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Abstract In this paper, the (2 + 1)-dimensional
Boussinesq equation is studied by applying residual
symmetry reduction method and consistent Riccati
expansion (CRE) method, respectively. By introduc-
ing multiple new dependent variables to enlarge the
(2 + 1)-dimensional Boussinesq system, the resid-
ual symmetry is localized and the corresponding finite
transformation is obtained by using Lie’s first theo-
rem. The symmetry reduction solutions related to the
residual symmetry of the (2 + 1)-dimensional Boussi-
nesq equation is obtained by using the standard Lie
symmetry method, which includes complicated inter-
action models. Furthermore, the (2 + 1)-dimensional
Boussinesq equation is found to have CRE integra-
bility, and new Bäcklund transformations (BTs) are
consequently obtained. New interaction solutions are
obtained from these BTs; particularly, the interaction
solution between soliton and background cnoidal wave
is given and analyzed explicitly.
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1 Introduction

In real nature, there exist many phenomena that can
be properly described by solitons interacted with back-
ground nonlinear waves [1–3]. For integrable systems,
many effective and reliable methods have been devel-
oped, such as the Hirota’s bilinear method [4], the
Bäcklund transformation (BT) and Darboux transfor-
mation (DT) method [5,6], etc., to derive soliton solu-
tions. However, the interaction solutions of solitons
interactedwith various nonlinearwaves such as cnoidal
waves are usually very difficult to be obtained by these
traditional methods [7,8].

As we know, symmetry analysis [9,10] plays an
important role in solving nonlinear problems. Using
classical and nonclassical Lie group theory, one can
construct abundant reduction solutions of nonlinear
differential equations. Nevertheless, these symmetry
methods are based on Lie point symmetry group of
related equations. Recently, for nonlocal symmetries
of some integrable system, Lou found an effective way
to localize them into Lie point symmetries by intro-
ducing new variables to enlarge the original system. On
this basis, various interesting interaction solutionswere
constructed by using standard Lie symmetry reduc-
tion method [11,12]. Traditionally, nonlocal symme-
tries of nonlinear systems can be obtained through
potential symmetries [13], Lax pair, DT and BT [14],
etc. Interestingly, for many Painlevé integrable sys-
tems, the residue of truncated Painlevé expansion with
respect to singular manifold is actually a nonlocal sym-
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metry, and many interesting interaction solutions were
obtained by applying the localization procedure to var-
ious nonlinear systems [11,15]. Furthermore, the trun-
cated Painlevé expansion is extended to consistent Ric-
cati expansion (CRE) by Lou and defined a new inte-
grability of owning CRE property for many nonlinear
systems [16–18].More importantly, forCRE integrable
systems, solutions of solitons interacted with nonlinear
solitary waves can be easily obtained through Riccati
expansion [19].

In this paper,wewill discuss the (2+1)-dimensional
generalization of Boussinesq equation in the form

utt − uxx − uyy − (u2)xx − uxxxx = 0 (1)

by using residual symmetry reductionmethod andCRE
method, respectively. The (2+ 1)-dimensional Boussi-
nesq equation has important applications in describ-
ing the propagation of gravity waves on the surface
of water. As for the exact solutions of the (2 + 1)-
dimensional Boussinesq equation, Johnson obtained
some different types of solitary-wave solutions by
using the Hirota bilinear method [20]; Senthilvelan
[21] used the homogeneous balance method to obtain
the traveling wave solutions and explored certain new
solutions; Chen et al. [22] investigated this equation
by using the Riccati equation expansion method and
obtained many types of wave solutions.

This paper is organized as follows: In Sect. 2, the
residual symmetry of Eq. (1) is obtained from the trun-
cated Painlevé expansion and localized into a Lie point
symmetry in a new enlarged system, and then, a new
BT is found by solving the corresponding initial value
problem. In Sect. 3, the general form of Lie point
symmetry group and related symmetry reduction solu-
tions are obtained by applying classical Lie symmetry
method to the enlarged (2 + 1)-dimensional Boussi-
nesq system, from which the interaction solutions are
explicitly given for Eq. (1). In Sect. 4, the (2 + 1)-
dimensional Boussinesq equation is found to haveCRE
integrability property and new BTs of this equation are
given through CRE and CTE (consistent tanh expan-
sion) methods. From these BTs, new interaction solu-
tions between solitons and cnoidal waves are explicitly
given. The last section contains a discussion and sum-
mary.

