, hold for each sampling period, then for
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∀t ∈ [tk, tk+1), we can deduce from (43) that

|u(tk) − αn(t)| � c̃

2gmax
n ᾱ

√

gmin
n

2
‖ξ(t) − ξ(tk)‖

+ 2b∗
(

�1 +
n∑

i=2

σ ∗
i +

n∑

i=1

Δ̄i

+
n∑

i=1

μ̄i

)

+ Θ4

(

�1 +
n∑

i=2

σ ∗
i

)

,

(51)

where b∗ = √
nmax

{
b∗
1, . . . , b

∗
n

}
, b∗

i =
∏n

h=i(√

1 + Δ̄2
h + ci

)

, i = 1, 2, . . . , n; and Θ4 > 0 is a

constant.
From (45), (50) and (51), for ∀t ∈ [tk, tk+1), we

have
gmax
n

gmin
n

|zn(t)| |u(tk) − αn(t)|

� c̃

2
(eα(t−tk ) − 1)(

√
V (tk) + 1)

√
V (t) + d̄

√
V (t),

(52)

where d̄ = gmax
n

(

2b∗
(

�1 +
∑n

i=2
σ ∗
i +
∑n

i=1
Δ̄i +

∑n

i=1
μ̄i

)

+ Θ4

(

�1 +
∑n

i=2
σ ∗
i

))√
2

gmin
n

.

Substituting (52) into (46) results in

V̇ (t) � −c̃V (t) + c̃

2

√
V (t)
√
V (tk)(e

α(t−tk ) − 1)

+ d̄
√
V (t) + d∗√V (t)

+ c̃

2

√
V (t)(eα(t−tk ) − 1), ∀t ∈ [tk, tk+1).

(53)

Let W (t) = √V (t), from (53), for ∀t ∈ [tk, tk+1), a
straightforward calculation leads to

Ẇ (t) � −1

2
c̃W (t) + c̃

4
(eαTk − 1)W (tk)

+ c̃

4
(eαTk − 1) + 1

2
(d∗ + d̄), (54)

where Tk = tk+1 − tk is the sampling period. Choose a
constant λ0 satisfying

λ0 � max{β0, 1}, (55)

where β0 = c̃

c̃
√
p − 2(d∗ + d̄)

> 0; and the allowable

sampling period Tk is given as

0 < Tk � 1

α
ln

(

1 + 1

λ0

)

, k = 0, 1, . . . ,+∞. (56)

Define
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1 = 1

2
c̃,

σ2k = c̃

4
(eαTk − 1),

σ3k = c̃

4
(eαTk − 1) + 1

2
(d∗ + d̄),

k = 0, 1, . . . ,+∞,

(57)

then we can obtain the following relations by substitut-
ing (55) and (56) into (57):

σ2k � c̃

4
, σ3k

� c̃

4λ0
+ 1

2
(d∗ + d̄), k = 0, 1, . . . ,+∞, (58)

under which, for ∀t ∈ [t0, t1) and W (t0) � √
p, it can

be concluded that

Ẇ (t) � −σ1W (t) + σ20W (t0) + σ30

� −1

2
c̃W (t) + c̃

4
√
p + c̃

4λ0
+ 1

2
(d∗ + d̄).

(59)

When V (t) = p,∀t ∈ [t0, t1), then from (59), we have
Ẇ (t) � 0, which means that {W (t) � √

p} is a invari-
ant set for the first sampling period, that is, V (t) � p
holds for the interval [t0, t1). Due to that W (t) is
a continuous function for ∀t � t0, we can obtain
W (t−1 ) = W (t1) � √

p; hence, for ∀t ∈ [t1, t2), apply-
ing the same analysis approach which is used for the
first interval [t0, t1), we can know that V (t) � p also
holds, and we equally have W (t−2 ) = W (t2) � √

p.
Following this line of argument, we finally know that
W (t) � √

p holds for every sampling period, that is,
V (t) � p holds for ∀t � t0, which has proved that
V (t) � p is an invariant set for ∀t � t0 and V (t0) � p.
Substituting (56) into (54), and solving the inequality,
we obtain, for ∀t ∈ [tk, tk+1),

