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Abstract We study an integrable extended modified
Korteweg–de Vries equation, which contains the fifth-
order dispersion and relevant higher-order nonlinear
terms. The infinitely many conservation laws are con-
structed based on the Lax pair. A general N th-order
periodic solution is obtained by means of the N -fold
Darboux transformation (DT), and a simple represen-
tation of the N th-order rational solution is derived from
the generalized DT by using the limit approach. As an
application, the explicit periodic and rational solutions
from first to second order are given, and some typical
nonlinear wave patterns such as the doubly periodic
lattice-like and doubly localized high-peak waves are
shown. It is interestingly found that, the doubly local-
ized high-peak wave can be converted into a W-shaped
soliton in the second-order rational solution due to the
existence of higher-order terms.
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1 Introduction

It is well known that the modified Korteweg–de Vries
(mKdV) equation is a fundamental completely inte-
grable nonlinear partial differential equation admitted
the N -soliton solution [1], and has significant applica-
tions in various physical contexts such as the generation
of supercontinuum in optical fibres [2], propagation of
solitons in lattice [3], nonlinearAlfvénwaves propagat-
ing in plasma [4], physical experiments of ion acous-
tic solitons in plasmas [5] and fluid mechanics [6]. In
focusing case, the mKdV equation can be written as

ut + α(6u2ux + uxxx ) = 0, (1)

where u = u(t, x) is a real function with evolution
variable t and transverse variable x . The inverse scat-
tering transform, Hirota bilinear technique and Dar-
boux transformation (DT) were developed to derive
the explicit N -soliton solution for Eq. (1) along the
past few decades [1,7,8].

In recent years, the construction of rational solutions
for integrable nonlinear equations has been becoming
a topic of continued interesting in the description of
rogue waves [9], which are originally referred to huge
waves occurring erratically and unexpectedly on the
ocean surfaces [10], and nowadays, they are extended
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in a wide range of research fields, for instance, optics
[11], Bose–Einstein condensation [12], plasmas [13]
and even finance [14]. Among the rogue wave theoret-
ics, the Peregrine soliton, a simplest rational solution of
the nonlinear Schrödinger (NLS) equation given over
30years ago, plays a prototypical role in mathemat-
ics to model rogue waves in many physical branches
[15]. It depicts a doubly localized (temporally and spa-
tially) wave featuring a single hump whose amplitude
is three times larger than the average crest and two
holes with zero amplitude. Analytically, the Peregrine
soliton can be seen as a special limiting case of the peri-
odic Akhmediev breather [16] or Kuznetsov–Ma soli-
ton [17,18]. More recently, periodic solutions, rational
solutions and the generation of rogue waves in Eq. (1)
have been reported by many authors [19–22]. As are
emphasized by them, this type of rational solutions
plays the role of roguewaves in themKdVequation and
can present different descriptions in hydrodynamics
from that in the NLS equation. Besides, it is noted that,
these rational solutions may appear in diverse physical
fields, the electromagnetic waves in quantized films,
internal waves in stratified flows [23] and so on.

Since roguewave investigations have flourish devel-
oped in several scientific fields, one should go beyond
the standard NLS equation to model more general and
complex physical systems. In this direction, some inte-
grable physical systems including higher-order per-
turbation terms such as the Hirota equation [24–26]
and Sasa–Satsuma equation [27] have been taken
widespread attention, and actually, these equations usu-
ally possess some novel characteristics. Most notably,
as we argue, the breathers and rogue waves in them can
convert to new types of solitons due to the existence of
the higher-order perturbation terms [28–33]. But, the
standard NLS equation does not allow the conversion
of breathers or rogue waves into solitons.

