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Abstract The Wiener model is a case of block-
oriented model, which is suitable for modeling a large
class of nonlinear systems. It consists of the cascade
of two parts, where a linear dynamic part is followed
by a static nonlinear part. On the other hand, frac-
tional ordermodels have gained increasing interest over
the last decades due to their better representation of
some physical phenomena. In this paper, the fractional
Wiener system identification is aimed. The polynomial
nonlinear fractional state space equations are used to
describe the nonlinear model. Thus, the extension of an
output error method (Levenberg Marquard algorithm)
is developed to estimate the fractional Wiener system.
The efficiency of the identification method is evaluated
and confirmed by simulation examples.
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1 Introduction

System identification is an alternative way of building
models from observed sets of input and output data.
During the past decades, there have been some signif-
icant advances in this research area for time invariant
linear systems. However, most real systems exhibit a
nonlinear form, and their modeling and identification
are still challenging tasks due to the difficulty to estab-
lish a global model considering the diversity and com-
plexity of nonlinear systems.

The block-oriented models such as (Wiener, Ham-
merstein, Wiener- Hammerstein. . .) allow to build up
models from simple blocks in order to find structures
that are flexible enough to cover many relevant real
nonlinear systems [1–4]. Among these systems, we
can cite the Wiener system which is characterized by
a linear part followed by a static nonlinear block; this
model can approximate arbitrarily well most of linear
dynamic processes with the output obtained using a
nonlinear and soft sensor, as cited in [5,6]; or when
the linear dynamic system is connected to a memory-
less nonlinearity, as a dead-zones or saturations [7]. In
addition, they are utilized to describe a wide spectrum
of industrial processes such as pH control systems, heat
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exchangers, distillation column, nonlinear microwave
device and biological examples [8,9].

On theother hand, the noninteger or fractional differ-
entiation theory grew extensively since 1960, due to its
better representation of the long memory behavior and
infinite dimensional structure [10]. Furthermore, frac-
tional order models based on this approach allow a bet-
ter representation and understanding of physical phe-
nomena, such as: heat and fluid flows, diffusive dynam-
ics,mathematical and electrical engineering, biological
processes [11–18].

Identification of fractional systems shows an impor-
tant number of contributions and applications in real
life. The great part of these studies have focused on
the linear fractional models. In the literature some of
the suggested identification procedures are based on
the prediction error and output error (OE) methods; the
least squares (LS) method has been applied, with the
priori assumption that the fractional orders are be set
[19]. The modified recursive least squares (RLS) and
the recursive instrumental variable (RIV) algorithms
have been used in [20]. The OE approach has been
developed in [21].

Another promising idea to identify the fractional
models is the use of the evolutionary algorithms, such
as the genetic algorithms (GA) [22] and the parti-
cle swarm optimization (PSO) algorithm [23]. An
overview on linear system identification is reported in
[21].

Although some amount of knowledge on the topic
of fractional system identification has been accumu-
lated through literature, only few studies have been pro-
posed for the fractional nonlinear system identification.
They concern an output error approach such as in [24],
where the Continuous Time Neural Networks (CTNN)
have been used; [25] describes the system identification
based on fractional Volterra series.

The block-oriented models have also been applied
for the fractional order case [26–31]; however, the order
is often not estimated and the major works consider
the particular case of commensurate models where the
fractional orders are multiple of the same basis α.

The Hammerstein structure has been applied in
[26,27]. The identification of the commensurate frac-
tional order Hammerstein model is performed based
on the instrumental variables (IV) [26]. In [27], the
identification of neuro-fractional Hammerstein system
has been reported. This approach use an iterative linear
optimization algorithm inorder to recover the fractional

order and the degree of the fractional state spacemodel,
while the estimation of the other parameters is based
in Lyaponove method.

The Wiener structure has also been used in [28–
30]; where fractional Laguerre–Wiener system has
been modeled using the orthonormal basis functions
(OBF) and the identification is performed based on
the RLS algorithm with the prior knowledge of the
fractional order [28,29]. The modified PSO heuristic,
Self-Adaptive Velocity Particle Swarm Optimization
(SAVPSO), estimates the parameters and the fractional
order of a commensurate state space models [30].

In [31], the authors present a fractional approach
for the initialization of a Wiener_Hammerstein model
with fractional multiplicities of poles and zeros of the
estimated Best Linear Approximation (BLA).

