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Abstract In this paper, we introduce topological
entropy (TE) based on time series, which characterizes
the total exponential complexity of a quantified sys-
tem with a single number. Combined with multiscale
theory, we propose geometric entropy (GE), aiming to
examine the correlation among different time series.
In order to detect the properties of TE and GE, we
apply them to an original symbolic method utilized to
measure time series irreversibility, namely horizontal
visibility algorithm. On this basis, we propose a time
series irreversibility measure, i.e., normalized index.
Then, we employ TE and GE based on the horizontal
visibility graph symbolic algorithm to simulated time
series, which is generated by the logistic map with
different parameters. Through the comparison of the
results, we find out that different simulated data have
the same variation tendency of TE, which means that
TE is capable of reflecting the similarity among differ-
ent time series. On the basic of these results, we further
analyze the irreversibility of simulated data and also get
some interesting findings. From theGE results compar-
ison, we conclude that the GE method can distinguish
different time series and expose their correlation effi-
ciently. As a farther validation, we explore the effects
of these methods on the analysis of different stock time
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series. Results show that they can reflect a large num-
ber of interrelationships, and successfully quantify the
changes in the complexity of different stock market
data.
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1 Introduction

Stock markets are often considered to be complex
dynamical systems with lots of complex factors from
internal and external environments [1–3]. In order to
clarify their potential mechanisms, all kinds of models,
techniques and theoretical methods have been devel-
oped to characterize financial dynamics from differ-
ent aspects [4–7]. Recently, many tools and approaches
have been introduced to investigate the features of mul-
tifractality, power-law and complexity successfully [8–
10]. Among them, the complexity is a measure of com-
pleteness of a market and has been the concern of
many researchers. Meanwhile, the irreversibility, as an
important aspect of complexity, is closely related to
predictability. Since there is a conceptual relationship
between predictability and efficiency, it can be con-
sidered that reversible time series are less predictable
than irreversible ones. In this sense, the ranking of
companies based on stock price irreversibility could
provide relevant information for traders and optimal
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portfolio designs [11]. On the other hands, according
to the degree of reversibility of each company varies
over time, periods of financial turmoil can be easily
identified and distinguished from periods of financial
stability if we use the irreversibility values of each
company. Nowadays, various measures of complexity
were developed to compare time series and distinguish
regular (e.g., periodic), chaotic, and random behavior
[12,13]. It can be very helpful to analyze the complex-
ity with the concept of entropy because of its ability
on capturing the uncertainty and disorder of the time
series without imposing any constraints on the theoret-
ical probability distribution [2,14]. A range of entropy-
based approaches attract much attention and there have
been some successful attempts such as transfer entropy
[15], sample entropy [16] and permutation entropy [17]
These methods are constructed based on quantifying
the regularity of a time series, and initially aimed at esti-
mating the systemcomplexity of stockmarkets [18,19].

Topological entropy (TE), first introduced by Adler
et al. for compact dynamical systems in 1965 [20], is
an important invariant of topological conjugacy and
it can be used to describe the complexity of a single
map acting on a compact metric space [3,21]. Later,
Dinaburg and Rufus Bowen gave a different, weaker
definition, which clarified the meaning of the topologi-
cal entropy: for a system given by an iterated function,
the topological entropy characterizes the total exponen-
tial complexity of the orbit structure with a single num-
ber [21–23]. Moreover, the TE is a numerical measure
that determines the dynamical complexity of a topolog-
ical dynamical system, which describes the rate of hid-
den information in chaotic orbits with time and controls
the ergodicity [24,25]. This method also has been suc-
cessfully applied to some substitution sequences, and
got a satisfying result [26]. Inspired by these theories
and applications, we consider that dynamical aspects
of time series derived from stock markets may be ana-
lyzed by means of the topological entropy.

In recent years, the study of dynamics of group
actions has absorbed some researchers interests. Wal-
czak et al. gave the concept of geometric entropy (GE)
for group actions in 1988, which can be viewed as a
generalization of topological entropy of a single group
[27]. In the field of dynamical systems, the geomet-
ric entropy of the continuous map is further proposed
[28,29]. Influenced by this theory, but also to apply this
theory to finite discrete time series time series, we rede-
fine the geometric entropy based on the coarse-grained

method, and use it to analyze the characteristics of var-
ious time series.