2 Residual symmetry and related Bäcklund
transformation

The truncated Painlevé expansion of the (2 + 1)-
dimensional Boussinesq equation (1) can be easily
given by Painlevé analysis, i.e.,

u = u0
φ2 + u1

φ
+ u2, (2)

withφ being the singularmanifold and u0, u1, u2 being
functions of x, y, t . Substituting (2) into (1) and van-
ishing the coefficients of all different powers of 1

φ
, omit-

ting the details of calculation, we obtain

u0 = − 6φ2
x , u1 = 6φxx , (3)

u2 = − 1

2

4φxφxxx − 3φ2
xx − φ2

t + φ2
y

φ2
x

− 1

2
, (4)

and the Schwarzian form of Eq. (1)

PPx − CCx + Py − Ct + Kx = 0, (5)

where K = φxxx
φx

− 3
2

φ2
xx

φ2
x
, C = φt

φx
and P = φy

φx
are

Schwarzian variables. It is obviously that Eq. (5) is
invariant under the Möbius transformation

φ → a1φ + b1
a2φ + b2

, a1a2 �= b1b2, (6)

or in other words, Eq. (5) possesses three symmetries
σφ = d1, σφ = d2φ and

σφ = d3φ
2 (7)

with arbitrary constants d1, d2 and d3.
Hereby, by substituting (3) and (4) into (2), the fol-

lowing BT is obtained.

Theorem 1 If φ is a solution of the Schwartzian equa-
tion (5), then

u = − 12φ3
x − 12φxxφxφ + φxφ

2 + 4φxxxφ
2

2φxφ2

+ 3φ2
xx + φ2

t − φ2
y

2φ2
x

(8)

is a solution u of (1).

The interesting fact is that the residue u1 of expan-
sion (2) expressed by the singular manifold φ in Eq. (3)
is a nonlocal symmetry of (1), which can be verified
by substituting it into the linearized form of Eq. (1)

σu,t t − σu,xx − σu,yy − 4uxσu,x − 2σuuxx

−2uσu,xx − σu,xxxx = 0, (9)
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with the BT (8). Apparently, the residual symmetry
σu = u1 generates the finite transformation (2), and it
is related to the symmetry of (7) through the linearized
equation of (4).

For nonlocal symmetry, the corresponding finite
transformation is hardly to be obtained by using Lie’s
first theorem. To overcome this difficulty, the practical
way is to localize the residual symmetry

σu = 6φxx (10)

into a Lie point symmetry in an enlarged system by
introducing the following four dependent variables

g ≡ φx , m ≡ φt , n ≡ φy, (11)

h ≡ gx . (12)

To find the symmetries of the enlarged system, we have
to solve the linearized equations of (1), (5), (11) and
(12), i.e.,

σu,t t − σu,xx − σu,yy − 4uxσu,x − 2σuuxx

− 2uσu,xx − σu,xxxx = 0,

− 2φxφxxxxσφ,x

−φ2
xσφ,xxxx + 2φxφt tσφ,x + φ2

xσφ,t t

− 2φxφyyσφ,x − φ2
xσφ,yy + 4σφ,xφxxφxxx

+ 4φxσφ,xxφxxx + 4φxφxxσφ,xxx

− 9φ2
xxσφ,xx − σφ,xxφ

2
t − 2φxxφtσφ,t (13a)

+ σφ,xxφ
2
y + 2φxxφyσφ,y = 0, (13b)

σφ,x − σg = 0, (13c)

σφ,y − σn = 0, (13d)

σφ,t − σm = 0, (13e)

σg,x − σh = 0. (13f)

By the known solution (10), the solutions of (13) can
be easily obtained as

σu = h, (14a)

σg = −1

3
gφ, (14b)

σm = −1

3
mφ, (14c)

σn = −1

3
nφ, (14d)

σh = −1

3
(hφ + g2), (14e)

σφ = −1

6
φ2, (14f)

if d3 = − 1
6 and d1 = d2 = 0 is fixed for σφ . In other

words, the residual symmetry (10) is localized to a Lie

point symmetry in the enlarged systems (1), (5), (11)
and (12) with the symmetry vector

V = h∂u − 1

3
gφ∂g − 1

3
mφ∂m

− 1

3
nφ∂n − 1

3
(hφ + g2)∂h − 1

6
φ2∂φ. (15)

Equivalently, the generator of theBT (2) is just a special
Lie point symmetry of the enlarged system.