System identification involves two steps: the choice
of the structure orders (linear block and nonlinear part
orders) and the parametric identification. The draw-
back of the major proposed approaches in the litera-
ture, is the parametrization of the linear and the nonlin-
ear blocks using input–output models, which induces
the identification method to be dependent on the cho-
sen orders model. The repeated task for the choice of
the best orders structure requires tremendous computa-
tional effort, since the identificationmethod is no longer
suitable; the use of state space representation may be a
solution to this problem.

In this paper, the identification of fractional Wiener
system is developed and the general case of noncom-
mensurate fractional order systems is considered.

The objective is the estimation of both its parame-
ters and its fractional orders. To overcome the draw-
back of the proposed methods of the literature, state
space representation of the nonlinear Wiener system is
derived; moreover, state space models are often pre-
ferred to input–output models for dealing with multi-
variable systems as well as SISO systems. In this pur-
pose, the Polynomial Nonlinear State Space (PNLSS)
model which is the generalization of the state space
model to the nonlinear case has been implemented for
theWiener systemdescription.The identification is car-
ried out based on a nonlinear optimization method, and
the Levenberg Marquard (LM) algorithm is developed
for the fractional PNLSS models. The estimation of
both the linear part and nonlinear part of the Wiener
system as well as the fractional orders is performed.

This paper is organized as follows:
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Preliminary notions of the fractional calculus required
to understand the used concepts in the paper are pro-
vided in Sect. 2. Section 3 describes the Wiener sys-
tem in the fractional case, and its equations based
on the Polynomial NonLinear Fractional State Space
(PNLFSS) model are derived. In Sect. 4, the nonlin-
ear optimization method in occurence LM algorithm is
extended for the fractional case for the PNLFSS model
and performed to identify the Wiener fractional sys-
tem. In order to analyze the efficiency of the developed
algorithm, simulation examples are carried out for dif-
ferent signal-to-noise ratios in Sect. 5. Finally, Sect. 6
concludes this paper and some perspectives are given.

2 Preliminary notions on fractional calculus

Various nonlinear systems exhibit fractional behavior
and show long memory property and infinite dimen-
sional structure; a further class based on the fractional
derivative called fractional order models have been
developed for their modeling.

Different definitions of the fractional differentiation
operator have been reported in the literature such as
Riemann–Liouville type h-difference, Grunwald–
Letnikov (GL) difference and Caputo difference [10,
32]. In this study, the one attributed to GL which is the
most adequate for the simulation of discrete fractional
order systems is used for numerical calculations [33];
it is expressed by the following equation :

�α f (kh) = 1

hα

k∑

j=0

(−1) j
(

α

j

)
f ((k − j)h) (1)

� is the discrete fractional derivation operator with
initial time equal to zero, α is a fractional value with
α ∈ R∗+, k = 0, 1, 2, . . . , n, is the number of samples
and h the sampling interval which equals 1 in what
follows.

(
α

j

)
is the Newton binomial term defined by: (2)

(
α

j

)
=

{
1 for j = 0
α(α−1)···(α− j+1)

j ! for j > 0
(3)

Equation (1) can be written under the form:

�α f (k) =
k∑

j=0

β( j) f (k − j) (4)

with the term :

β( j) = (−1) j
(

α

j

)
(5)

where a recurrence relation between β( j) and β( j−1)
can be deduced:

β( j) =
{
1 for j = 0
β( j − 1) ( j−1)(α−1)

j for j > 0
(6)

The fractional differentiation of a function f gives
an overall characterization of this function at each
instant k by considering the value of this function at
all past times. Fractional systems are often closer to
long memory systems, which can be described by a
fractional state space model.

In the literature, it is quoted that, the state space rep-
resentation is based on the fractional order difference
operator definitions [32], in our work, we used the one
based on GL difference operator given in [33], which
is described by the following equations:

{
�(α)x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(7)

x ∈ Rna is the state vector, u ∈ R is the input vector
and y ∈ R is the output vector. �(α)x(k) is the state
space fractional vector expressed as follows:

�(α)x(k) = [�α1x1(k) �α2x2(k) · · · �αn xn(k)]T
(8)

and the fractional order vector is:

(α) = [α1 α2 · · · αn]T (9)

In the particular case of fractional commensurate order
system, the fractional orders α of all the states xi (k)
are the same :

α1 = α2 = · · · = αn = α (10)
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Linear NonLinear
v(k)u(k) y(k)

e(k)

w(k)