Meanwhile, we notice that diverse symbolic meth-
ods have been used for the physiological time series
[14,30,31]. Enlightened by this adhibition, but also
to facilitate the calculation of the value of topologi-
cal entropy and geometric entropy, we introduce the
horizontal visibility algorithm, which is a simple and
well-defined tool formeasuring time series irreversibil-
ity [32,33]. This is an original time series symbolic
method proposed recently, which makes use of graph
theoretical concepts. On the other hand, it is also based
on the mapping of a time series to a graph and subse-
quent analysis of the associated graph properties.

The reminder of the paper is organized as follows. In
the following section, we present the topology entropy
and the geometric entropy. In Sect. 3, we briefly intro-
duce the horizontal visibility graph approach and a
measure of time series irreversibility based on TE. Sec-
tion 4 describes the database used in this paper and
obtained symbolic series. Furthermore, we explore TE
and GE to analyze simulated data and six groups of
stock time series in Sect. 5. Finally, we offer conclud-
ing remarks in Sect. 6.

2 Methodologies

2.1 Topological entropy

Topological entropy (TE) is known as measuring the
complexity of a single map acting on a compact met-
ric space [23], and it has been applied to the substitu-
tion sequences successfully [26]. For the time being,
we leave substitutions, to consider more generally,
sequences with terms in a finite alphabet A. A way to
measure the degree of irregularity of such a sequence
y, is to detect the behavior of the sequence:

P(n) = |Ωn| ∀n ≥ 1 (1)

where Ωn denotes the set of all words in y of length n
and P(n) is the number of different words of Ωn . Thus
the growth of P(n) gives information about the ran-
domness of the sequence y. For example, let us assume
that we start with the sequence y = {2, 3, 1, 2, 3, 4, 6}.
If we set n to be 2, we can combine the elements in
sequence y to get all words of length 2: {23, 31, 12, 23,
34, 46}. And then we can know that the value of P(2)
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is 5. Furthermore, through a series of simple proofs,
it is not difficult to find the following two properties
about P(n) are true [26]:

(a) P(n + 1) = P(n), for some n ≥ 1;
(b) P(n) ≤ n, for some n ≥ 1.

The topological entropy of the substitution
sequences is defined as this equation [21]: h =
limn→∞ logk P(n)

n , where k = |A|. Hence, 0 ≤ h ≤ 1
and sequence with entropy 0 are said to be established.

Motivated by the definition of the TE under the sub-
stitution sequences, we consider a finite time series
{Xt }Nt=1. First, we choose a symbolic method to trans-
form this time series {Xt }Nt=1 = {x1, x2, . . . , xN } into
a symbolic sequence {Yt }Nt=1 = {y1, y2, . . . , yN }. At
the same time, Let k be the number of different alpha-
bets of {Yt }. Next, we still use P(n) to represent the
number of different word sets with length of n. And it
is easy to find that P(N ) = 1. Hence, the topological
entropy (hn) of time series can be similarly constructed
by using following formula:

hn = logk P(n)

n
(1 ≤ n ≤ N ) (2)

According to the knowledge of permutation and com-
bination, we can speculate that the maximum of P(n)

is kn . At the moment, the TE can reach the maximum
1, whereas there is no doubt that the TE (hN ) reaches
the minimize 0 when the value of n is N .

2.2 Geometric entropy

Geometric entropy is based on the application of TE,
which is proposed byWalczak et al. [27]. Before intro-
ducing the GE for time series, we first briefly review
the multiscale theory [9,34,35]. For a given discrete
time series {Xt }Nt=1, coarse-grained time series are con-
structed by averaging the data points within nonover-
lapping windows of increasing length q [36]. The
coarse-grained time series {u(q)

j } is defined as:

u(q)
j = 1

q

jq∑

i=( j−1)q+1

xi , 1 ≤ j ≤ N

q
(3)

For scale one (q = 1), the time series {u(1)} is the orig-
inal series. Then, for each given q, the original series
is divided into N

q coarse-grained time series.