In this paper, we investigate an extended modified
Korteweg–deVries (emKdV) equation,which takes the
form

ut + α(6u2ux + uxxx ) + β
(
30u4ux + 10u3x

+ 40uuxuxx + 10u2uxxx + uxxxxx
)

= 0, (2)

where α � 1 and β � 1 stand for the third- and fifth-
order dispersion coefficients matching with the rele-
vant nonlinear terms, respectively. As is known, the
Painlevé test and multi-soliton solutions via the simpli-
fiedHirota’ directmethod forEq. (2) have been recently

studied by Wazwaz and Xu [34]. In this paper, our aim
is to construct the infinitely many conservation laws
[35–37] for Eq. (2) based on its Lax pair, and to derive
the periodic and rational solutions through the N -fold
DT together with the limit approach [38–46].

The present paper is organized as follows. Sec-
tion 2 gives the infinitely many conservation laws for
Eq. (2) based on the Lax pair. Section 3 constructs
the N th-order periodic solution for Eq. (2) via the N -
fold DT. Section 4 derives the N th-order rational solu-
tion for Eq. (2) from the generalized DT by using the
limit approach. Explicit expressions of the periodic and
rational solutions from first to second order are pre-
sented, and some typical types of the nonlinear wave
structures are shown. In the last section, we give the
conclusions of this paper.

2 Lax pair and conservation laws

To begin with, the Lax pair of Eq. (2) can be given
through the AKNS technique [47]:

Φx = (λσ3 +U )Φ, U =
(

0 u
−u 0

)
, (3a)

Φt = VΦ, V =
(
A B
C −A

)
, (3b)

where σ3 is the Pauli matrix,

A = −16βλ5 − (8βu2 + 4α)λ3 −
(
6βu4 + 2αu2

+ 4βuuxx − 2βu2x
)

λ,

B = −16βuλ4 − 8βuxλ
3 −

(
8βu3 + 4αu

+ 4βuxx ) λ2 − (12βu2ux + 2βuxxx

+2αux )λ − 6βu5 − 2αu3 − 10βu2uxx

−10βuu2x − βuxxxx − αuxx ,

C = −B(−λ).

Here Φ = (ψ, ϕ)T , λ is a spectral parameter. From the
compatibility conditionUt−Vx+[λσ3+U, V ] = 0 one
can easily get Eq. (2). In order to obtain the infinitely
many conservation laws for Eq. (2), we denote ω = ϕ

ψ
,

then we can get the following Riccati equation

uωx = −u2ω2 − 2λuω − u2. (4)

By substituting the ansatz

uω =
∞∑
n=0

ωn

(−2λ)n+1 (5)

123



Conservation laws, periodic and rational solutions 1509

into Eq. (4) and equating the powers of λ, we have

ω0 = u2, ω1 = uux , (6)

and

ωn+1 = u
(ωn

u

)
x

+
n−1∑
i=0

ωiωn−i−1, (n = 1, 2, 3, . . .),

(7)

which give rise to

ω2 = uuxx + u4, ω3 = uuxxx + 5u3ux ,

ω4 = uuxxxx + 7u3uxx + 11u2u2x + 2u6,

ω5 = u(22u4ux + 9u2uxxx + 38uuxuxx

+11u3x + uxxxxx ). (8)

Moreover, by resorting to the compatibility condi-
tion of (lnψ)xt = (lnψ)t x , we have

(λ + uω)t = (A + Bω)x ,

then a recursive formula of the infinitely many conser-
vation laws for Eq. (2) that satisfy

∂tωn(t, x, u) = ∂x Jn(t, x, u), n = 0, 1, . . . ,

can be written as follows

Jn = 1

u

(ωn+4

24
B1 − ωn+3

23
B2 + ωn+2

22
B3

−ωn+1

2
B4 + ωn B5

)
, (9)

where Bj ( j = 1, 2, . . . , 5) are the coefficients of λ5− j

in B,ωn and Jn represent the conservative densities and
associated flows, respectively. By inserting the first few
conservative densities (6) and (8) into Eq. (9), we arrive
at the first two associated flows

J0 = −α(3u4 + 2uuxx − u2x ) − β(10u6 + 20u3uxx

+10u2u2x + 2uuxxxx − 2uxuxxx + u2xx ),

J1 = −αu(6u2ux + uxxx ) − βu(30u4ux + 10u2uxxx

+40uuxuxx + 10u3x + uxxxxx ). (10)

3 Periodic solutions

In this section, we derive the general N th-order peri-
odic solution from a nonzero constant seed solution for
Eq. (2) by virtue of the N -fold DT. We first present the
elementary DT for Eq. (2) basing on the DT for the
standard AKNS system and its relevant reductions [8].