W (t) � W (tk)

(

e−σ1(t−tk ) + σ2k

σ1

(
1 − e−σ1(t−tk)

))

+ 1 − e−σ1(t−tk )

σ1
σ3k . (60)

From (57) and (58), (60) can be further rewritten as

W (t) � Q∗(t − tk)W (tk) + σ3k

σ1
, ∀t ∈ [tk, tk+1),

(61)

where Q∗(t − tk) = 1

2
+ 1

2
e−σ1(t−tk ). Substituting t =

tk+1 into (61) results in

W (tk+1) � Q∗(Tk)W (tk) + σ3k

σ1
, k = 0, 1, . . . ,+∞.

(62)
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Obviously, Q∗(Tk) ∈ (0, 1), and we can deduce from
(62) that

W (tk+1) �
k∏

i=0

Q∗(Ti )W (t0)

+
(

1

2λ0
+ d∗ + d̄

c̃

)(

1 +
k−1∑

i=1

k∏

h=i

Q∗(Th)
)

� Q∗k+1(T ∗)W (t0)

+
(

1

2λ0
+ d∗ + d̄

c̃

)(

1 +
k−1∑

i=1

k∏

h=i

Q∗(T ∗)
)

� Q∗k+1(T ∗)W (t0)

+
(

1

2λ0
+ d∗ + d̄

c̃

)(
1 − Q∗k+1(T ∗)
1 − Q∗(T ∗)

)

,

(63)

where T ∗ > 0 is a constant.
From (63), it is easy to obtain that

lim
k→∞ W (tk+1)�

(
1

2λ0
+d∗+d̄

c̃

)(
1

1 − Q∗(T ∗)

)

,

(64)

i.e.,

lim
t→∞ W (t) � W ∗, (65)

whereW ∗ =
(

1

2λ0
+d∗ + d̄

c̃

)(
1

1 − Q∗(T ∗)

)

. Using

(45) and (65), we get

lim
t→∞ |x1(t)| �

√

2gmin
1 W ∗, lim

t→∞ |ũi (t)|
�
√
2βiW

∗, i = 1, 2, . . . , n, (66a)

lim
t→∞ |zi (t)| �

√

2gmin
i W ∗, i = 2, 3, . . . , n, (66b)

lim
t→∞
∣
∣
∣θ̂i (t)

∣
∣
∣ � |θi | +√2ηiW ∗, i = 1, 2, . . . , n.

(66c)

Further, for i = 2, 3, . . . , n, it can be deduced from
(43) and (66) that

lim
t→∞ |xi (t)| �

√

2gmin
i W ∗

+
√

2gmin
i−1W

∗
(√

1 +
(
|θi−1| +√2ηi−1W ∗

)2

+ ci−1

)

, (67)

Finally, from Assumption 3 and (66), we have the
boundedness of z0(t) as t → +∞. The proof of The-
orem 1 is completed.

Remark 7 Compared with the periodic sampling con-
sidered in the existing literature [18–24], the sampling
period in this paper can be chosen freely within an
allowable constant [see (56)], which means that the
designer can increase the sampling frequency in the
initial running stage to make the system to be stable
as soon as possible, and decrease the sampling fre-
quency to reduce the computation burden when the
system tends to be stable; thus, for the real systems,
non-periodic sampling has more advantages than the
periodic sampling.

Remark 8 For nonlinear system (1), the adaptive
sampled-data controller can be constructed as follows:
Step 1: Determine the constant α from the parameters
ηi > 0, i = 1, 2, . . . , n, and choose λ0 satisfies (55),
then work out the allowable sampling period Tk, k =
0, 1, . . . ,+∞.
Step 2: The adaptive sampled-data controller (43) can
be constructed with the design parameters ci > 0, i =
1, 2, . . . , n, and the sampled values of the systemstates.

Remark 9 Motivated by the existing literature on
sampled-data control, such as [41–47], the proposed
sampled-data control method will be extended to solve
the stabilization problem of the Markovian jump sys-
tems in the formof (1); furthermore, by choosing appro-
priate Lyapunov–Krasovskii functional, the proposed
sampled-data control method will also be extended to
solve the stabilization problem of the systems in the
form of (1) with time-varying delays.