ByusingLie’s first theorem, the correspondingfinite
transformation of symmetry (14) can be obtained by
solving the following initial value problem

dû(ε)

dε
= ĥ(ε), û(0) = u, (16)

dĝ(ε)

dε
= −1

3
φ̂(ε)ĝ(ε), ĝ(0) = g, (17)

dm̂(ε)

dε
= −1

3
φ̂(ε)m̂(ε), m̂(0) = m, (18)

dn̂(ε)

dε
= −1

3
φ̂(ε)n̂(ε), n̂(0) = n, (19)

dĥ(ε)

dε
= −1

3
(ĝ(ε)2 + φ̂(ε)ĥ(ε)), ĥ(0) = h, (20)

dφ̂(ε)

dε
= − φ̂(ε)2

6
, φ̂(0) = φ. (21)

Solving out these equations leads to the following BT
of the enlarged system, which is stated in the following
theorem.

Theorem 2 If {u, g,m, n, h, φ} is a solution of the
enlarged system (1), (5), (11)and (12), then {û, ĝ, m̂, n̂,

ĥ, φ̂} with

û = u + 6hε

εφ + 6
− 6ε2g2

(εφ + 6)2
, (22a)

ĝ = 36g

(εφ + 6)2
, (22b)

m̂ = 36m

(εφ + 6)2
, (22c)

n̂ = 36n

(εφ + 6)2
, (22d)

ĥ = 36h

(εφ + 6)2
− 72εg2

(εφ + 6)3
, (22e)

φ̂ = 6φ

εφ + 6
, (22f)

is also a solution of the systemwith ε being an arbitrary
group parameter.
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3 New symmetry reduction solutions

To seek the symmetry reduction solutions of the (2
+ 1)-dimensional Boussinesq equation related to the
residual symmetry, we first investigate Lie point sym-
metry of the enlarged system in the form

V = X
∂

∂x
+ Y

∂

∂y
+ T

∂

∂t
+U

∂

∂u

+G
∂

∂g
+ M

∂

∂m
+ N

∂

∂n
+ H

∂

∂h
+ �

∂

∂φ
.

(23)

In other words, the enlarged systems (1), (5), (11) and
(12) are invariant under the transformation

{x, y, t, u, g,m, n, h, φ}
→ {x + εX, y + εY, t + εT, u + εU, g + εG,m

+ εM, n + εN , h + εH, φ + ε�} (24)

with the infinitesimal parameter ε. Equivalently, the
symmetry in form (23) can be written as a function
form as

σu = Xux + Yuy + Tut −U, (25a)

σg = Xgx + Ygy + Tgt − G, (25b)

σm = Xmx + Ymy + Tmt − M, (25c)

σn = Xnx + Yny + Tnt − N , (25d)

σh = Xhx + Yhy + Tht − H, (25e)

σφ = Xφx + Yφy + Tφt − �. (25f)

Substituting (25) into (13) and vanishing all the coeffi-
cients of the independent partial derivatives of variables
u, g,m, n, h and φ, a system of overdetermined linear
equations for X,Y, T,U,G, M, N , H,� are obtained.
Calculated by computer, the desired solutions are

X = c1
2
x + c4, Y = c1y + c3, T = c1t + c2,

U = −c1u + c5h − c1
2

, G = −c5
3
gφ − c1

2
g + gc6,

H = −c5
3
hφ − c5

3
g2 − (c1 − c6)h,

M = −c5
3
mφ − (c1 − c6)m,

N = −c5
3
nφ − (c1 − c6)n,

� = −c5
6

φ2 + c6φ + c7, (26)

with c1, c2, c3, c4, c5, c6, c7 being arbitrary constants.
It is interesting that the symmetry of (15) is just a special
form of (26) by setting c1 = c2 = c3 = c4 = c6 =
c7 = 0 and c5 = 1.

Substituting (26) into (25), one obtains

σu =
(c1
2
x + c4

)
ux + (c1y + c3)uy + (c1t + c2)ut

+ c1u − c5h + c1
2

,

σg =
(c1
2
x + c4

)
gx + (c1y + c3)gy + (c1t + c2)gt

+ c5
3
gφ + c1

2
g − gc6,

σm =
(c1
2
x + c4

)
mx + (c1y + c3)my + (c1t + c2)mt

+ c5
3
mφ + (c1 − c6)m,

σn =
(c1
2
x + c4

)
nx + (c1y + c3)ny + (c1t + c2)nt

+ c5
3
nφ + (c1 − c6)n,

σh =
(c1
2
x + c4

)
hx + (c1y + c3)hy + (c1t + c2)ht

+ c5
3
hφ + c5

3
g2 + (c1 − c6)h,

σφ =
(c1
2
x + c4

)
φx + (c1y + c3)φy + (c1t + c2)φt

+ c5
6

φ2 − c6φ − c7. (27)