Fig. 1 Wiener system

and

�(α)x(k) = [
�αx1(k) �αx2(k) · · · �αxna (k)

]T

= �α[x1(k) x2(k) · · · xn(k)]T (11)

The simulation of the fractional model (Eq. 7) can
be performed using Eq. (4):

�(α)x(k) =
k∑

j=0

β( j)x(k − j) (12)

and

�(α)x(k + 1) = x(k + 1) +
k+1∑

j=1

β( j)x(k + 1 − j)

(13)

The recurrence equation for the fractional state space
simulation are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�(α)x(k + 1) = Ax(k) + Bu(k)
x(k + 1) = �(α)x(k + 1)
−∑k+1

j=1 β( j)x(k − j + 1)
y(k) = Cx(k) + Du(k)

(14)

In order to make the simulations easier, we consider a
limited length memory denoted L .

The fractional state space model described in this
section is used as a part of the Wiener system in what
follows.

3 Fractional order Wiener system description

The conventional diagram of a Wiener system is
depicted in Fig. 1, where a linear block is followed
by a nonlinear block.

In our case, the linear part is modeled by a discrete
time fractional linear state space model of order na , as
given in Eq. (15), which is assumed asymptotically sta-
ble. The static nonlinear block is defined as a nonlinear
basis function f (), which can be chosen as a polyno-
mial of order r associated with the coefficients vector
p (p = p1, p2, . . . , pr ) as given in Eq. (16).

u(k) is the system input, v(k) is the linear part output
and the input of the nonlinear part, therefore the inter-
mediate unmeasured signal of the two blocks, y(k) is
the nonlinear part output, e(k) is a disturbance noise
and w(k) is the global Wiener system output.
{

�(α)x(k + 1) = A0 x(k) + B0 u(k)
v(k) = C0 x(k) + D0 u(k)

(15)

y(k) = f (v(k))

=
r∑

i=1

piv
i (k)

= p1v(k) + p2v
2(k) + · · · + prv

r (k) (16)

The Wiener system output is

w(k) = y(k) + e(k) (17)

The substitution of the nonlinear block input v(k) by its
expression of Eq. (15), yields to the following Wiener
state space representation:

{
�(α)x(k + 1) = A0x(k) + B0u(k)
y(k) = p1v(k) + p2v2(k) + · · · + prvr (k)

(18)

In this case, theWiener state spacemodel contains non-
linear elements (polynomial), thus, the use of the poly-
nomial nonlinear state space (PNLSS) model which is
the generalization of the state space model to the non-
linear case is appropriate for its description.

3.1 Wiener System Description based on Polynomial
Nonlinear State Space Model

The PNLSS model is a useful tool for the nonlinear
system description with state space representation. It
has been used in several studies for the integer case
systems as reported in [34,35]; our contribution in this
work is to define the polynomial nonlinear fractional
state space model with the acronym (PNLFSS) which
will be used throughout this paper.
It consists of a fractional state space representation tak-
ing into account the nonlinear terms,which is described
by these equations:

{
�(α)x(k + 1) = Ax(k) + Bu(k) + Eζ(k)
y(k) = Cx(k) + Du(k) + Fη(k)

(19)

where x is the state, u the input and y the output.
Thematrices A, B,C and D contain linear coefficients,
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Nonlinear system identification of fractional Wiener models 1497

while, the nonlinear ones are given by the matrices E
and F . The vectors ζ(k) and η(k) include the nonlinear
elements.

In the following, we will be limited to single input
single output (SISO) systems. The Wiener system (Eq.
18), described by its fractional state space equation,
can be modeled using PNLFSS. The equations linking
these two models are developed:

⎧
⎨

⎩

�(α)x(k + 1) = A0x(k) + B0u(k)
y(k) = ∑r

i=1 piv
i (k)

= ∑r
i=1 pi (C0x(k) + D0u(k))i

(20)

Applying the multinomial expansion, the equations of
the Wiener model PNLFSS can be derived. Let us con-
sider two Wiener systems with the linear part of the
same state order na = 2 and increasing complexity
r = 2 and r = 3 for the polynomial nonlinear block.