Suppose Φ1 = (ψ1, ϕ1)
T be a special solution for

the linear system (3) at u = u[0] and λ = λ1, then it is
known that the following DT

Φ[1] = T [1]Φ, T [1] = I − 2λ1
λ + λ1

Φ1Φ
T
1

ΦT
1 Φ1

, (11)

u[1] = u[0] + 4λ1
ψ1ϕ1

ψ2
1 + ϕ2

1

, (12)

convert the linear system (3) into

Φ[1]x = (λσ3 +U [1])Φ[1], U [1] =
(

0 u[1]
−u[1] 0

)
,

Φ[1]t = V [1]Φ[1], V =
(
A[1] B[1]
C[1] −A[1]

)
,

where A[1], B[1] andC[1] have the same form of poly-
nomials with respect to λ as A, B and C except that the
original potential u is replaced with the new one u[1],
I is the unit matrix. Moreover, it is easy to check that,
the inverse matrix of T [1] such that T [1]T [1]−1 = I
can be presented in the form

T [1]−1 = I + 2λ1
λ − λ1

Φ1Φ
T
1

ΦT
1 Φ1

. (13)

In what follows, we generalize the aforementioned
elementary DT into the N -fold case. Assume thatΦl =
(ψl , ϕl)

T (l = 1, 2, . . . , N ) be N special solutions for
the linear system (3) at u = u[0] and λ = λl . Similarly,
according to iterative rule of the one-degree Darboux
matrix of (11) and its inverse form (13), we can express
the N -fold DT in terms of

TN = T [N ]T [N − 1] · · · T [1] = I +
N∑
i=1

Di

λ + λi
,

and

T−1
N = T [1]−1T [2]−1 · · · T [N ]−1 = I +

N∑
i=1

Ei

λ − λi
,

where Di = |xi 〉〈yi | and Ei = |vi 〉〈wi |, here |·〉 and 〈·|
denote two-dimensional column vector and row vector,
respectively.

Note that TNT
−1
N = I leads to 〈yl |T−1

N |λ=−λl = 0.
Moreover, in view of the equation

ΦT
l |T−1

N |λ=−λl = 0,

we can obtain 〈yl | = ΦT
l . Thus, by resorting to

TN |λ=λlΦl = 0 we have

Φl +
N∑
i=1

|xi 〉ΦT
i

λ + λi
|λ=λl Φl = 0, (l = 1, 2, . . . , N ),
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which implies

(|x1〉, |x2〉, . . . , |xN 〉) = −(Φ1, Φ2, . . . , ΦN )M−1, Mi j

= ΦT
i Φ j

λ j + λi
, 1 ≤ i, j ≤ N .

On the other hand, by returning to the definition of the
N -fold Darboux transformation, we get

TNx + TN (λσ3 +U ) = (λσ3 +U [N ])TN ,

that is,

(
N∑
i=1

Di

λ + λi

)

x

+
(
I +

N∑
i=1

Di

λ + λi

)
(λσ3 +U )

= (λσ3 +U [N ])
(
I +

N∑
i=1

Di

λ + λi

)
,

then by comparing the coefficient of λ0 in the above
equation as λ → +∞, we obtain

U +
(

N∑
i=1

Di

)
σ3 = σ3

(
N∑
i=1

Di

)
+U [N ],

which gives rise to

u[N ] = u[0] − 2
N∑
i=1

(Di )12 = u

−2(|x1〉1, |x2〉1, . . . , |xN 〉1)(ϕ1, ϕ2, . . . , ϕN )T ,

where |xi 〉1 (i = 1, 2, . . . , N ) stands for the first rank
of |xi 〉. In addition, it can be computed from the afore-
mentioned equations that

(|x1〉1, |x2〉1, . . . , |xN 〉1) = −(ψ1, ψ2, . . . , ψN )M−1.

