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Abstract Complexity in time series is an intriguing
feature of living dynamical systems such as financial
systems, with potential use for identification of system
state. Multiscale sample entropy (MSE) is a popular
method of assessing the complexity in various fields.
Inspired by Tsallis generalized entropy, we rewrite
MSE as the function of q parameter called generalized
multiscale sample entropy and surrogate data analy-
sis (qMSE). qMSDiff curves are calculated with two
parameters q and scale factor τ , which consist of dif-
ferences between original and surrogate series qMSE.
However, the distance measure shows some limitation
in detecting the complexity of stock markets. Further,
we propose and discuss a modified method of gener-
alized multiscale sample entropy and surrogate data
analysis (qMSESS) to measure the complexity in finan-
cial time series. The new method based on similar-
ity and symbolic representation (qMSDiffSS) presents
a different way of time series patterns match show-
ing distinct behaviors of complexity and qMSDiffSS
curves are also presented in two ways since there are
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two influence factors. Simulations are conducted over
both synthetic and real-world data for providing a com-
parative study. The evaluations show that the modified
method not only reduces the probability of inducing
undefined entropies, but also performs more sensitive
to series with different features and is confirmed to be
robust to strong noise. Besides, it has smaller discrete
degree for independent noise samples, indicating that
the estimation accuracy may be better than the origi-
nal method. Considering the validity and accuracy, the
modified method is more reliable than the original one
for time series mingled with much noise like financial
time series. Also, we evaluate qMSDiffSS for differ-
ent areas of financial markets. The curves versus q of
Asia are greater than those of America and Europe.
Moreover, American stock markets have the lowest
qMSDiffSS, indicating that they are of low complexity.
While the curves versus τ help to research their com-
plexity from a different aspect, the modified method
makes us have access to analyzing complexity of finan-
cial time series and distinguishing them.

Keywords Complexity · Symbolic representation ·
Similarity · Stock market · Generalized multiscale
sample entropy

1 Introduction

Recently, the study on the complexity of real datawhich
is regulated by its environment or mechanism in both
spatial and temporal domains, such as financial time
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series, has drawn considerable attention [1–4]. Finan-
cial time series are usually nonlinear processes where
complex and chaotic behaviors frequently emerge, and
it is believed that adequatemethods are needed for anal-
ysis of data from such systems. Rich information is
contained in financial time series, so it is an impor-
tant aspect to research. A key measure of information
is known as entropy, which is the rate of information
production as it has a strong relation with nonlinear
time series and dynamical systems. Entropy is widely
applied into various fields [6–10] since it is a measure
of degree of uncertainty to detect the system complex-
ity and we also pay much attention to it. It is usually
expressed by the average number of bits needed to store
or communicate one symbol in a message [5,11].

Many entropy-based methods have been proposed
such as Boltzmann–Gibbs entropy [12,13], transfer
entropy [14,15] and approximate entropy [16,17] and
then successfully used to investigate the features of
complexity, correlation andmultifractality. Pincus [16]
introduced a family of measures termed approximate
entropy (ApEn) for the analysis of short and noisy time
series which is a regularity statistic and widely used in
medicine and physiology. Sample entropy (SampEn)
is a modification of approximate entropy proposed by
Richman et al. [18]. It has the advantage of being less
dependent on length of data and showing relative con-
sistency over a broader range of possible values of
parameters. Although these twomethods both measure
the degree of randomness of a time series and have
been also used with short datasets [19], contradictory
findings occur in real-world datasets obtained in health
and disease states [20] because there is no straightfor-
ward relationship between regularity and complexity.
To avoid these limitations, Costa et al. [21] introduced
the multiscale entropy (MSE) to take into account the
information contained in multiple scales which can
present the complexity more comprehensively.

Based above, the multivariate financial time series
are widely concerned in current process of quantify-
ing the dynamical properties of the complex phenom-
ena in financial systems. Thus, many modified meth-
ods based on SampEn and MSE have been proposed
to explore the nonlinear natures of financial markets
nowadays. Ahmed andMandic introducedmultivariate
sample entropy (MSampEn) in order to generalize the
univariate MSE to the multivariate case and evaluate
its evolution over multiple time scales to perform the
multivariate multiscale entropy (MMSE) analysis [22].

Moreover, MMSE has been effectively applied in ana-
lyzing the multivariate time series in financial market
for the first time by Lu and Wang [23]. They quantify
the complexity of four generated trivariate time series
for each stock trading hour in China stock markets,
including the SSE and the SZSE, for a new trial and
illustrate many new findings. Mao et al. [24] also test
the transfer entropy between multivariate time series
and characterize the information flow among financial
time series.

Theiler et al. [3] thought of surrogate data generation
for nonlinearity hypothesis testing for time series anal-
ysis. This method is quoted in a new method for com-
plex system analysis called generalized sample entropy
and surrogate data analysis by Silva andMurta Jr. [25].
Generalized statistical formalism and the technique of
surrogate data are combined in this method. The surro-
gate data are generated by simply shuffling the original
time series, yielding in a time series with exactly the
same time distribution but with no time correlation, and
then they calculate the generalized sample entropy of
original time series and surrogate ones. The generalized
formof SampEn (qSampEn), a function ofq parameter,
gives a richer perspective to analyze the data.