The group invariant solutions of the enlarged system
can be obtained by solving (27) under the symmetry
constraints σu = σg = σm = σn = σh = σφ = 0,
alternatively, solving the corresponding characteristic
equation

dx
c1
2 x + c4

= dy

c1y + c3
= dt

c1t + c2

= du

−c1u + c5h − c1
2

= dg

− c5
3 gφ − c1

2 g + gc6

= dm

− c5
3 mφ − (c1 − c6)m

= dn

− c5
3 nφ − (c1 − c6)n

= dh

− c5
3 hφ − c5

3 g
2 − (c1 − c6)h

= dφ

− c5
6 φ2 + c6φ + c7

. (28)

Two subcases of symmetry reductions, without loss
of generality, are considered in the following.
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Case 1 c6 = 0 and ci �= 0 (i = 1, 2, 3, 4, 5, 7).
In this case, by solving Eq. (28), the symmetry

reduction solutions of the enlarged (2+ 1)-dimensional
Boussinesq system are

φ =
√
6c7c5 tanh

(√
6c7c5(c1�+ln�2)

6c1

)

c5
,

� = √
c1t + c2, (29)

g = − 2G

�[cosh
(√

6c7c5(c1�+ln�2)
3c1

)
+ 1]

, (30)

m = − 2M

�2[cosh
(√

6c7c5(c1�+ln�2)
3c1

)
+ 1]

, (31)

n = − 2N

�2[cosh
(√

6c7c5(c1�+ln�2)
3c1

)
+ 1]

, (32)

h = −
2c5

√
6 tanh

(√
6c7c5(c1�+ln�2)

6c1

)
G2 + 6

√
c7c5H

3
√
c7c5�2[cosh

(√
6c7c5(c1�+ln�2)

3c1

)
+ 1]

,

(33)

u = U

�2 + 2
√
6c7c5H

�2c7

(
e

√
6c7c5(c1�+ln�2)

3c1 + 1

)

+ 4c5e

√
6c7c5(c1�+ln�2)

3c1 G2

�2c7

(
e

√
6c7c5(c1�+ln�2)

3c1 + 1

)2

+c2 − �2

2�2 , (34)

where U, G, M, N , H and � are invariant functions
of ξ = c1x+2c4

c1
√
c1t+c2

and η = c1y+c3
c1(c1t+c2)

.
Substituting Eqs.(29)–(34) into the enlarged sys-

tems (1), (5), (11), and (12) yields

G = − c7�ξ, (35)

M = c1c7η�η + c1c7
2

ξ�ξ − c7, (36)

N = − c7�η (37)

H = − c7�ξξ , (38)

U = 1

24�2
ξ

[12(c21η2 − 1)�2
η

+ 12(c21�ξηξ − 2c1η)�η − 8c7c5�
4
ξ

+ 3(c21ξ
2 + 8

√
6c7c5�ξξ − 4c2)�

2
ξ

− 12(c1ξ + 4�ξξξ )�ξ + 36�2
ξξ + 12], (39)

where � satisfies the following reduction equation

�ξξξξ�
2
ξ − 4�ξξ�ξξξ�ξ

+ 3�3
ξξ +

[
−2

3
c7c5�

4
ξ + c1ξ(c1�ηη − 1)�ξ

+ 1 + (c21η
2 − 1)�2

η

− 2c1�ηη

]
�ξξ − 2

[
1

2
(c21η

2 − 1)�ηη

+ c1

(
1

2
�ξηc1ξη + c1�ηη

+ 3

8
c1�ξξ − 1

2

)]
�2

ξ = 0. (40)

It is natural that once � is solved out from (40), the
explicit solutions of the (2 + 1)-dimensional Boussi-
nesq equation (1) would be immediately obtained by
substituting U, H, G and � into Eq. (34) with Eqs.
(35), (38) and (39).
Case 2 ci �= 0 (i = 2, 3, 4, 5, 6, 7) and c1 = 0.

In this case, the group invariant solutions of the
enlarged system can be obtained with the same logic
of case 1, which read

φ =
tanh

( √
3�1(φ

′+t)
6c2

) √
3�1 + 3c6

c5
,

�1 = 2c5c7 + 3c26 (41)

g = − 2g′

cosh
( √

3�1(φ′+t)
3c2

)
+ 1

, (42)

m = − 2m′

cosh
( √

3�1(φ′+t)
3c2

)
+ 1

, (43)

n = − 2n′

cosh
( √

3�1(φ′+t)
3c2

)
+ 1

, (44)

h = −
√
3

(
2c5g′2 sinh

( √
3�1(φ

′+t)
6c2

)
+ h′√3�1 cosh

( √
3�1(φ

′+t)
6c2

))

3
√

�1 cosh
( √

3�1(φ′+t)
6c2

)3 ,

(45)

u = u′ −
2c5

√
3 sinh

( √
3�1(φ

′+t)
6c2

)
h′

√
�1 cosh

( √
3�1(φ′+t)

6c2

)

−
2c5g′2

(
cosh

( √
3�1(φ

′+t)
6c2

)2 − 1

)

�1 cosh
( √

3�1(φ′+t)
6c2

)2 , (46)

where u′, g′,m′, n′, h′, φ′ are invariant functions of
variables x ′ = c2x−c4t

c2
and y′ = c2y−c3t

c2
.