• Wiener case with na = 2 and r = 2:

⎧
⎨

⎩

�(α)x(k + 1) = A0x(k) + B0u(k)
v(k) = C0x(k) + D0u(k)
y(k) = p1v1(k) + p2v2(k)

(21)

with C0 = [c1 c2], D0 = d and x = [x1 x2]T. The
system output of Eq. (21) is given as follows:

y = p1v
1 + p2v

2

= p1 (C0x + D0u) + p2 (C0x + D0u)2 (22)

y = p1 (c1x1 + c2x2 + du)

+p2 (c1x1 + c2x2 + du)2 (23)

y = p1c1x1 + p1c2x2 + p1du

+p2[c21x21 + 2c1c2x1x2 + 2c1dx1u + c22x
2
2

+2c2dx2u + d2u2] (24)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = [
p1c1 p1c2

] [
x1
x2

]
+ [p1d] u

+ [
p2c21 2p2c1c2 2p2c1d p2c22 2p2c2d p2d2

]

⎡

⎢⎢⎢⎢⎢⎢⎣

x21
x1x2
x1u
x22
x2u
u2

⎤

⎥⎥⎥⎥⎥⎥⎦

(25)

Table 1 Wiener case with na = 2 and r = 2

PNLSS Wiener

A A0

B B0

C p1C0

D p1D0

E 0

ξ 0

Table 2 Wiener case with na = 2 and r = 2

F η

p2c21 x21
2p2c1c2 x1x2

2p2c1d x1u

p2c22 x22
2p2c2d x2u

p2d2 u2

The PNLFSS model is deduced:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(α)x(k + 1) = A0x(k) + B0u(k)

y = p1
[
c1, c2

] [
x1
x2

]
+ p1 [d] u

+p2
[
c21 2c1c2 2c1d c22 2c2d d2

]

⎡

⎢⎢⎢⎢⎢⎢⎣

x21
x1x2
x1u
x22
x2u
u2

⎤

⎥⎥⎥⎥⎥⎥⎦

(26)

The separation of the linear part and the nonlinear part
of model Eq.(26) yields to its corresponding PNLFSS
model equations; it can be summarized in Table 1, for
the linear part matrices (A, B, C and D), matrix E and
vector ξ , and Table 2 for the nonlinear elements η and
its coefficients F .
In this case, thematrix E = 0, and ξ = 0 andη contains
the monomials expansion of u and x for r = 2.
We can notice that the vector F contains elements of
C , D and p2.

• Wiener case with na = 2 and r = 3:
In this case, the multinomial expansion generates
an important number of elements when r increases.
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⎧
⎨

⎩

�(α)x(k + 1) = A0x(k) + B0u(k)
v(k) = C0x(k) + D0u(k)
y(k) = p1v1(k) + p2v2(k) + p3v3(k)

(27)

Then

y = p1 (c1x1 + c2x2 + du) + p2 (c1x1 + c2x2 + du)2

+p3 (c1x1 + c2x2 + du)3 (28)

y = p1c1x1 + p1c2x2 + p1du

+ p2[c21x21 + 2c1c2x1x2 + 2c1dx1u

+ c22x
2
2 + 2c2dx2u + d2u2]

+ p3[c31x31 + 3c21c2x
2
1 x2 + 3c21dx

2
1u

+ 3c1c
2
2x1x

2
2 + 6c1c2dx1x2u + 3c1d

2x1u
2

+ c32x
3
2 + 3c22dx

2
2u + 3c2d

2x2u
2 + d3u3] (29)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(α)x(k + 1) = A0x(k) + B0u(k)

y = p1
[
c1, c2

] [
x1
x2

]
+ p1 [d] u

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2c21
2p2c1c2
2p2c1d
p2c22

2p2c2d
p2d2

p3c31
3p3c21c2
3p3c21d
3p3c1c22
6p3c1c2d
3p3c1d2

p3c32
3p3c22d
3p3c2d2

p3d3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x21
x1x2
x1u
x22
x2u
u2

x31
x21 x2
x21u
x1x22
x1x2u
x1u2

x32
x22u
x2u2

u3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

For this second case, na = 2, r = 3, the state equa-
tion of the PNLFSS representation remains unchanged,
while the corresponding elements of the η and the vec-
tor F are given in Table 3. We notice that the number
of parameters of transformed models grows strongly
when increasing the nonlinear block order r as reported
in the literature.