Inspired by MSE, we extend the method proposed
by Silva and Murta Jr to multiple scales, denoted as
generalized multiscale sample entropy and surrogate
data analysis (qMSE). However, we find that the dis-
tancemeasure, known as the infinite norm between two
compared vectors, may lead to the loss of information
of time series and an average idea can be more reliable.
When it comes to financial time series such as stock
markets, we pay attention to many aspects of informa-
tion, among which complexity and the changing trend
are of significance. So symbolic representation for
financial time series is also in need. Since the distance
between two template vectors can be inversely regarded
as similarity to some extent, we develop another way
to quantify the degree of similarity. Based on sym-
bolic representation, we modify the distance measure
in qMSE.At last, we further put forward amodification
ofqMSEandwename it asmodified generalizedmulti-
scale sample entropy and surrogate data analysis based
on similarity and symbolic representation (qMSESS).
qMSESS is confirmed to be useful for time series min-
gled with much noise like financial time series by com-
parison of experiments with synthetic data with qMSE
and qMSESS. Then, we apply qMSESS to stock mar-
kets and research their complexity.
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The remainder of the paper is organized as follows.
Section 2 gives a brief review to the SampEn, MSE,
generalized sample entropy and surrogate data analysis
and our new method of qMSE and qMSESS. Section 3
provides a comparative study to evaluate the effective-
ness of qMSE and qMSESS by using artificial time
series from two aspects. Section 4 is devoted to apply
qMSESS to real-world data and illustrate our analysis.
Finally, conclusions are made in Sect. 5.

2 Methodology

2.1 Sample entropy and multiscale sample entropy

The multiscale sample entropy (MSE) is proposed on
the basis of sample entropy (SampEn) by Costa et
al. [21]. Firstly, we briefly review the SampEn [18].
Let N be the length of the time series, m be the
length of sequences to be compared, and r be the
tolerance for accepting matches. Given a time series
x = {x1, x2, . . . , xN } of N points, the SampEnmethod
is summarized as follows:

Step 1Construct template vectors xm(i) through the
sets of points x from i to i +m − 1 with dimension m

xm(i) = {xi+k : 0 ≤ k ≤ m − 1}, 1 ≤ i ≤ N − m.

(1)

Step 2 For each xm(i), the distance between vectors
xm(i) and xm( j) is defined by the infinite norm:

d(xm(i), xm( j)) = max{|xi+k − x j+k | : 0 ≤ k ≤ m − 1},
1 ≤ i, j ≤ N − m, j �= i. (2)

Step 3 An instance where a vector xm( j) is within
r of xm(i) is called a m-dimensional template match.
To exclude self-matches, we must have j �= i . Next,
we give a specific definition. For xm(1), count the
number of template matches n(m)

1 , then from xm(2) to
xm(N −m), obtain the number of template matches for
themselves in turn. n(m) is defined as the sum of n(m)

i
(1 ≤ i ≤ N −m). Finally, let n(m) be the total number
of m-dimensional template matches. Repeat the above
process for m = m + 1, and n(m+1) is obtained to rep-
resent the total number of m + 1-dimensional template
matches.

Step 4 Sample entropy is defined with the equation:

SampEn(x,m, r, N ) = ln n(m)(r) − ln n(m+1)(r) (3)

In the MSE method, we first use coarse-graining
procedure to construct consecutive coarse-grained time
series yτ from the original time series x on different
scale factor τ .

yτ = {yτ
1 , yτ

2 , . . . , yτ
p},

where yτ
j = 1

τ

jτ∑

i=( j−1)τ+1

xi , 1 ≤ j ≤ N/τ.
(4)

For scale factor τ = 1, the time series y1 is the original
series x. Then, for each given τ , the original series is
divided into N/τ coarse-grained series [27]. For each
coarse-grained series yτ , the MSE is defined by the
SampEn algorithm.

MSE(x,m, r, N , τ ) = ln n(m)(r, τ ) − ln n(m+1)(r, τ ).

(5)

2.2 Generalized sample entropy and surrogate data
analysis

Silva and Murta Jr. proposed a new method for com-
plex system analysis which is called generalized sam-
ple entropy and surrogate data analysis in [25]. It offers
a window into the complex system from a new per-
spective [28] and allows us to gain a new insight of the
complexity analysis.

Inspired by Tsallis generalized entropy, a kind of
nonadditive statistics [12], they rewrite SampEn as a
function of q parameter. Tsallis entropy (Sq ), a general-
ization of Boltzmann–Gibbs–Shannon (BGS) entropy
[13], has proven to be suitable for complex and multi-
fractal systems since it exceeds the domain of applica-
bility for classical BGS entropy [29]. The discrete form
of Sq is given by

Sq = 1 − ∑W
i=1 p

q
i

q − 1
, (6)

or

Sq =
W∑

i

pi logq(1/pi ), (7)

where pi is the probability that the system has in state
i ,W is the amount of possible states of the system, and
q is the entropic index. Equation (2) further derives
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the general form for logarithm function [26], namely,
q-logarithm, defined as

logq(x) = x1−q − 1

1 − q
,

(x ∈ R
∗+; q ∈ R; log1(x) = log(x)).

(8)

Then, consider the time series x, qSampEn is defined
as

qSampEn(x,m, r, N , q) = log[n(m) �q n
(m+1)]

= logqn
(m)(r)

−logqn
(m+1)(r). (9)

Generalized sample entropy and surrogate data analysis
is divided into four steps as follows:

Step 1 Generate 100 surrogate series for each given
time series by shuffling the original signal.