Substituting Eqs. (41), (44), (45) and (46) into the
enlarged (2 + 1)-dimensional Boussinesq system (1),
(5), (11) and (12) yields
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g′ = − φ′
x ′�1

2c2c5
, (47)

m′ = − �1(−c3φ′
y′ − c4φ′

x ′ + c2)

2c22c5
, (48)

n′ = − φ′
y′�1

2c2c5
, (49)

h′ = − φ′
x ′x ′�1

2c2c5
, (50)

u′ = − 1

6c22φ
′2
x ′

[3(c22 − c23)φ
′2
y′ − 6c3(c4φ

′
x ′ − c2)φ

′
y′

− 2�1φ
′4
x ′ + 3(c22 − c24)φ

′2
x ′

+ 6c2(2c2φ
′
x ′x ′x ′ + c4)φ

′
x ′ − 9c22φ

′2
x ′x ′ − 3c22],

(51)

where φ′ satisfies the following reduction equation

(
c23 − c22

)
φ′
x ′x ′φ′2

y′ + 2c3
(
φ′
x ′x ′c4φ

′
x ′ − φ′

x ′x ′c2
)
φ′
y′

− 1

3
φ′
x ′x ′�1φ

′4
x ′

+ [(c22 − c23)φ
′
y′y′ + c22φ

′
x ′x ′x ′x ′ − 2φ′

x ′y′c3c4]φ′2
x ′

− 2c2(2c2φ
′
x ′x ′x ′ + c4)φ

′
x ′x ′φ′

x ′

+ 3c22φ
′3
x ′x ′ + φ′

x ′x ′c22 = 0. (52)

Similarly to case 1,whenφ′ is solved out byEq. (52),
the solutions of the (2 + 1)-dimensional Boussinesq
equation can be obtained by substituting it into (46)
with Eqs. (47), (50) and (51).

From the symmetry reduction Eqs. (40) and (52),
one can obtain various nonlinear wave solutions, so
the exact solutions of the (2 + 1)-dimensional Boussi-
nesq equation given by Eqs. (34) and (46) represent the
complicated interaction solutions between solitons and
background nonlinear waves.

To give out a concrete example, we consider the
special solution of Eq. (52) in the form

φ′ = k′
1ξ + l ′1η + c′Eπ (sn(l ′2η + k′

2ξ, N ′), M ′, N ′),
(53)

with arbitrary constants k′
1, l

′
1, c

′, l ′2, k′
2, M ′, N ′.

Here, Eπ is the third type of incomplete elliptic inte-
gral, while sn(l ′2η + k′

2ξ, N ′) is a Jacobi elliptic func-
tion. Now substitute Eq. (53) into Eq. (52) and vanish
different powers of sn(l ′2η + k′

2ξ, N ′), we get the fol-
lowing conditions

l ′1 = 1

6c33(M
′ − 1)c′

[
6c4(c7c5 + 3

2
c26)(M

′ − 1)c′k51

+
[
12c4

(
M ′ − 3

2

) (
c7c5 + 3

2
c26

)
k2c

′2

− 2c3

(
c7c5 + 3

2
c26

)
(M ′ − 1)c′

− 36c23c4k2(M
′ − 1)2

]
k′4
1

− 36

[
−

(
1

6
(M ′ − 3)

) (
c7c5 + 3

2
c26

)
c′2

+ c23(M
′ − 1)(M ′ − 2)

]
c4k

′2
2 c

′k′3
1

−
[
12

1

2
c4

(
c7c5 + 3

2
c26

)
k′
2c

′3

− 1

6
(M ′ − 3)c3

(
c7c5 + 3

2
c26

)
c′2

− 3c23c4k
′
2(M

′ − 1)c′

+ c33(M
′ − 1)(M ′ − 2)

]
k′2
2 c

′k′2
1

+ 24

[
−1

6
(c7c5 + 3

2
c26)k

′3
2 c

′3 + c23k
′3
2 (M ′ − 1)c′

− 1

8
c4c3(M

′ − 1)