Table 3 Wiener case with na = 2 and r = 3

F η

p2Z2 p2c21 η1 = ξ2(k) x21
2p2c1c2 x1x2

2p2c1d x1u

p2c22 x22
2p2c2d x2u

p2d2 u2

p3Z3 p3c31 η2 = ξ3(k) x31
3p3c21c2 x21 x2

3p3c21d x21u

3p3c1c22 x1x22
6p3c1c2d x1x2u

3p3c1d2 x1u2

p3c32 x32
3p3c22d x22u

3p3c2d2 x2u2

p3d3 u3

The Wiener PNLFSS representation can be written in
the general case, as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�(α)x(k + 1) = Ax(k) + Bu(k)
x(k + 1) = Ax(k) + Bu(k)
−∑k+1

j=1 β( j)x(k − j + 1)
y(k) = Cx(k) + Du(k) + Fη(k)

(31)

with:

{
F = [

p2Z2 . . . pr Zr
]

Z = [
c1 . . . cna d

] (32)

{
η(k) = [

ξ2(k) . . . ξ r (k)
]

ξ(k) = [x1(k) . . . xna(k) u(k)]
(33)

Note that the component number of the vector F is high
(according to the orders na and r ) and that F contains
the elements of the matrices C , D and the vector p;
moreover, we have redundancy of these parameters.
The objective of this study is the fractional Wiener
model identification described by the PNLFSS model.
In the following, to unify the parameter estimates, we
assume that thefirst nonzero coefficient of the nonlinear
function equals 1, namely, p1 = 1.
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Nonlinear system identification of fractional Wiener models 1499

Therefore, we have to estimate the parameters of the
fractional Wiener system contained in the matrices A,
B, C , D, F and the fractional order α.

As reported in the literature, the difficulty in non-
linear systems identification is to deal with the curse
of dimensionality (high dimension of the F vector),
moreover, the redundancy of the non linear subsystem
parameters pi occurs as they appear in the vector F .

Bearing these facts in mind, the present study cir-
cumvents this problem by estimating just the elements
of pi ( i = 2, ..., r ) instead of the elements of vector
F ; this way, the drawback of estimating an overparam-
eterized model is avoided.

In this case, however, the Wiener system described
with its PNLFSS model is nonlinear in the parameters
and a nonlinear optimization method (LM algorithm)
is developed for its identification in the next section.

4 Fractional system identification using LM
algorithm

As the output of the model is nonlinear in the parame-
ters, an output error method based on the LM algorithm
is developed. This latter uses a nonlinear programming
technique and allows better parameters adjusting based
on the criterion variations.

Without loss of generality, the controllable canonical
form is considered. Therefore, the Wiener linear part
is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�(α)x(k + 1) =

⎡

⎢⎢⎢⎣

0 1 . . . 0
...

. . .
...

0 0 . . . 1
a1 a2 . . . ana

⎤

⎥⎥⎥⎦ x(k) +
⎡

⎢⎣
0
...

1

⎤

⎥⎦ u(k)

v(k) = [
c1 c2 . . . cna

]
x(k) + [

d
]
u(k)

(34)

The vector of parameters θ of length (nθ = 3na + r )
to be estimated is given by:

θ = [a1 . . . ana c1 . . . cna
d p2 . . . pr α1 . . . αna ] (35)

All the parameters in this Wiener system are explicitly
given in the model of Eq. (31); the use of the PNLFSS
model avoid the cross combination of the nonlinear
block coefficients with the ones of the linear block,
and here (p2 . . . pr ) are contained in the F vector.

The optimization method consists on the minimization
of a residual between the output data yk and the output
estimate ŷk . Therefore, the mean quadratic prediction
error of the output evaluate the criterion J .

J = 1

N

N∑

k=1

ε2k (36)

with the output prediction error:

εk = yk − ŷk (37)

LM algorithm [36] is manipulated according to the fol-
lowing recurrence equation:

θ(i+1) = θ(i) −
{[

J ′′
θθ + λI

]−1
J

′
θ

}

θ̂=θ(i)
(38)

where λ is the monitoring parameter, J
′
θ the Gradient

and J ′′
θθ is the Hessian defined by the following equa-

tions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

J
′
θ = −2

N

(
N∑

k=1
εk σy/θ

)

J ′′
θ = 2

N

(
N∑

k=1
σy/θ σ T

y/θ

) (39)

with σy/θ the output sensitivity function.

σy/θ = ∂ ŷ(k, θ)

∂θ
(40)

The main part of this algorithm for nonlinear systems
is the crucial calculation of the Gradient and the Hes-
sian based on the sensitivity functions at each iteration;
these are developed in the next subsection.