Step 2 Calculate qSampEn for each surrogate series
and theirmeanvalues, denoted asqSampEnsurr .

Step 3 Calculate qSampEn for original time series,
denoted as qSampEnorig.

Step 4 Calculate the difference:

qSDi f f = qSampEnorig − qSampEnsurr.

They use qSDiff to evaluate the influence of the
entropic index of qSampEn. And it is obtained vs.
entropic index q so that we can assess the contribu-
tion of this index.

2.3 Generalized multiscale sample entropy and
surrogate data analysis (qMSE)

We extend the algorithm to multiscale analysis,

qMSE(x,m, r, N , q, τ ) = log[n(m) �q n
(m+1)]

= logqn
(m)(r, τ )

− logqn
(m+1)(r, τ ), (10)

then generalized multiscale sample entropy and surro-
gate data analysis is divided into four steps as follows:

Step 1 Generate 100 surrogate series for each given
time series by shuffling the original signal.

Step 2 Calculate qMSE for each surrogate series and
their mean values, denoted as qMSEsurr.

Step 3 Calculate qMSE for original time series, deno-
ted as qMSEorig.

Step 4 Calculate the difference:

qMSDiff = qMSEorig − qMSEsurr.

When q = 1, qMSE becomes the original method
that Silva and Murta Jr. have proposed.

2.4 Modified generalized multiscale sample entropy
and surrogate data analysis based on similarity
and symbolic representation (qMSESS)

Furthermore, if we want to investigate the trend for
financial time series, we think of similarity and sym-
bolic representation. In this way, we propose a modi-
fied method based on qMSE to quantify the degree of
similarity and complexity correspondingly. The new
method, modified multiscale sample entropy based on
similarity and symbolic representation, consists of the
following procedures:

Firstly, construct consecutive coarse-grained time
series xτ with the scale factor τ by Eq. (4) and sym-
bolize xτ . We get 1 if the component of xτ is positive,
otherwise we get 0. In this way, a binary representa-
tion yτ is obtained. For practical study, 1 represents
the increase of the stock market so it has a practical
purpose.

Secondly, get template vectors yτ
m(i) with an over-

lapped sliding window of length m from the signed
series yτ by Eq. (1):

Thirdly, define two functions f and s to calculate
the similarity between two template vectors. f is a
symbolic function between two template vectors yτ

m(i)
and yτ

m( j) such that we will obtain a binary vector
countτm(i, j) of lengthm where there is a 1 in the posi-
tionwhich the corresponding scalar components of two
template vectors are equal.

f =
{
0 if yτ

m(i + k) �= yτ
m( j + k),

1 if yτ
m(i + k) = yτ

m( j + k).

The similarity s of the two compared vectors under
the function f is as follows:

s(yτ
m(i), yτ

m( j)) = # of 1incountτm(i, j)

m
,

1 ≤ i, j ≤ N − m, j �= i. (11)

Then, we count template matches. An instance
where a vector yτ

m( j) is beyond r of yτ
m(i) is called a

m-dimensional template match. Here, the condition ji
guarantees that self-matches are excluded. For yτ

m(1),
we count the number of template matches named as
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n(m)
1 by comparing s(yτ

m(1), yτ
m( j)) and r , then from

yτ
m(2) to yτ

m(N − m), we get the number of tem-

plate matches for themselves in turn. The sum of n(m)
i

(1 ≤ i ≤ N − m) is assigned to n(m). Finally, let n(m)

represent the total number of m-dimensional template
match. Repeat the above process form = m+1, and the
total number of m + 1-dimensional template matches
is set to n(m+1).

Finally, the modified generalized multiscale sample
entropy is

qMSESS(x,m, r, N , q, τ ) = log[n(m) �q n
(m+1)]

= logqn
(m)(r, τ )

−logqn
(m+1)(r, τ ). (12)

Modified generalizedmultiscale sample entropy and
surrogate data analysis based on similarity and sym-
bolic representation is also divided into four steps as
follows:

Step 1 Generate 100 surrogate series for each given
time series by shuffling the original signal.

Step 2 Calculate qMSESS for each surrogate series
and their mean values, denoted as qMSESS surr.

Step 3 Calculate qMSESS for original time series,
denoted as qMSESS orig .

Step 4 Calculate the difference:

qMSDiffSS = qMSESSorig − qMSESS surr.

In the new method, qMSDiffSS is assigned to eval-
uate the influence of the entropic index and the scale
factor of qMSESS. And it is obtained versus entropic
index q and scale factor τ giving us access to research-
ing the contribution of these two parameters, respec-
tively. The choice of threshold r is very important for
our study due to the change of similarity measure. On
the premise that n is the maximum number of 0, we can
tolerate in countτm(i, j), we set m = 2, n = 1, and r as
follows for the modified method:

r = 1

2

(
m − n

m + 1
+ m − n

m

)
. (13)

3 Comparative study

3.1 Accuracy test

Here, we apply 1/f noise to evaluate the effectiveness
of the two methods qMSE and qMSESS since a previ-
ous study [30] has demonstrated the reliability of this

kind of noise. All the values are obtained for 30 inde-
pendent 1/f noise samples; the length of each sample
is 2000 or 4000.