At this point, through the simple calculation, we can
rewrite the expressions of T [N ] and u[N ] as the com-
pact determinant forms, we conclude that

Φ[N ] = TNΦ, TN = I − XM−1(λI + S)−1XT ,

(14)

u[N ] = u[0] − 2
N∑
i=1

(Di )12 = u[0] − 2
det(M1)

det(M)
,

(15)

where X = (Φ1, Φ2, . . . , ΦN ), S = diag(λ1, λ2, . . . ,
λN ),

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΦT
1 Φ1

2λ1

ΦT
1 Φ2

λ2 + λ1
· · · ΦT

1 ΦN

λN + λ1
ΦT

2 Φ1

λ1 + λ2

ΦT
2 Φ2

2λ2
· · · ΦT

2 ΦN

λN + λ2
...

...
. . .

...

ΦT
NΦ1

λ1 + λN

ΦT
NΦ2

λ2 + λN
· · · ΦT

NΦN

2λN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΦT
1 Φ1

2λ1

ΦT
1 Φ2

λ2 + λ1
· · · ΦT

1 ΦN

λN + λ1
ϕ1

ΦT
2 Φ1

λ1 + λ2

ΦT
2 Φ2

2λ2
· · · ΦT

2 ΦN

λN + λ2
ϕ2

...
...

. . .
...

...

ΦT
NΦ1

λ1 + λN

ΦT
NΦ2

λ2 + λN
· · · ΦT

NΦN

2λN
ϕN

ψ1 ψ2 · · · ψN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, we choose u[0] = u0 (u0 �= 0) as the seed
solution to generate periodic solutions for Eq. (2). By
substituting u[0] = u0 into the linear system (3) and
taking λ = u0(1 − 2κ2) such that |κ| < 1, we obtain
the solution

Φ(κ) =
⎛
⎜⎝

1

κ
sin(ρ) + 1√

1 − κ2
cos(ρ)

− 1

κ
sin(ρ) + 1√

1 − κ2
cos(ρ)

⎞
⎟⎠ , (16)

where

ρ = 2u0κ
√
1 − κ2[x − 2(8βu40(1 − 2κ2)4

+ 4βu40(1 − 2κ2)2 + 2αu20(1 − 2κ2)2

+ 3βu40 + αu20)t].

By taking Φ j = (ψ j , ϕ j )
T = Φ(κ)|κ=κ j be N special

solutions of the linear system (3) under the constant
seed solution u = u0 and λ j = u0(1 − 2κ2

j ) with
κi �= κ j for i �= j , we can provide the N th-order
periodic solution for Eq. (2) from the formula (15) in a
compact form

u[N ] = u0

[
1 − 2

det(P1)

det(P)

]
, (17)
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Conservation laws, periodic and rational solutions 1511

Fig. 1 a, b The first-order
periodic solution (18) at
β = −0.1 and β = −0.2
with α = 1, u0 = 1,
κ1 = 0.1

Fig. 2 a, b The
second-order rational
solution (19) at
κ1 = 0.5, κ2 = 0.3 and
κ1 = 0.5, κ2 = 0.2 with
α = 1, β = −0.2, u0 = 1

where

P =

⎛
⎜⎜⎜⎝

P11 P12 · · · P1N
P21 P22 · · · P2N
...

...
. . .

...

PN1 PN2 · · · PNN

⎞
⎟⎟⎟⎠ ,

P1 =

⎛
⎜⎜⎜⎜⎜⎝

P11 P12 · · · P1N ϕ1

P21 P22 · · · P2N ϕ2
...

...
. . .