Parameters sensitivity functions calculation

The sensitivity functions translate the effect of a vari-
ation of a parameter in the system output [37]. For the
fractional Wiener PNLFSS, the sensitivity functions
expression are derived obtained by the differentiation
with respect to the elements of θi as follows:
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⎧
⎪⎨

⎪⎩

�(α) ∂x(k+1)
∂θi

= ∂
∂θi

(Ax(k) + Bu(k))

∂y(k)
∂θi

= ∂
∂θi

(Cx(k) + Du(k) + Fη(k))

(41)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�(α) ∂x(k+1)
∂θi

= ∂A
∂θi

x(k) + A ∂x(k)
∂θi

+ ∂B
∂θi

u(k) + B ∂u(k)
∂θi

∂y(k)
∂θi

= ∂C
∂θi

x(k) + C ∂x(k)
∂θi

+ ∂D
∂θi

u(k)

+D ∂u(k)
∂θi

+ ∂F
∂θi

η(k) + F ∂η(k)
∂θi

(42)

with:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x(k)
∂θi

= σx/θi the state sensitivity function /θi

∂x(k+1)
∂θi

= σx(k+1)/θi

∂y(k)
∂θi

= σy/θi the output sensitivity function /θi

∂u(k)
∂θi

= 0

∂η(k)
∂θi

= ∂η(k)
∂x(k)

∂x(k)
∂θi

= η
′
σx/θi

wi thη
′ = ∂η(k)

∂x(k) =
[

∂η(k)
∂x1(k)

. . .
∂η(k)

∂xna (k)

]

(43)

with i = 1, ..., nθ .
The sensitivity functions can be written under a frac-
tional compact pseudo state space model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(α)
[
σx(k+1)/θi

] = A σx/θi

+
[

∂A
∂θi

∂B
∂θi

0
]
⎡

⎣
x
u
η

⎤

⎦

σy/θi = (C + Fη
′
)σx/θi

+
[

∂C
∂θi

∂D
∂θi

∂F
∂θi

]
⎡

⎣
x
u
η

⎤

⎦

(44)

In the case of the controllable canonical form ∂B
∂θi

= 0
and the representation (44) reduces to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(α)
[
σx(k+1)/θi

] = A σx/θi

+
[

∂A
∂θi

0 0
]
⎡

⎢⎣
x

u
η

⎤

⎥⎦

σy/θi = (C + Fη
′
) σx/θi

+
[

∂C
∂θi

∂D
∂θi

∂F
∂θi

]
⎡

⎣
x
u
η

⎤

⎦

(45)

The LM algorithm is based on the sensitivity functions
calculation with respect to each parameter of θ , which
are expressed as follows:

⎧
⎨

⎩

�(α)
[
σx(k+1)/ai

] = Aσx/ai + Ina j x

σy/ai = (C + Fη
′
)σx/ai

(46)

Ina j is a zero matrix with a single element equal to one
at entry (na, j).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�(α)
[
σx(k+1)/ci

] = Aσx/ci

σy/ci = (C + Fη
′
)σx/ci

+
[

∂C
∂ci

∂F
∂ci

] [
x
η

] (47)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�(α)
[
σx(k+1)/d

] = Aσx/d

σy/d = (C + Fη
′
)σx/d

+ [
∂D
∂d

∂F
∂d

] [
u
η

] (48)

In order to reduce the computation load of the algo-
rithm, the sensitivity functions with respect to the vec-
tor p are calculated instead of those of the F vector. For
example, for the case r = 2, p = [1 p2], the length
of F vector is 6, while for r = 3, p = [1 p2 p3]
and F length is 16; in this way, the computation of the
sensitivity functions with respect to p instead of the
sensitivity function with respect to F , reduces drasti-
cally the algorithm complexity.

⎧
⎪⎨

⎪⎩

�(α)
[
σx(k+1)/pi

] = Aσx/pi

σy/ pi = (C + Fη
′
)σx/pi +

[
∂F
∂ pi

]
[η]

(49)
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with

∂F

∂p
=

[
Z2 Z3 . . . Zr

]
(50)

The sensitivity function with respect to each fractional
order α is calculated using the numerical approxima-
tion of the derivative :

y(k, α + δα) − y(k, α) � δα
∂y

∂α
= δασy/α (51)

with

σy/α = y(k, α + δα) − y(k, α)

δα
(52)

with δα being a small variation of α.
At each iteration, the sensitivity functions are evalu-

ated in order to calculate the gradient J
′
and theHessian

J ′′ and thus, update the parameter vector θ .
The developed identificationmethod performance is

evaluated with numerical simulations.