Tables 1 and 2 show the means, standard deviations
(SDs) and coefficients of variation (CVs) of qMSDiff
and qMSDiffSS obtained vs. entropic index q. q varies
from −2 to 2 with step of 0.5. It is obvious that the
absolute values of means and SDs both increase as q
increases. Themeans forqMSEwhenq = 1.5 and2 are
extremely high; they change a lot compared with other
q values, and this is totally unscientific when applied
into real data. So qMSE may lose validity at certain
q values. However, this limitation doesn’t occur for
qMSESS. The CVs for both method remain a state of
decrease with q increasing. For CVs under these two
different length, note that they are relatively small at
the longer length 4000, meaning that results for each
simulation are much more concentrated. What’s more,
theCVs for qMSDiffSS under length 2000 and 4000 are
both lower than those for qMSDiff, indicating that the
modified method qMSESS has smaller discrete degree,
and thus the estimation accuracy may be better than
qMSE.

Tables 3 and 4 represent these three statistics of
qMSDiff and qMSDiffSS obtained vs. scale factor τ .
τ varies from 1 to 10 with step of 1. Different results
are found with comparison to Tables 1 and 2. The CVs
for both method remain a state of increase with the
increase in τ . However, there exists a similar evaluation
that they are relatively small at the longer length 4000,
meaning that results for each simulation aremuchmore
concentrated. We also notice the CVs for qMSDiffSS
under length 2000 and 4000 are both lower than those
for qMSDiff. The absolute values of means for qMSE
roughly decrease when τ increases except for the scale
factor 5 under length of 2000whichmaymean 1/f noise
lose complexity at large scales. As far as we are con-
cerned [20], the complexity of 1/f noise almost remains
unchanged or becomes large since it has nonstationar-
ity and no regularity. So qMSE describes its feature
not well. However, the results for qMSDiffSS are much
more reliable and they fit in with the irregularity that
the samples have.

3.2 Sensitivity test

In this subsection, experiments with synthetic data,
logistic map, are performed by comparison test to show
the sensitivity of different kinds of data and resistance
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Table 1 Means, SDs and CVs of qMSDiff at different q for 1/ f noises

Length q

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

2000

Means 2.9599e−7 3.0793e−6 3.1761e−5 3.1837e−4 0.0028 0.0129 −0.4327 −23.5752 −900.5584

SDs 5.5120e−8 5.2726e−7 5.1134e−6 4.5195e−5 3.7162e−4 0.0015 0.0557 2.5287 88.2954

CVs 0.1862 0.1712 0.1610 0.1420 0.1314 0.1141 0.1288 0.1073 0.0980

4000

Means 3.4210e−7 3.5143e−6 3.5883e−5 3.5534e−4 0.0031 0.0141 −0.4639 −25.0819 −945.9916

SDs 6.2233e−8 5.7732e−7 5.3152e−6 4.6591e−5 3.5035e−4 0.0012 0.0465 1.9620 77.1601

CVs 0.1819 0.1643 0.1481 0.1311 0.1120 0.0877 0.1003 0.0782 0.0816

Table 2 Means, SDs and CVs of qMSDiffSS at different q for 1/f noises

Length q

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

2000

Means 0.0052 0.0061 0.0073 0.0104 0.0121 0.0160 0.0211 0.0256 0.0320

SDs 8.4252e−4 9.7840e−4 0.0011 0.0013 0.0015 0.0017 0.0020 0.0023 0.0028

CVs 0.1620 0.1604 0.1539 0.1234 0.1252 0.1037 0.0944 0.0913 0.0883

4000

Means 0.0054 0.0076 0.0097 0.0113 0.0138 0.0162 0.0211 0.0426 0.0556

SDs 3.2802e−4 3.8825e−4 4.4222e−4 5.3366e−4 6.1011e−4 7.1285e−4 8.6085e−4 9.5741e−4 0.0011

CVs 0.0607 0.0511 0.0456 0.0472 0.0442 0.0440 0.0408 0.0225 0.0205

Table 3 Means, SDs and CVs of qMSDiff at different τ for 1/f noises

Length τ

1 2 3 4 5 6 7 8 9 10

2000

Means −0.4327 −0.3935 −0.3778 −0.3439 −0.3642 −0.3529 −0.3327 −0.3122 −0.3133 −0.2683

SDs 0.0557 0.0791 0.1137 0.0737 0.0971 0.1322 0.1182 0.1523 0.1161 0.1755

CVs 0.1288 0.2010 0.3009 0.2143 0.2666 0.3747 0.3553 0.4879 0.3706 0.6543

4000

Means −0.4639 −0.4541 −0.4352 −0.4217 −0.3994 −0.3924 −0.3808 −0.3561 −0.3430 −0.3544

SDs 0.0465 0.0539 0.0572 0.0671 0.0880 0.0600 0.0875 0.0915 0.1156 0.1250

CVs 0.1003 0.1186 0.1315 0.1590 0.2202 0.1529 0.2297 0.2571 0.3369 0.3528

to the noise for qMSE and qMSESS. The logistic map,
a polynomial mapping (equivalently, recurrence rela-
tion) of degree 2, often cited as an archetypal example
of how complex, chaotic behavior can arise from very

simple nonlinear dynamical equations is a well-known
archetypal example. Mathematically, the logistic map
is written as
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Table 4 Means, SDs and CVs of qMSDiffSS at different τ for 1/f noises