5 Simulation examples

In this section, two examples will be provided to show
effectiveness of the proposed results.

Example 1 Consider the following second-order non-
linear system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż0 = −2z0 + x21 sin(x1),
ẋ1 = (sin(x1) + 2)x2

+ sin(x21 ) cos(x1) + sin(x1) + Δ1(x1, z0),
ẋ2 = (sin(x1x2) + 3)u

+ sin(x1x2) + sin(x1) cos(x2) + Δ2(x̄2, z0),
y = x1,

(68)

where Δ1(x1, z0) = z20 sin(z0)+ cos2(x21 )sin
2(z0) and

Δ2(x̄2, z0) = z20 cos(z0) + sin(x21 x
2
2 ) cos(x2).
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Fig. 1 Trajectories of x1 (solid line) and x2 (dashed line)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

µ
1
,µ

2

t/s

µ1

µ2

Fig. 2 Trajectories of μ1 (solid line) and μ2 (dashed line)

From (43), for ∀t ∈ [tk, tk+1), we construct the
sampled-data controller as

u(t) = − x1(tk)

(√

1 + μ2
2(tk) + c2

)

×
(√

1 + μ2
1(tk) + c1

)

− x2(tk)

(√

1 + μ2
2(tk) + c2

)

, (69)

where c1 = 0.2, c2 = 0.3, and μ1(tk), μ2(tk) can be
obtained from the following equations:
{

μ̇1(t) = η1x21 (tk) − η1μ1(t),
μ̇2(t) = η2�

2
2(tk) − η2μ2(t), ∀t ∈ [tk, tk+1),

(70)

where η1 = 0.3, η2 = 0.4 and �2(tk) = x1(tk) +
x1(tk)

√

1 + μ2
2(tk) + c1x1(tk).

Simulation results are shown in Figs. 1, 2, 3 and
4, where x(0) = [0.3,−0.2]T, μ1(0) = 0.1, μ2(0) =
0.2 and z0(0) = 0.3, the sampling period is chosen ran-
domly in the interval (0, 0.08 s). It can be seen from
Fig. 1 that all states of the resulting closed-loop sys-
tem converge to a neighborhood of the origin, which

0 5 10 15 20
0

0.1

0.2

0.3

z 0

t/s

Fig. 3 Trajectory of z0

0 5 10 15 20

−0.2

−0.1

0

0.1

u

t/s

Fig. 4 Control input u

demonstrates effectiveness of the proposed sampled-
data control method.

Example 2 In the example, a popular benchmark of
application example will be provided, that is, the stabi-
lization of an one-link manipulator actuated by a brush
dc (BDC) motor, the dynamics of a one-link manip-
ulator actuated by a BDC motor can be expressed as
follows [48]:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż0(t) = −z0(t) + 2q2(t) cos(q(t)),
Dq̈(t) + Bq̇(t) + N sin(q(t))

= I (t) + ΔI1(q(t), q̇(t), z0(t)),
M İ (t) = −QI (t) − Kmq̇(t) + VE (t)

+ΔI2(q(t), q̇(t), I (t), z0(t)),

(71)

where q(t), q̇(t), and q̈(t) are the link angular posi-
tion, velocity, and acceleration, respectively; I (t) is the
motor current; ΔI1(·) is the additive bounded distur-
bance; ΔI2(·) is the additive bounded voltage distur-
bance; VE is the input control voltage; M is the arma-
ture inductance; Q is the armature resistance; Km is the
back-emf coefficient; z0 is an unmeasured states;
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D = J

Kτ

+ mL2
0

3Kτ

+ 2M0R2
0

5Kτ

,

N = mL0G

2Kτ

+ M0L0G

Kτ

, B = B0

Kτ

,

J is rotor inertia; R0 is the radius of the load; B0 is
the coefficient of viscous friction at the joint; m is the
link mass; L0 is the link length; G is the gravity coef-
ficient, and Kτ is the coefficient which characterizes
the electromechanical conversion of armature current
to torque; q(t), q̇(t) and I (t) can only be measured at
the sampling points.