In the light of the multiscale theory and the original
definition of geometric entropy given by Walczak, the
GE for time series is proposed and can be described in
the following steps:

Step 1: Consider a time series {Xt }Nt=1, where N denotes
the length of this series. Then, we construct the
coarse-grained time series {u(q)

j } by the Formula
3.

Step 2: Transform the coarse-grained time series {u(q)
j }

into symbolic series {Yt }(1 ≤ t ≤ N
q ).

Step 3: Calculate TE of each symbolic coarse-grained
time series as a function of scale factor q.

Step 4: For each scale factor q, we define the geometric
entropy (Gq) as the following formula:

Gq =
Nq∑

n=1

logk P(n)

n
(4)

where Nq = N
q .

3 A symbolic approach for measuring time series
irreversibility

3.1 The horizontal visibility graph

For calculating the value of TE and GE, we first need
to transform a complex time series into a set of sim-
ple sequences, which is called a symbolic process [31].
In this paper, we use the horizontal visibility graph to
symbolize the time series [11,37]. The horizontal vis-
ibility graph (HVg) was introduced by L. Lacasa as a
irreversibility measure for real-valued time series and
defined as follows [32]: let {Xt }Nt=1 be a real-valued
time series of N data. The algorithmassigns eachdatum
of the series to a node in the horizontal visibility graph.
Then, two nodes i and j in the graph are connected if
one can draw a horizontal line in the time series joining
xi and x j that does not intersect any intermediate data
height. Therefore, i and j are two connected nodes if
the following geometrical criterion is fulfilled within
the time series:

xi , x j > xn, ∀n|i < n < j (5)

However, these can be made directed by assigning
to the links the time arrow naturally induced by the
node ordering. Accordingly, the degree sequence of the
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Fig. 1 Graphical illustration of the HVg method. In the figure,
we plot a simple time series {Xt } = {4, 2, 5, 6, 4, 7, 3}. Each
datum in the series is mapped to a node in the graph. Arrows,
describing allowed directed visibility, link nodes. In this method,
each node has an in-going degree yin, which accounts for the
number of links with past nodes, and an out-going degree yout ,
which in turn accounts for the number of links with future nodes.
Hence,wefinally get twogroups of symbolic time series: {Y in

t } =
{0, 1, 2, 1, 1, 2, 1} and {Y out

t } = {2, 1, 1, 2, 1, 1, 0}. Moreover,
there is no doubt that yin1 and youtN are zero for any time series

HVg (which assigns to each node its degree or number
of edges) thus splits into an in-going degree sequence
{Y in

t }Nt=1, where y
in
t is the in-going degree of node t , and

an out-going degree sequence {Y out
t }Nt=1, where youtt is

the out-goingdegree of node t . Figure 1 shows an exam-
ple to show the progressing of this symbolic approach.

3.2 Quantifying irreversibility

Through the above-mentioned part of the symboliza-
tion method, each set of data can be converted into
two sets of symbolic sequences {Y in

t }Nt=1 and {Y out
t }Nt=1.

Therefore, for each group of time series, using the topo-
logical entropy calculationmethod referred in Sect. 2.1,
we can get two sets of entropy:{hinn } and {houtn }. Inspired
by the definition of the normalized directionality index
introduced in [13], we propose a measure called nor-
malized index(Rg) to quantify the time series irre-
versibility. It is given by

Rg =
∣∣hinn − houtn

∣∣
hinn + houtn

(6)

This approach, on the one hand, can eliminate the
effects of dimensions and increase the comparability

between different data. On the other hand, by means of
Formula 6, we can easily conclude that the greater the
value of Rg , the higher the degree of irreversibility.