Length τ

1 2 3 4 5 6 7 8 9 10

2000

Means 0.0211 0.0270 0.0206 0.0210 0.0247 0.0350 0.0322 0.0309 0.0283 0.0296

SDs 0.0020 0.0047 0.0035 0.0027 0.0039 0.0063 0.0061 0.0053 0.0047 0.0068

CVs 0.0944 0.1734 0.1719 0.1288 0.1579 0.1799 0.1899 0.1717 0.1649 0.2287

4000

Means 0.0211 0.0198 0.0203 0.0231 0.0234 0.0258 0.0271 0.0253 0.0255 0.0258

SDs 0.0009 0.0017 0.0020 0.0023 0.0037 0.0040 0.0047 0.0038 0.0041 0.0039

CVs 0.0408 0.0856 0.0977 0.0981 0.1582 0.1561 0.1739 0.1496 0.1601 0.1527

xi+1 = axi (1 − xi ). (14)

We are keenly aware of the rich dynamics logistic
map has in different ranges. For each value of a, we
analyze a time series of length 2000 where the con-
trol parameter a ∈ [3.5, 4] with a step size �a = 0.1.
Evaluations are conducted on two aspects including
entropic index q and scale factor τ . White noise of
standard deviation 0.01 and mean 0 is then added to
the original time series to research the resistance for
two methods.

Figure 1 presents the surfaces of qMSDiff (Fig. 1a)
and qMSDiffSS (Fig. 1b) versus entropic index q for
logistic map with the control parameter a ∈ [3.5, 4].
For all values of a, the curves of qMSDiff share a same
changing trend with q. At negative q values, they are
almost zero and then reach a maximum for 0 < q < 1.
We can’t see the maximum clearly because the value
is also very small. The curves of qMSDiff begin to
decrease after they reach the maximum. Although the
trend is the same, the extent of the decline of dif-
ferent qMSDiff curves varies. That is the only way
of distinguishing time series with different a. How-
ever, the rich dynamics of the logistic map should have
been exhibited from various aspects, so the qMSDiff
is not sensitive to the changes of dynamics for logistic
map. Compared with the curves of qMSDiff, those of
qMSDiffSS are much more abundant. Different trends
for time series with various a and q spread out. For
time series with a from 3.5 to 3.65, qMSDiffSS are
negative with all q values and they show a decreas-
ing trend with the increasing q. When a is beyond of
3.65, richer features for logistic map appear. There is
also a trend analogous to that of qMSDiff, first almost
remains unchanged and begins decreasing after reach-

ing a maximum. When a becomes 3.8, the qMSDiffSS
curves show a monotonically increasing trend and they
are all positive. The extent of increase begins to reduce
when a is larger and with a about 4, the qMSDiffSS
curves almost remains close to 0. That means com-
plexity is not lost even in the shuffled version of time
series. Different trends of curves and the extents of
these trends can be used to characterize and distinguish
series. The modified method contains rich information
of time series.

Next, we will take a look at the test of two methods
in the face of noise. Results are shown in Fig. 2 (sur-
faces of qMSDiff (Fig. 2a) and qMSDiffSS (Fig. 2b)
against white noise versus entropic index q). It is obvi-
ous that the modified method is robust to noise since
the curves almost remain unchanged. There is also no
change about the trends with the original method, but
the specific values of qMSDiff against white noise
change a lot compared to those calculated with original
time series. Besides, there are many points disappeared
when a is larger than 3.65which is a fact of significance
attention. Undefined entropy occurs when noise is fit
in the time series. When we explore the complexity of
time series, this kind of limitation will affect the result.
So qMSDiff performs worse than qMSDiffSS not only
in the description of time series with various features,
but also in the presence of noise.

To get a comparison of MSE and our method, we
set q = 1 and only test on the original series (logistic
series x4 with a = 3.8 is selected) instead of shuf-
fling the data, our method is then denoted as MSESS.
For logistic series x4 with a = 3.8, we add different
degrees of noise to it and test the MSE and MSESS at
certain scale. Each case of experiments is carried out
500 times independently, and through the means and
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Fig. 1 qMSDiff surface (a) and qMSDiffSS surface (b) calcu-
lated for logistic map with the control parameter a ∈ [3.5, 4] and
the entropic index q ∈ [− 2, 2]

error bars of sample entropies, we give a comparison
from Fig. 3.

Symbolic representation allows us to view the time
series from an aspect not so concrete, leading to a rel-
atively small entropy value compared to MSE. Corre-
spondingly, we reduce the complexity to some extent.
With the degree of noise increasing, entropies calcu-
lated by MSE algorithm go with a sustainable growth,
illustrating that MSE algorithm is sensible to noise.
While entropies calculated byMSESS algorithm almost
remain unchanged, MSESS has a stronger resistance
for noise than MSE. Besides, the error bars for MSESS

is lower than those of MSE, also indicating that the
results by MSESS are more consistent than those by
MSE. Next, we will test the performance of qMSDiff
and qMSDiffSS.