]
c3c

′k′
1 + 3(M ′ − 1)c33c

′
]

,

(54)

l ′2 = k′
2

c33(M
′ − 1)c′

[
4

((
1

12
(−3c4k

′
1 + c3)

)(
c7c5 + 3

2
c26

)
k′3
2 c

′4

− 1

6
k′
1(M

′ − 3)

(
c7c5 + 3

2
c26

)
k′2
2

(
− 3

2
c4k

′
1 + c3

)
c3

− 1

2
k′
2

(
−

(
M ′ − 3

2

)
c4

(
c7c5 + 3

2
c26

)
k′3
1

+ c3(M
′ − 3

2
)

(
c7c5 + 3

2
c26

)
k′2
1

− 3c23c4k
′2
2 (M ′ − 1)k′

1 + c33k
′2
2 (M ′ − 1)

)
c′2

+
(
1

4
c4

(
c7c5 + 3

2
c26

)
k′4
1

− 1

3
c3

(
c7c5 + 3

2
c26

)
k′3
1

− 3

2
c23c4k

′2
2 (M ′ − 2)k′2

1 + c33k
′2
2 (M ′ − 2)k′

1

− 1

8
c23c4

)
(M ′ − 1)c′

+ 3

2
c23k

′2
1 k

′
2(M

′ − 1)2(−c4k
′
1 + c3)

)]
, (55)

and

N ′2 = M ′ (−2c5c7c′2 − 3c26c
′2 + 12c23M

′ − 12c23
)

12c33(M
′ − 1)

.

(56)
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Substituting Eq. (53) into Eq. (46) with Eqs. (47),
(50) and (51) under conditions (54), (55), (56), we get a
special interaction solution between solitons and Jacobi
elliptic waves.

4 CRE integrability and new interaction solutions

In this section, we further explore the consistent Ric-
cati expansion (CRE) integrability of the (2 + 1)-
dimensional Boussinesq equation (1). By leading order
analysis, the Riccati expansion solution is

u = v0 + v1R(w) + v2R(w)2, (w = w(x, y, t)),

(57)

where v0, v1, v2 are functions of (x, y, t) to be deter-
mined later and R(w) satisfies the Riccati equation

Rw = a0 + a1R + a2R
2. (58)

Substituting Eq. (57) with Eq. (58) into Eq. (1) and
vanishing all the coefficients of different powers of
R(w), we get

v2 = − 6w2
xa

2
2, v1 = − 6a2(w

2
xa1 + wxx ), (59)

v0 = − 2wxxx

wx
+ 3w2

xx

2w2
x

− 3a1wxx + w2
t

2w2
x

− 1

2
−

(
4a0a2 + 1

2
a21

)
w2
x − w2

y

2w2
x
, (60)

leaving four equations for only one dependent vari-
able w. Fortunately, it can be verified that these equa-
tions are consistent with each other and the (2 + 1)-
dimensional Boussinesq equation is CRE integrable in
this sense [16]. Thus, we obtain the final equation for
w

δwxxwx − C ′
xC

′ + P ′
x P

′ − C ′
t + K ′

x + P ′
y = 0,

(δ = 4a0a2 − a21) (61)

with K ′ = wxxx
wx

− 3
2

w2
xx

w2
x
, C ′ = wt

wx
and P ′ = wy

wx
.

From the property that these equations derived by
vanishingdifferent powers of R(w) in the expansion are
consistentwith each other,we conclude that the (2+1)-
dimensional Boussinesq equation (1) really has CRE
integrability and expansion (57) is a CRE expansion.
Naturally, the following theorem is ready:

Theorem 3 If w is a solution of

δwxxwx − C ′
xC

′ + P ′
x P

′ − C ′
t + K ′

x + P ′
y = 0 (62)

then

u = −6a22w
2
x R(w)2 − 6a2

(
w2
xa1 + wxx

)
R(w)

− 2wxxx

wx
+ 3w2

xx

2w2
x

− 3a1wxx + w2
t

2w2
x

− 1

2
+

(
1

2
δ − 6a0a2

)
w2
x − w2

y

2w2
x

(63)

is a solution of Eq.(1) where R = R(w) is an arbitrary
solution of the Riccati equation (58).

When the Riccati equation (58) takes the special
solution R = tanh(w), the Riccati expansion (57)
becomes

u = u′
2 tanh(w)2 + u′

1 tanh(w) + u′
0. (64)

It is natural that any CRE integrable system must
also be CTE (consistent tanh expansion) integrable.
By using the tanh expansion (64) of the (2 + 1)-
dimensional Boussinesq equation, one could obtain
some important explicit solutions, especially the inter-
actions solutions between soliton and nonlinear peri-
odic waves. To this end, we first provide the following
nonauto BT.