In the simulation, the design parameters are selected
as J = 1.252 × 10−3 kgm2, M = 15.0 × 10−3H,

L0 = 0.205 m, Q = 3 �,m = 0.506 kg, M0

= 0.423 kg, B0 = 15.25 × 10−3 Nm s/rad, Kτ =
1.5 × 10−3 Nm/A, and Km = 0.7 Nm/A.

Now, setting x1(t) = q(t), x2(t) = q̇(t) and
x3(t) = I (t), then (71) can be expressed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż0(t) = − z0(t) + 2x21 (t) cos(x1(t)),
ẋ1(t) = x2(t),

ẋ2(t) = 1

D
x3(t) + B

D
x2(t)

−N sin(x1(t))

D
+ ΔI1(x̄2(t), z0(t))

D
,

ẋ3(t) = 1

M
VE (t) − Q

M
x3(t)

−Km

M
x2(t) + ΔI2(x̄3(t), z0(t))

M
,

(72)

where ΔI1(x̄2, z0) = z20 sin(x2z0) + sin(x21 x
2
2 ),

ΔI2(x̄3, z0) = z20 cos(x1x2)sin
2(x3) + sin(x1x2).

To solve the stabilization problem of system (72),
we use the following sampled-data controller:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ᾱ1(tk) = −x1(tk)
√

1 + μ2
1(tk) − c1x1(tk),

ᾱ2(tk) = −z̄2(tk)
√

1 + μ2
2(tk) − c2 z̄2(tk),

VE (t) = −z̄3(tk)
√

1 + μ2
3(tk) − c3 z̄3(tk),

∀t ∈ [tk, tk+1),

(73)

where z̄i = xi − ᾱi−1, i = 2, 3, and c1 = 0.2, c2 =
0.3, c3 = 0.1.

According to (43), the adaptive laws are taken as
⎧
⎨

⎩

μ̇1(t) = η1x21 (tk) − η1μ1(t),
μ̇2(t) = η2�

2
2(tk) − η2μ2(t),

μ̇3(t) = η3�
2
3(tk) − η3μ3(t), ∀t ∈ [tk, tk+1),

(74)

where η1 = 0.3, η2 = 0.4, η3 = 0.2 and
⎧
⎪⎪⎨

⎪⎪⎩

�1(tk) = x1(tk),

�2(tk) = x2(tk) + �1(tk)
√

1 + μ2
1(tk) + �1(tk)c1,

�3(tk) = x3(tk) + �2(tk)
√

1 + μ2
2(tk) + �2(tk)c2.
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Fig. 5 Trajectories ofq (solid line), q̇ (dashed line), and I (dotted
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Fig. 6 Trajectories of μ1 (solid line), μ2 (dashed line), and μ3
(dotted line)

Simulation results are shown in Figs. 5, 6, 7 and 8
with initial conditions x(0) = [0.3,−0.2,0.2]T,

μ1(0) = 0.1, μ2(0) = 0.2, μ3(0) = 0.1 and z0(0) =
0.3, the sampling period can be chosen randomly in the
interval (0, 0.06 s). It can be seen from Fig. 5 that the
link angular position q(t), velocity q̇(t) and motor cur-
rent I (t) of system (71) converge to a neighborhood of
the origin, which shows effectiveness of the proposed
methods.

6 Conclusions

In this paper, an adaptive sampled-data control tech-
nique was developed to practically stabilize a class
of nonlinear systems in strict-feedback structure with
uncertain functions which were not required to satisfy
any linear growth condition. During adaptive sampled-
data controller design, neural networks were employed
to approximate the unknown nonlinear functions, then
an adaptive sampled-data controllerwas constructed by
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Fig. 7 Trajectory of z0
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Fig. 8 Control input VE

utilizing the virtual control laws and “virtual adaptive
laws” which were obtained via the backstepping tech-
nique. With the help of Gronwall–Bellman inequal-
ity, it was demonstrated that the proposed sampled-
data controller can make all states of the resulting
closed-loop system to be semi-globally uniformly ulti-
mately bounded with appropriate choice of the sam-
pling period. Finally, two examples were provided to
show validness of the obtained results. In addition, the
proposed results can be extended to the switched non-
linear systems and multi-agent systems, which is our
future work.
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