...
...

PN1 PN2 · · · PNN ϕN

ψ1/u0 ψ2/u0 · · · ψN/u0 0

⎞
⎟⎟⎟⎟⎟⎠

,

with

Pi j = ψ jψi + ϕ jϕi

2u0(1 − κ2
j − κ2

i )
, 1 ≤ i, j ≤ N .

Explicitly, by taking N = 1 for Eq. (17), one obtains
the first-order periodic solution

u[1]p = u0

[
1 − 2

cos(2ρ1) + (2κ2
1 − 1)

cos(2ρ1) + 1/(2κ2
1 − 1)

]
, (18)

where

ρ1 = 2u0κ1
√
1 − κ2

1 [x − 2(8βu40(1 − 2κ2
1 )4

+ 4βu40(1 − 2κ2
1 )2 + 2αu20(1 − 2κ2

1 )2

+ 3βu40 + αu20)t].
Figure 1 shows the first-order periodic solution (18)

with two different values of the higher-order effect
coefficient. The maximum amplitude of this periodic
solution is −(4κ2

1 − 3)u0, and the minimum amplitude
is (4κ2

1 − 1)u0. It is shown that, the amplitude of the

periodic solution maintains constant, and the distance
between two peaks is always the same. Furthermore,

the period of the solution is T = π/

(
2u0κ1

√
1 − κ2

1

)

along the x axis.
Analogously, for N = 2 in Eq. (17), the second-

order periodic solution can be worked out as

u[2]p = u0

[
1 − 2

N (2)
p

D(2)
p

]
, (19)

where

D(2)
p = D11D22 − D12D21, N (2)

p = (D12ψ1ϕ2

+D21ψ2ϕ1 − D11ψ2ϕ2 − D22ψ1ϕ1) /u0,

with

D11 = 2κ2
1 cos(2ρ1) − cos(2ρ1) + 1

2u0κ2
1 (2κ2

1 − 1)(κ2
1 − 1)

,

D22 = 2κ2
2 cos(2ρ2) − cos(2ρ2) + 1

2u0κ2
2 (2κ2

2 − 1)(κ2
2 − 1)

,

D12 = D21 =

−
√
1 − κ2

1

√
1 − κ2

2 sin(ρ1) sin(ρ2) + κ1κ2 cos(ρ1) cos(ρ2)

u0κ1κ2
√
1 − κ2

1

√
1 − κ2

2 (κ2
1 + κ2

2 − 1)
,

ρ j = 2u0κ j

√
1 − κ2

j [x − 2(8βu40(1 − 2κ2
j )

4

+ 4βu40(1 − 2κ2
j )

2 + 2αu20(1 − 2κ2
j )

2

+ 3βu40 + αu20)t], j = 1, 2.

Figure 2 displays the second-order doubly peri-
odic lattice-like structure with different choices of the
parameters κ2 by fixing κ1. It is computed that themax-
imum amplitude of the higher-order periodic solution
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is [−4(κ2
1 + κ2

2 ) + 5]u0 and the minimum value is
[4(κ2

1 + κ2
2 ) − 3]u0.

Therefore, the sum of the maximum and minimum
amplitudes is always 2u0 and independents on α and
β. In Fig. 2a, the maximum amplitude of the solution is
3.64 and the minimum value is−1.64, while in Fig. 2b,
the corresponding values are 3.84 and −1.84. Particu-
larly, it is apparently exhibited that the distancebetween
two peaks in Fig. 2b is narrower than that in Fig. 2a
when by decreasing the value of κ2 with the fixed num-
ber of κ1.