In order to better show the surfaces of qMSDiff
(Fig. 4a) and qMSDiffSS (Fig. 4b) versus scale factor
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Fig. 2 qMSDiff surface (a) and qMSDiffSS surface (b) calcu-
lated for logistic map in the face of noise with the control param-
eter a ∈ [3.5, 4] and the entropic index q ∈ [− 2, 2]

τ for logistic map, we choose some specific values of
parameter a. As we all know, with a between 3.449 and
3.544, from almost all initial conditions the population
will approach permanent oscillations among four val-
ues resonating with the periodicity. When a is beyond
3.569, logistic map is the onset of chaos, at the end
of the period-doubling cascade. At last, four groups of
logistic map time series (a = 3.5 for {x1},a = 3.6
for {x2},a = 3.7 for {x3}, a = 3.8 for {x4}) are
considered. Distinct features of four groups series are
well shown in two methods. We can distinguish these
four groups series due to the different information they
possess. The two methods both present the periodicity
of {x1}. The difference between {x1} and {x2} is not
obvious in Fig. 4a,whilewe can easily distinguish them
in Fig. 4b since there exists scale invariance for {x1} at
certain scales. Both {x3} and {x4} are kinds of chaos
except for the extent, so it is difficult to separate them if
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Fig. 3 Mean of the MSE analysis (up) and MSESS analysis
(down) for logistic series x4 with a = 3.8 in face of noise

we directly observe the original time series. Such lim-
itation also occurs in Fig. 4a, in which the curves are
very similar. However, by using qMSESS in Fig. 4b,
this problem is solved since {x4} is much more irregu-
lar and qMSDiffSS values gradually stabilize with the
scale factor increasing.

Figure 5 shows us the test of qMSE (Fig. 5a) and
qMSESS (Fig. 5b) when noise is added to the original
four group time series. Values obtained by qMSESS

change a little compared with those without noise
except for {x1} under the scale factor of 4 and 8. Since
{x1} have periodicity, noise may have a relatively big
affect at certain scales. Curves of qMSE are not as well
as those of qMSESS. It seems that noise has a big influ-
ence for this method. Although there is no big change
for {x1} and {x2}, the trend of {x3} changes a lot.
Besides, there is a undefined entropy for {x3} at scale
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Fig. 4 qMSDiff surface (a) and qMSDiffSS surface (b) calcu-
lated for logistic map with the control parameter a ∈ [3.5, 4] and
the scale factor τ ∈ [1, 10]

1. For {x4}, more undefined entropy occurs making us
have no access to the research of complexity. So qMSE
is not reliable for time series with less regularity and it
may lose accuracy for time series mingled with much
noise like financial time series.

From the comparison, we can see that qMSESS per-
forms better in characterizing time series containing
rich information and has a much more accurate result.

4 Results and discussions

4.1 Real-world data

Financial time series usually are considered with high
complexity. Nowadays, stock markets have been more
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Fig. 5 qMSDiff surface (a) and qMSDiffSS surface (b) calcu-
lated for logistic map in the face of noise with the control param-
eter a ∈ [3.5, 4] and the scale factor τ ∈ [1, 10]

and more attracted to investigators. In this section,
we apply the modified method qMSESS to real-world
data to research the complexity and similarity between
stock markets. The daily records of six stock exchange
indices during the period 2006–2016 are obtained from
Yahoo Finance. Here, we use log-returns as prox-
ies for volatility of stock exchange indices. Let S =
{S1, S2, . . . , Sn} be the vector of daily indexes, and use
the log-return of S to obtain x = {x1, x2, . . . , xN } of
length N which describes the financial time series.

xi = ln Si+1 − ln Si , 1 ≤ i ≤ N (= n − 1). (15)

The datasets consist of HSI (Hang Seng Index,
Asia), SSE (SSE Composite Index, Asia), DJI (Dow
Jones IndustrialAverage,America), S&P500 (S&P500

Index, America), CAC40 (Cotation Assiste en Continu
40, Europe) and SMI (Swiss Market Index, Europe).
The index values are nonstationary and may provide
bad results in stock analysis. So we take the log-returns
of indices as the objectives to smooth the sequence.
Besides, log-returns have its practical purpose in finan-
cial analysis. On the basis of mathematical analysis, it
can be seen as the relative return of stocks. The log-
returns of six stock markets are presented in Fig. 6.

4.2 Complexity analysis with qMSESS and
qMSDiffSS

Figure 7 displays the relation between qMSDiffSS
obtained by qMSESS algorithm and the entropic index
q. Results indicate that stock markets in Asia, like HSI
and SSE, have relatively large qSDiffSS values com-
pared with the other four stock markets. qSDiffSS val-
ues for HSI and SSE are close to zero or positive, while
others’ are negative. As is known to us, in the shuffled
version of time series with regularity, the regularity of
time series is lost so that the qMSDiffSS should be neg-
ative. The performance of DJI, S&P500, CAC40 and
SMI all makes sense. The zero or positive values of HSI
and SSE indicate us when the stock markets are shuf-
fled, the regularity or irregularity is remained, mean-
ing that they may have higher complexity. When q is
increasing, the six stock markets show different chang-
ing tendency. qMSDiffSS values of American markets
and European markets decrease with the increasing q,
while Asian markets have no tendency of decreasing.
The extent of decline of American markets and Euro-
pean markets is different; we can see that qMSDiffSS
of DJI and S&P500 falls faster than CAC40 and SMI.
It seems that American markets have the lowest com-
plexity. Besides, stock markets from different areas
are completely separated and qMSDiffSS values of the
markets in the same area are much closer. That means
stock markets in the same area are more likely to share
a similar complexity and there exists similarity among
them.This is also consistentwith facts because the busi-
ness behavior of the stock markets in the same area are
influenced by similar rules and the mutual influence
between markets [24].