5 Simulation examples

In this section, numerical examples are profiled in order
to evaluate and illustrate the performance of the pro-
posed approach. Indeed, the Fractional Wiener model
is considered for the commensurate and the general
noncommensurate case.

In the following examples, the inputu(k) is a random
persistent excitation sequence of zero mean and unit
variance. The disturbance e(k) is taken as a white noise
sequence of zero mean.

In order to test the efficiency of the estimator, the
simulations are performed in the noise-free case, then
with data affected bywhite noise sequence for different
signal-to-noise ratios (SNR). In the presence of noise,
we perform the Monte Carlo simulation, and 50 runs
of the simulation for each level of noise are achieved.

5.1 Example 1

In this example, the fractional Wiener model in the
commensurate case is testedwith the linear part of order
na = 3 and nonlinear part order r = 3. Therefore, it is
described by the equations below:

Table 4 Evolution of the criterion versus the structure

Structure na = 2 na = 2 na = 3 na = 3
r = 2 r = 3 r = 2 r = 3

J 0.095 0.038 0.061 2e−8
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Fig. 2 Evolution of the criterion versus the structure

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�0.3x(k + 1) =
⎡

⎣
0 1 0
0 0 1

−0.2 −0.4 −0.3

⎤

⎦ x(k) +
⎡

⎣
0
0
1

⎤

⎦u(k)

v(k) = [
0.3 0.2 0.1

]
x(k) + [

0.1
]
u(k),

y(k) = v(k) + 0.1v2(k) + 0.5v3(k)

(53)

The PNLFSS model is deduced and the parameter vec-
tor to be estimated is:

θ = [−0.2 − 0.4 − 0.3 0.3 0.2

0.1 0.1 0.1 0.5 0.3]. (54)

However, the identification procedure requires the
parametric identification as well as the choice of
the model structure. In this purpose, the structure is
selected based on several tests of different structure
choices and the criterion evolution is investigated for
20 iterations.

Table 4 gives the results of evolution of the criterion
versus the structure, andFig. 2 confirms that the order of
linear part and nonlinear part are, respectively, na = 3
and r = 3 (J = e − 8). Based on the best criterion
result, the use of the na = 3 and r = 3 is confirmed.

The parameters mean value using the Monte Carlo
simulation are given in Table 5 for different SNR.

From the table, we can see that good parameter esti-
mation is obtained. In fact, in the noise-free case, the
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Table 5 Means of the parameters θi

SNR Noise-free 34 dB 15 dB Exact values

Mean a1 −0.200 −0.200 −0.191 −0.200

Mean a2 −0.400 −0.400 −0.377 −0.400

Mean a3 −0.300 −0.298 −0.271 −0.300

Mean c1 0.300 0.299 0.291 0.300

Mean c2 0.200 0.199 0.196 0.200

Mean c3 0.100 0.099 0.099 0.100

Mean d 0.100 0.099 0.100 0.100

Mean p2 0.100 0.102 0.087 0.100

Mean p3 0.500 0.501 0.448 0.500

Mean α 0.300 0.329 0.250 0.300

Mean J 1e−15 2e−3 2e−2 –
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Fig. 3 Prediction error for noise-free case

output prediction error is null, as shown in Fig. 3, with
the quadratic criterion J � e−15. Therefore, a perfect
adequacy between the output response of the estimated
model and the data is shown in Fig. 4.

While Figs. 5 and 6 show the output data and the
output of the estimated model in the presence of noise
SNR = 34dB and SNR = 15dB, respectively. These
figures show a good adequacy, that demonstrate the
efficiency of the estimator.