4 Rational solutions

In this section, in order to derive the N th-order rational
solution for Eq. (2),we should utilize the limit approach
to construct the generalized DT. We impose a small
perturbation on the spectral parameter λ, namely λ =
λ1+2u0 f 2. Here λ1 = u0 is a fixed spectral parameter,
f is a small complex parameter. Then, we have another
form of the solution for the linear system (3)

Φ1( f ) =
(
C1eA − C2e−A

C1e−A − C2eA

)
, (20)

where

C1 = (1 + 2 f 2 + 2 f
√
1 + f 2)

1
2

2 f
√
1 + f 2

,

C2 = (1 + 2 f 2 − 2 f
√
1 + f 2)

1
2

2 f
√
1 + f 2

,

and

A = 2u0 f
√
1 + f 2[x − 2(8βu40(1 + 2 f 2)4

+ 4βu40(1 + 2 f 2)2 + 2αu20(1 + 2 f 2)2

+3βu40 + αu20)t +
N−1∑
i=1

si f
2i ],

with Φ1( f ) = (ψ1( f ), ϕ1( f ))T and si are real con-
stants.

In this case, it is ready to prove that Φ1( f ) can be
expanded as the following Taylor series

Φ1 = Φ
[0]
1 + Φ

[2]
1 f 2 + · · · + Φ

[N−1]
1 f 2(N−1)

+O( f 2N ), (21)

where Φ
[i]
1 = (ψ

[i]
1 , ϕ

[i]
1 )T = lim

f →0

1
2i !

∂2iΦ1

∂ f 2i
, i =

0, 1, . . . , N − 1. Furthermore, we denote

ψ1( f ∗)ψ1( f ) + ϕ1( f ∗)ϕ1( f )

2u0(1 + f 2 + f ∗2)

=
N∑

i, j=1

Q[i, j] f 2( j−1) f ∗2(i−1) + O
(
( f f ∗)2N

)
,

(22)

where

Q[i j] = 1

2(i − 1)!2( j − 1)!
∂2(i+ j−2)

∂ f 2( j−1)∂ f ∗2(i−1)

ψ1( f ∗)ψ1( f ) + ϕ1( f ∗)ϕ1( f )

2u0(1 + f 2 + f ∗2)

∣∣∣∣
f, f ∗=0

,

with f ∗ is another complex small parameter. At this
point, by virtue of the special solution Φ1( f ) and its
transpose form ΦT

1 ( f ∗) , we can construct the gener-
alized DT through the iterative rule as follows.

For the one-fold generalized DT, we define

T [0]
1 = I − 2λ1

λ + λ1

Φ1Φ
T
1

ΦT
1 Φ1

∣∣∣∣
f, f ∗→0

,

(
T [0]
1

)−1 = I + 2λ1
λ − λ1

Φ1Φ
T
1

ΦT
1 Φ1

∣∣∣∣
f, f ∗→0

.

For the two-fold generalized DT, we can use the limit
approach to obtain the eigenfunctions of the new Lax
pair (Φ[1], u[1]), namely

Φ1[1] = lim
f →0

T [0]
1 |λ=λ1+2u0 f 2Φ1

f 2

= T [0]
1 |λ=λ1

1

2!
d2

d f 2
Φ1| f =0 + u0

λ1
Φ1| f =0,

ΦT
1 [1] = lim

f ∗→0

ΦT
1

(
T [0]
1

)−1 |λ=−λ1+2u0 f ∗

f ∗2

= 1

2!
d2

d f ∗2ΦT
1 | f ∗=0

(
T [0]
1

)−1 |λ=−λ1

−u0
λ1

ΦT
1 | f ∗=0.

It then holds that

T [1]
1 = I − 2λ1

λ + λ1

Φ1[1]ΦT
1 [1]

ΦT
1 [1]Φ1[1]

∣∣∣∣
f, f ∗→0

,

(
T [0]
1

)−1 = I + 2λ1
λ − λ1

Φ1[1]ΦT
1 [1]

ΦT
1 [1]Φ1[1]

∣∣∣∣
f, f ∗→0

.
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Continuing the above process, we have

Φ1[ j] = lim
f →0

(
T [ j−1]
1 · · · T [1]

1 T [0]
1

)
|λ=λ1+2u0 f 2

f 2 j
Φ1,

ΦT
1 [ j] = lim

f ∗→0
ΦT

1

[(
T [0]
1

)−1 (
T [1]
1

)−1 · · ·
(
T [ j−1]
1

)−1
]

|λ=−λ1+2u0 f ∗2

( f ∗)2 j
,

j = 1, 2, . . . .