Figure 8 shows us the relation between qMSDiffSS
obtained by qMSESS algorithm and the scale factor τ .
Stockmarkets from the same area tend to have a similar
change when observed with a scale factor. Obviously,
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Fig. 6 Log-returns of HSI (a), SSE (b), DJI (c), S&P500 (d), CAC40 (e) and SMI (f) during the period 2006–2016
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the six group data are divided into three types due to
their diverse features. At scale factor τ = 1, also the
six points at q = 1 in Fig. 7, the order from big to
small of qMSDiffSS is SSE, HSI, CAC40, SMI, DJI
and S&P500. qMSDiffSS values of SSE and HSI are
close to 0 with τ varying from 1 to 8, and it indicates
that the two stock markets may have the scale invari-
ance considering the surrogate data analysis. Earlier
researches find that generally sample entropy decreases
with the increasing τ . On the one hand, some positive
and negative data in calculation are offset in multiscale
analysis of log-return series for sample entropy and this
makes the entropy decrease [24]. On the other hand,
when stock markets are seen under large scales, origi-
nal series is highly coarse-grained and the information
contained reduces causing a smaller entropy which just
goes to show stock markets are less complex. The scale
invariance aware us of the fact that complexity is not
lost under large scales. Shuffled data are also complex,
and for this reason the entropy for SSE andHSI of orig-
inal series is almost the same as that of shuffled series.
So the qMSDiffSS is close to 0. For SSE at τ = 10
and HSI at τ = 9, the shuffled series may show more
regularity than original series, so the difference is pos-
itive. If qMSDiffSS curves remain almost unchanged
with scale factor, then the series is believed to have
high complexity.

Curves of DJI and S&P500 both have a peak value,
and they appear at τ = 3&4. The peak value may
mean that series have a higher complexity. After the
appearance of peak values, qMSDiffSS of DJI begins
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Fig. 8 qSDiffSS data plotted versus scale factor τ for SSE, HSI,
DJI, S&P500, CAC40 and SMI

to decreasewhileqMSDiffSS of S&P500first decreases
like DJI at the next scale and then increases.Monotonic
changes after peak values both can give a reflection on
the change of complexity due to the scale factor. The
negative values show a lower complexity. So the com-
plexity of S&P500 is considered to increase at large
scales. Peak values also occur for curves of CAC40 and
SMI. Besides, there are two peak values for each stock
market. qMSDiffSS values of CAC40 are all negative
except for those with scale factor τ = 4&9. The two
positive points indicate higher complexity than others.
qMSDiffSS values of SMI are all negative except for
those with scale factor τ = 5&8. This interesting phe-
nomenon of peak values makes us think about period-
icity. Peak values correspond to the scale factor where
the complexity begins to change. When we deal with
series with scale factor τ = 4&5, we take 4 or 5days’
information as a whole and the information contained
in the next trading day may be the same as that in the
first day. Then, the scale factor τ = 8&9 can also be
a signal of periodicity. Different stock markets’ peri-
odicity may be different due to unknown factors such
as level of development and system mechanism. As a
result, qMSDiffSS values against the scale factor can
also be applied to research the complexity and distin-
guish stock markets of different areas.

We extend the MSESS to multivariate situations to
get a comparison with Lu [23] and apply it into real-
world data and select the high-frequency (5-min inter-
val) returns of Shanghai Stock Exchange (SSE) and
Shenzhen Stock Exchange (SZSE) from November 1,
2013 to February 18, 2016 with 26784 data points
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Fig. 9 qMSESS analysis of Y1 (up) and Y2 (down) for SSE and
SZSE

(5-min returns) to research the complexity in stock
markets. The 5-min interval records are obtained from
Wind database. We also use log-returns as proxies for
volatility of stock exchange indices.

SSE and SZSE trade 4h a day, so there are 48 high-
frequency (5-min interval) data every trading day. For
multivariate analysis, we divide the 48 5-min returns
into 12 groups and there are four 5-min returns con-
tained in each group. By connecting each group of
data with the corresponding set of data on the same
time of the next day, we can generate 12 groups of
5-min return series, denoted as X1, X2, X3, . . . , X12.
In each group, there are 2232 data points. At last, let
Y1 = [X1, X2, X3] for the 1st hour, Y2 = [X4, X5, X6]
for the 2nd hour, Y3 = [X7, X8, X9] for the 3rd hour,
Y4 = [X10, X11, X12] for the 4th hour and we gen-

erate 4 trivariate time series in this way. Then, we
show an analysis for the 4 trivariate time series from
SSE and SZSE and make a comparison. Results are
shown in Figs. 9 and 10. Figure 11 represents the
mean of entropy values for Y1,Y2,Y3,Y4 of SSE and
SZSE.

We can see that all of the qMSESS curves decrease
with the increasing scale factor except for some certain
scales, which means that the multivariate return series
contain more useful information at the smaller scales.
It follows the rule that the higher the degree of coarse-
grained, the smaller the resolution. In this study, the
degree of coarse-grained exactly show the scale fac-
tor. So they contain less information at large scales.
Besides, the qMSESS values of four trivariate time
series from the SZSE are correspondingly larger than
those from the SSE. Generally, a lower entropy means
less complexity, indicating that the stock returns in each
hour from the SZSE are more dynamically complex
than those from the SSE. We also have some findings
that different from some traditional conclusions. There
is not a trend of monotonic decreases when the scale
factor increases. At some certain scale, for instance,
τ = 6, 11, the qMSESS values begin to increase. At
scale τ = 6, the entropy value begins to increase, and
the state lasts for 4 scales. At scale τ = 11, the entropy
value begins to increase again, and the state lasts until
we increase τ to 20. We can get different information
through different scales, and the scale factor where the
entropy value began to increase is an important point
for periodicity. When τ = 5, we take 1week’s infor-
mation together, the contained information may have
similarity with that of the previous week.