Theorem 4 If w satisfies the following equation

4wxxwx + C ′C ′
x − PP ′

x + C ′
t − K ′

x − P ′
y = 0 (65)

then

u = −6w2
x tanh(w)2 + 6wxx tanh(w)

− 2wxxx

wx
+ 3w2

xx

2w2
x

+ w2
t

2w2
x

− 1

2
+ 4w2

x − w2
y

2w2
x

(66)

is a solution of Eq. (1).

To give out some solutions explicitly, we change w

to the form

w = k1x + l1y + ω1t + g, (67)

with arbitrary constants k1, l1, ω1 and arbitrary func-
tion g. By using Theorem 4, we could obtain nontrivial
solutions of the (2 + 1)-dimensional Boussinesq equa-
tion from trivial solutions of (65) with Eq. (67). In the
following, we give some concrete examples.

123



1476 X. Liu et al.

Case 1 In Eq. (65), we take a trivial seed solution

w = kx + ly + ωt + d, (68)

with k, l, ω, d being arbitrary constants. By substitut-
ing Eq. (68) into Theorem 4, we have the following
exact solution for the (2 + 1)-dimensional Boussinesq
equation (1)

u = −6k2 tanh(kx + ly + ωt + d)2

+8k4 − k2 − l2 + ω2

2k2
. (69)

Case 2 We consider a special solution of (65) in the
form

w = k1x + l1y + ω1t + W (X),

X = k2x + l2y + ω2t, (70)

with arbitrary constants k1, l1, ω1, k2, l2, ω2. Substi-
tuting (70) into (65), we find that W1(X) ≡ W (X)X
satisfies the following elliptic function equation:

W 2
1X = C0 + C1W1 + C2W

2
1 + C3W

3
1 + C4W

4
1 (71)

with

C0 = 2C1k1k52 − C2k21k
4
2 + 4k41k

2
2 − k21l

2
2 + k21ω

2
2 + k22l

2
1 − k22ω

2
1

3k62
,

C3 = −C1k52 − 2C2k1k42 − 16k31k
2
2 + 2k1l22 − 2k1ω2

2 − 2k2l1l2 + 2k2ω1ω2

3k21k
3
2

,

C4 = 4, (72)

and arbitrary constantsC1 andC2. Then the solution of
the (2 + 1)-dimensional Boussinesq equation has the
form

u = − 6(W1k2 + k1)
2 tanh(k1x + l1y + ω1t + W )2

+ 6W1,Xk
2
2 tanh(k1x + l1y + ω1t + W )

+ 1

2(W1k2 + k1)2
[
8W 4

1 k
4
2

+ 32W 3
1 k1k

3
2 + (48k21k

2
2 − k22 − l22 + ω2

2)W
2
1

−
(
4W1,XXk

4
2 − 32k31k2 + 2k1k2

+ 2l1l2 − 2ω1ω2)W1 + 3W 2
1,Xk

4
2

− 4W1,XXk1k
3
2 + 8k41 − k21 − l21 + ω2

1

]
. (73)

From the form of (73), it is obvious that this solution
describes solitons interactedwith periodicwaveswhich
can be derived from (71). To illustrate this concretely,
we consider the cnoidal solution of (71) as

W1 = μ0 + μ1sn(M ′′X, N ′′), (74)

with arbitrary constants μ0, μ1, M ′′ and N ′′. Substi-
tuting Eq. (74) with Eq. (72) into Eq. (71) and setting
the coefficients of different powers of sn(M ′′X, N ′′) to
zero, we get

C1 = 2M2N 2μ0 + 2M2μ0 − 16μ3
0,

C2 = − M2N 2 − M2 + 24μ2
0,

ω2
1 = − 1

4k2
(3M4N 2k25 − 12M2N 2k52μ

2
0

− 20M2N 2k1k
4
2μ0 − 8M2N 2k21k

3
2 (75)

− 12M2k52μ
2
0 + 48k52μ

4
0 − 20M2k1k

4
2μ0

+ 160k1k
4
2μ

3
0 − 8M2k21k

3
2 + 192k21k

3
2μ

2
0 (76)

+ 96k31k
2
2μ0 + 16k41k2 + 4k1l1l2

− 4k1ω1ω2 − 4k2l
2
1), (77)