Therefore, the N -fold generalized DT can be presented
in the compact determinant form, namely

Φ[N ] = TNΦ, TN = T [N−1]
1 T [N−2]

1 · · · T [0]
1 , (23)

u[N ] = u[0] − 2
N−1∑
j=1

(
D[ j]
1

)
12

= u0 − 2
det(Q1)

det(Q)
,

(24)

where

T [ j]
1 = I + D[ j]

1

λ + λ1
,

(
T [ j]
1

)−1 = I + E [ j]
1

λ − λ1
,

D[ j]
1 = −2λ1

Φ1[ j]ΦT
1 [ j]

ΦT
1 [ j]Φ1[ j]

, E [ j]
1 = 2λ1

Φ1[ j]ΦT
1 [ j]

ΦT
1 [ j]Φ1[ j]

,

in which

Φ1[ j] =
j∑

l=0

Ω l

2( j − l)!
d2( j−l)

d f 2( j−l)
Φ1| f→0,Ω

l

=
∑

0≤is≤ j−l−1

j−l∏
s=1

(
u0
λ1

)l

T [is ]
1 ,

ΦT
1 [ j] =

j∑
l=0

d2( j−l)

d f ∗2( j−l)
ΦT

1 | f ∗→0
Λl

2( j − l)! ,Λ
l

=
∑

0≤is≤ j−l−1

j−l∏
s=1

(
−u0

λ1

)l (
T [is ]
1

)−1
,

and

Q =

⎛
⎜⎜⎜⎝

Q[11] Q[12] · · · Q[1N ]
Q[21] Q[22] · · · Q[2N ]

...
...

. . .
...

Q[N1] Q[N2] · · · Q[NN ]

⎞
⎟⎟⎟⎠ ,

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q[11] Q[12] · · · Q[1N ] ϕ
[0]
1

Q[21] Q[22] · · · Q[2N ] ϕ
[1]
1

...
...

. . .
...

...

Q[N1] Q[N2] · · · Q[NN ] ϕ
[N−1]
1

ψ
[0]
1 ψ

[1]
1 · · · ψ

[N−1]
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

As in Eq. (24) we provide a unified representation of
the N th-order rational solution in a simple determinant

form for Eq. (2). For N = 1, we can give the explicit
first-order rational solution

u[1] = u0 [−1

+ 4

4u20x
2 − 48u40(5βu

2
0 + α)xt + 144u60(5βu

2
0 + α)2t2 + 1

]
.

(25)

This solution corresponds to the Peregrine soliton of the
NLS equation [15] and looks like a soliton on a nonzero
constant background [20], see Fig. 3. The maximum
amplitude of it is 3u0 and occurs at

t = 1

6u20(5βu
2
0 + α)

x .

Moreover, it is calculated that∫ ∞

−∞

(
u[1]2 − u0[1]2

)
dx = 0,

and∫ ∞

−∞
(u[1] − u0[1])2dx = 4πsgn(u0)u0,

where u0[1] = limx→±∞ u[1] = −u0, which indi-
cates that the energy of the pump [48] is preserved, and
the energy of the Peregrine pulse [48] keeps a constant.
We note that, the choice of β = −α/(5u20) corresponds
to the stationary rational solution of Eq. (2)with higher-
order effects, see Fig. 3a.