The qMSESS values for Y1,Y2,Y3,Y4 at scale
τ = 1 from the SSE are 0.22259, 0.20828, 0.20564,
0.19458, and the qMSESS values for Y1,Y2,Y3,Y4 at
scale τ = 1 from the SZSE are 0.23733, 0.23452,
0.23193, 0.20216. Moreover, at each scale, the values
for Y1,Y2,Y3,Y4 have a tendency of decreasing, so the
system complexity of SSE and SZSE in the forenoon
is significantly higher than that in the afternoon. The
difference between qMSESS values of Y1 for the two
markets is lower than those of Y2. Similar findings are
found for Y3 and Y4, showing that the markets are more
complex when the trading begins than when the trad-
ing has begun for some time. From Fig. 11, we can say
the SSE is of less complexity than the SZSE to some
extent.
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Fig. 11 Mean of qMSESS of Y1, Y2, Y3, Y4 for SSE and SZSE

5 Conclusion

In this paper, inspired by MSE [21] and generalized
sample entropy and surrogate data analysis [22], we
introduce a new method, called generalized multiscale
sample entropy and surrogate data analysis (qMSE),
which is just the combination. To better research the
complexity and the changing trend of series mingled
with much noise, we develop qMSE through symbol-
izing time series and modifying the distance measure
to a modified method and we name it as modified gen-
eralized multiscale sample entropy and surrogate data
analysis based on similarity and symbolic representa-
tion (qMSESS).

The effectiveness tests of the two new methods are
provided with two kinds of synthetic data. Results of
1/f noise obtained by surrogate data analysis qMSDiff
and qMSDiffSS indicate the modified method qMSESS

has smaller discrete degree and can describe its feature
better; thus, the estimation accuracy may be better than
qMSE. qMSDiff and qMSDiffSS values are calculated
individually against entropic index q and scale factor
τ . Experiments with logistic map are also performed
by comparison test to show the sensitivity of different
kinds of data and resistance to the noise for qMSE and
qMSESS. It is observed thatqMSE is not sensitive to the
changes of dynamics for logistic map, while the mod-
ified method contains rich information of time series
and better characterize original time series. When we
add a noise of the same extent to logistic map, qMSDiff
values byqMSEchange a lot and even cause the appear-
ance of undefined entropy. qMSESS can perfectly avoid
the problem due to the application of symbolization in
it. Moreover, it shows a good robustness to noise so it
can be used to the analysis of series with much noise
like financial time series.

The disadvantage of symbolic representation of time
series is that it may lose some information since we
are not dealing with original data directly, but the new
approach pays more attention to the trend of series
so symbolic representation is reliable. When we con-
sider a symbolic representation of a time series, we
should decide the number of symbols according to the
actual needs. Considering a financial series, the most
important information we want to get is whether it will
increase or not. So two symbols are enough to meet our
demand.
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Real-world data of six stock markets including SSE,
HSI, DJI, S&P500, CAC40 and SMI are also tested to
measure the complexity. qMSDiffSS values are calcu-
lated versus entropic index q and scale factor τ cor-
respondingly. Considering qMSDiffSS values versus
entropic index q, HSI and SSE have relatively large
qMSDiffSS values compared with the other 4 stock
markets. Curves ofHSI and SSE almost have no change
with the increasing q, while those of DJI, S&P500,
CAC40 and SMI all decrease. Further, the extent of
decline of the four stockmarkets is different. American
markets fall faster than Europeanmarkets. Correspond-
ingly, American stock markets have a less complex
feature. Besides, stock markets from different areas
are completely separated and qMSDiffSS values of the
markets in the same area are much closer. We con-
sider that stock markets in the same area exist similar-
ity. qMSDiffSS values versus scale factor τ give more
information of stock markets from another aspect. Six
stock markets are divided into three types due to their
diverse features which just correspond to their loca-
tion. qMSDiffSS values of SSE and HSI tend to have
a scale invariance except for some very large scales.
Complexity is still remained with the scale changing.
So Asian markets are the most complex. Curves of DJI
and S&P500 both have a peak value where the series
have a higher complexity. Then, qMSDiffSS of DJI
begins to decrease, while qMSDiffSS of S&P500 first
decreases like DJI at the next scale and then increases.
So the complexity of S&P500 is considered to increase
at large scales and DJI has a low complexity with a
relatively large scale. There are two peak values for
each stock market of CAC40 and SMI, and qMSDiffSS
values of them are all negative except the two peak
values. Scale factors with peak values show a period-
icity of stock markets, and they are points where the
complexity begins to change.

qMSDiffSS values against entropic indexq and scale
factor τ can both be used to explore the complexity and
distinguish stock markets of different areas. There are
still many other areas that need further study. Symbol-
ization method can be developed according to the data
from different fields. It will also be a good attempt to
combine the proposed method in this paper with some
other entropy-based methods.
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