ω2
2 = 1

k1
(M2N 2k52μ0 + M2N 2k1k

4
2 + M2k52μ0

− 8k52μ
3
0 + M2k1k

4
2 − 24k1k

4
2μ

2
0

− 24k21k
3
2μ0 − 8k31k

2
2 + k1l

2
2

− k2l1l2 + k2ω1ω2),

μ1 = MN

2
. (78)

Figures 1, 2 and 3 display the interesting interac-
tion structure between solitons and cnoidal periodic
waves in different dimensions. It is shown fromFigs. 1b
and 3b that a solitary wave propagates on a cnoidal
backgroundwave,whileFig. 2b indicates that this inter-
action is elastic with nonzero phase shifts. For Figs. 1a,
c, 2a, c, and 3a, c, respectively, we can give similar
conclusions. In consideration of plentiful interacting
processes between solitary waves and periodic waves
in nature, these interaction solutions can be used to
explain related phenomenons.

5 Conclusion and discussion

In summary, the (2+ 1)-dimensional Boussinesq equa-
tion is studied by using residual symmetry reduction
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Fig. 1 The soliton–cnoidal wave interaction solution of the (2
+ 1)-dimensional Boussinesq equation given by (73) with (74).
The parameters are fixed as M ′′ = 1, N ′′ = 1

2 , k2 = 1, k1 =

1
4 , l1 = 1, l2 = 1, μ0 = 1

6 ,C1 = 37
108 ,C2 = − 7

12 , ω2 =
349

10332

√
861, ω1 = 499

13776

√
861,C0 = 5

162 ,C3 = − 8
3 , μ1 = 1

4 : a
t = 0; b x = 0; c y = 0

Fig. 2 The density plot of interaction solution which is given the same as in Fig. 1 as well as the same parameters fixed: a t = 0; b
y = 0; c x = 0

(a) (b) (c)

Fig. 3 The soliton–cnoidal wave interaction solution which is given the same as in Fig. 1 as well as the same parameters fixed: a y = 0,
t = 0; b x = 0, t = 0; c x = 0, y = 0
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method and CRE method, respectively. By applying
localization procedure, the residual symmetry is trans-
formed into aLie point symmetry in a newenlarged sys-
tem and then the corresponding finite transformation is
obtained by solving initial value problem. New inter-
action solutions of the (2+ 1)-dimensional Boussinesq
equation are obtained by using standard Lie symmetry
method, and a concrete example is displayed. Further-
more, the (2 + 1)-dimensional Boussinesq equation is
found to have CRE integrability, and some new BTs
are given from this property, from which new interac-
tion solutions are constructed. The concrete interaction
solution between soliton and cnoidalwaves is explicitly
given.

There exist some other methods to investigate inter-
action solutions between solitons and nonlinear waves.
For example, in Ref. [7], by using double commuta-
tion method and the inverse scattering transform, the
authors investigated soliton solutions of the Toda hier-
archy on a quasi-periodic finite-gap background; in
Ref. [8], for Sine–Gordon equation, the solitons mov-
ing on a cnoidalwave background are obtained byusing
Darboux transformation method. Compared to these
traditional methods, the nonlocal symmetry reduction
method and CRE method applied here are more eas-
ier to be carried out for more integrable nonlinear sys-
tems.Moreover, from different periodic wave solutions
of symmetry reduction equations [see, e.g., Eqs. (40),
(52)] or CRE Eq. (65), we could easily construct more
abundant types of interaction solutions, which could be
used to explain related phenomena in nature.

Compared with each other the two kinds of interac-
tion solutions which are derived from symmetry reduc-
tion method and CREmethod, it is obvious that the for-
mer one is more complicated. It needs to investigate the
detailed relation between these methods in analyzing
relevant physical phenomena in the future.

Acknowledgements The authors are grateful to the referee,
whose suggestions for the paper have led to a substantial clarifi-
cation of ourwork. Thisworkwas supported by theNationalNat-
ural Science Foundation of China under Grant Nos. 11405110,
11275129, 11472177 and theNatural ScienceFoundation ofZhe-
jiang Province of China under Grant No. LY18A050001.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest to this work. There is no professional or other per-
sonal interest of any nature or kind in any product that could be

construed as influencing the position presented in the manuscript
entitled.

References

1. Fleischer, J.W., Segev, M., Efremidis, N.K.,
Christodoulides, D.N.: Observation of two-dimensional
discrete solitons in optically induced nonlinear photonic
lattices. Nature 422, 147 (2003)

2. Dai, C.Q., Xu, Y.J.: Spatial bright and dark similaritons on
cnoidal wave backgrounds in 2D waveguides with different
distributed transverse diffractions. Opt. Commun. 311, 216
(2013)
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