5.2 Example 2

Here, a fractional Wiener model in the noncommen-
surate case is considered, whose the linear part is of
order na = 2 and the nonlinear part of order r = 3.
The model is described by:
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Fig. 4 Estimated and simulated outputs for noise-free case
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Fig. 5 Estimated and simulated outputs for SNR = 34 dB
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Fig. 6 Estimated and simulated outputs for SNR = 15 dB

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�(α)x(k + 1) =
[

0 1
−0.1 −0.4

]
x(k) +

[
0
1

]
u(k)

v(k) = [
0.3 0.2

]
x(k) + [

0.1
]
u(k)

y(k) = v(k) + 0.3v2(k) + 0.4v3(k)

(55)
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Fig. 7 Evolution of the criterion versus the structure

Table 6 Evolution of the criterion versus the structure

Structure na = 2 na = 2 na = 3 na = 3
r = 2 r = 3 r = 2 r = 3

J 0.010 3e − 15 0.016 0.015

with (α) = [0.2 0.5].
The vector of parameters to be estimated is :

θ = [−0.1 − 0.4 0.3 0.2 0.1 0.3 0.4 0.2 0.5]

(56)

The validation of the structure is determined based on
the values of the criterion for different orders of na and
r , as given in Table 6; Fig. 7 shows its evolution, for 20
iterations. Therefore, it is confirmed that the order of
linear part and nonlinear part are, respectively, na = 2
and r = 3.

Using this above result, Table 7 provides the results
of the simulation carried out in the absence of noise, and
the mean values of the estimated parameters with data
affected by white noise sequence for different SNR.

The results in Table 7 show that the proposed
approach restores accurately the parameters. This can
be observed in the plot sketched in Fig. 8, which is
practically null with the quadratic criterion J = e−16.
Figure 9 shows a perfect correspondence of the output
response of the estimated model and the data for the
noise-free case.
Figures 10 and 11 represent the system output of the
estimated model and the simulated one, in the presence
of noise, respectively, for SNR = 34dB and SNR =
15dB.

As a result, the effectiveness of the proposedmethod
has been validated with these simulation examples, and
the good performance of the estimator is confirmed for

Table 7 Means of the parameters θi

SNR Noise-free 34 dB 15 dB Exact values

Mean a1 −0.100 −0.100 −0.105 −0.100

Mean a2 −0.400 −0.402 −0.389 −0.400

Mean c1 0.300 0.300 0.297 0.300

Mean c2 0.200 0.200 0.199 0.200

Mean d 0.100 0.099 0.099 0.100

Mean p2 0.300 0.300 0.302 0.300

Mean p3 0.400 0.401 0.488 0.400

Mean α1 0.200 0.180 0.268 0.200

Mean α2 0.500 0.484 0.385 0.500

Mean J 4e−16 2e−3 2e−2 –
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Fig. 8 Prediction error for noise-free case
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Fig. 9 Estimated and simulated outputs for noise-free case

both the commensurate fractional case and the general
noncommensurate order one, even in the presence of
noise.
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Fig. 10 Estimated and simulated outputs for SNR = 34 dB
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Fig. 11 Estimated and simulated outputs for SNR = 15 dB

6 Conclusion

The aim of this work is the identification of a Wiener
system in the fractional case, using the fractional non-
linear state space representation.

This nonlinear block-oriented structure can be des-
cribed using the PNLFSS model and the link between
these two representations has been derived.

Moreover, this state space model avoids the diffi-
culty of having the coefficients cross product of the
linear and nonlinear parts to occur.

The Wiener PNLFSS model identification task has
been solvedusing anoutput error identificationmethod,
based on the LM algorithm, adapted to estimate the
parameters of the nonlinear Wiener model as well as
its fractional orders.

It is based on the crucial calculation of sensitiv-
ity functions, which have been developed from the
PNLFSS model.

As reported in the literature, the number of param-
eters of the transformed models grows strongly when

increasing the nonlinear block order r , in our case the F
vector which contains the non linear block coefficients.

However, in the proposed approach, to overcome the
drawback of the complex sensitivity functions compu-
tation (view the heavy load of the F elements in the
PNLFSS model), we have derived a new formulation
by just computing the sensitivity functions with respect
to the pi elements of the nonlinear part, and simultane-
ously reducing the computational load of the method.
In order to illustrate the performance of the proposed
algorithm, numerical simulation examples are tested.
These latters are carried out in the absence of noise, in
both the commensurate and non commensurate cases,
and the method estimates the parameters with a very
good accuracy. In the presence of noise, a Monte
Carlo simulation is performed for different signal-to-
noise ratios, and satisfactory results are obtained,which
highlights the efficiency of the developed method,
even though the results accuracy decreases for a large
amount of noise.

In the future, the proposed method will be extended
to identify a cascaded Wiener-Hammerstein model.
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