Afterwards, in terms of N = 2 in Eq. (24), one
obtains

u[2] = u0

[
1 + 2

N (2)
r

D(2)
r

]
, (26)

where

N (2)
r = −124416u120 γ 4t4

+82944u100 γ 3xt3

−(20736u80γ
2x2 + 1728u60γ (95βu20

+11α))t2

+(2304u60γ x
3 + 576u40(55βu

2
0 + 7α)x

+864u40γ s1)t

−96u40x
4 − 144s1u

2
0x − 144u20x

2 + 18,

D(2)
r = 2985984u180 γ 6t6

−2985984u160 γ 5xt5

+(1244160u140 γ 4x2 − 20736u120 (145βu20
+13α)γ 3)t4

−(276480u120 γ 3x3 − 41472u100 (35βu20
+3α)γ 2x − 20736u100 γ 3s1)t

3
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Fig. 3 a, b The first-order
rational solution (25) at
β = −0.2 and β = −0.22
with α = 1, u0 = 1

Fig. 4 a, b The
second-order rational
solution (26) at β = −0.15
and β = −0.1 with
α = 1, u0 = 1, s1 = 0

Fig. 5 a, b The
second-order rational
solution (26) at β = −0.15
and β = −0.1 with
α = 1, u0 = 1, s1 = 30

+(34560u100 γ 2x4 − 17280u80(13βu
2
0 + α)γ x2

−10368u80γ
2s1x

+144u60(9475β
2u40 + 2270αβu20 + 139α2))t2

−(2304u80γ x
5 − 384u60(25βu

2
0 + α)x3

−1728u60γ s1x
2

+144u40(125βu
2
0 + 17α)x

+144u40s1(95βu
2
0 + 11α))t

+64u60x
6 − 96u40s1x

3

+48u40x
4 + 36u20s

2
1

+72u20s1x + 108u20x
2 + 9,

with γ = 5βu20 + α.
In this circumstance, it can be calculated that, when

setting β �= − α

10u20
, the second-order solution exhibits

a doubly localized high-peak structure which can be
seen as a collision of a dark soliton and a bright soli-
ton, see Fig. 4a. The collision point is (0, 0), and the
maximum amplitude of the peak is 5u0.

Noteworthily, when β = − α

10u20
, we can show that,

the doubly localized high-peak wave can be converted
into a new type of soliton, namely the W-shaped soli-
ton, see Fig. 4b. Here, we should point out that, this

conversion can only exist in the higher-order systems
such as the emKdV equation considered in this paper,
while for the standard mKdV equation, it is impossible
to appear. The maximum amplitude of this W-shaped
soliton is 5u0 and arrives at

t = 1

6u20(5βu
2
0 + α)

x .

The minimum amplitude of it is −u0 and reaches at

t = 1

6u20(5βu
2
0 + α)

x ±
√
3

6αu30
.

In addition, it is pointed out by Chowdury et al. [20],
the second-order rational solution of the mKdV equa-
tion cannot be separated into three components like
the NLS equation, while the nonzero free parameter
s1 can produce a “differential shift” effecting on the
peak along the trough of the “depressed soliton”, see
Fig. 5a. The maximum amplitude of the high peak in
this case is also 5, but the critical point shifts from
(0, 0) to (−5.63,−3.75). Further, it should be empha-
sized that, unlike the doubly localized high-peak wave,
when s1 �= 0, the W-shaped soliton can be separated
into a dark soliton and a bright soliton, see Fig. 5b.
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5 Conclusion

In summary, we investigated the conservation laws,
periodic and rational solutions for the emKdV equa-
tion which can be seen as a higher-order integrable
generalization of the standardmKdVequation.Wecon-
structed the N -fold DT and obtained the general N th-
order periodic solution under a nonzero constant back-
ground. Further, we derived a unified representation
of the N th-order rational solution from the general-
ized DT by resorting to the limit approach. Explicitly,
the periodic and rational solutions from first to second
order were presented, and the doubly periodic lattice-
like and doubly localized high-peakwaveswere shown.
Remarkably, we interestingly found that the stationary
rational soliton and theW-shaped soliton can only exist
in the emKdV equation as a result of the higher-order
effects. Our results may be useful to better understand
the nonlinear wave phenomena in various physical sys-
tems where the mKdV equation governs.
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