4 Data

The analyzed data set consists of two parts: simu-
lated time series and stock time series. The Chaos has
captured the fancy of many financial economists. The
attractiveness of chaotic dynamics is its ability to gener-
ate large movements which appear to be random, with
greater frequency than linear models [38]. The sim-
plest chaotic mapping operator, which was brought to
the attention of scientists in 1976, is the logistic map
[39].

xt+1 = r xt (1 − xt ) (7)

where xt is the t-th chaotic number, t denotes the iter-
ation number and r is parameter. Logistic mapping
includes all the properties of chaotic systems, such
as self-similarity, ergodicity, semi-randommotion, and
sensitivity to initial conditions. A detailed explanation
about chaotic properties can be found in [40]. On the
other hand, theLogisticmap can providemore diversity
than randomly selected initial solutions [41]. Besides,
when r ∈ [3.5, 4], the data generated by this map
exactly exhibit chaotic behavior. In the study of the
complexity of the dynamic system,many scholars often
use logistic map as simulated data for experimental
analysis [10,39,42–49]. Consequently, in this paper,
we also use the logistic map as simulated time series
to conduct experiment. We analyze six groups of time
series with different value of r and the length of each
group is 2500. (In the next section, we will verify that
the experimental results are not affected by the length
of the time series.) Meanwhile, we control the param-
eter r ∈ [3.5, 4] in this paper to get time series with
chaotic behavior.

As for the stock time series, we analyze the daily
records of six indices: three Asia indices: N225,
STI and HSI and three America indices: NASDAQ,
S&P500 and TD. Because different stock markets have
different opening dates, we exclude the asynchronous
datum and then reconnect the remaining parts of the
original series to obtain the same length time series.
As a result, the total of the closing price recorded from
January 4, 2000, to August 18, 2016, is 4097 days.
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Fig. 2 Daily price returns
for N225, STI, HIS,
NASDAQ, S&P500 and TD
stock indices
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Let st denote the closing price of stock market on day
t . For characterizing these financial time series accu-
rately, we investigate the financial time series using the
daily return xt , which is calculated as its logarithmic
difference, xt = log(st ) − log(st−1). Figure 2 presents
the daily price returns of six stock markets.

In this paper, we desire to reveal the dynamics of TE
and GE on the symbolic series of different data. Thus,
these time series are transformed into their correspond-
ing symbolic series by the HVg introduced in Sect. 3.1.
NASDAQ is taken as an example illustrating the visi-
bility approach to symbolic dynamics and is shown in
Fig. 3. For observing the transformation clearly, Fig. 3
only shows the first 100 closing prices for example.

5 Analysis and results

5.1 Analysis of simulated data

In order to more vividly display the change trend of
topological entropy, we use six groups of simulated
datawith different parameter r through the logisticmap
and set themaximum value of n to 50 (themeaning of n
is the same as it in Sect. 2.1). First, we transform these
data into symbolized time series by theHVg introduced

in Sect. 3.1. After symbolization, every group of data is
transformed into two kinds of symbolized sequences.
Consequently, we finally get two kinds of TE: hinn and
houtn (see Fig. 4). From Fig. 4 we find that, whether
the in-going degree sequence or the out-going degree
sequence, the TE for all these time series decreases
with the value of n increasing. Meanwhile, in order
to illustrate the effect of data length on experimental
results, we use the parameter r = 3.75 as an exam-
ple to analyze the trend of topological entropy under
different length of data(see Fig. 5). From the figure,
we find that in spite of the different length of the time
series, their topological entropy changes in the trend are
almost no distinction. Hence, we are easily able to draw
a conclusion that the results of topological entropy is
not affected by the length of time series. Furthermore,
since the geometric entropy is the generalization of the
topological entropy, we can also sum up that the geo-
metric entropy results are not affected by the time series
length.

On the basis of the TE results, we can further quan-
tify the irreversibility of these time series according
to Formula 6, and Fig. 6 presents this result. From
Figs. 4 and 6, although the trend of the topological
entropy based on the in-going degree sequence and the
out-going degree sequence seems to be little different,
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Fig. 3 NASDAQ symbolic
series of HVg. Only the first
100 closing prices of
NASDAQ are displayed for
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Fig. 4 Topological entropy
for six groups of simulated
data with different
parameter r through the
logistic map. The black line
represents the TE of
in-going degree, while the
red line is the TE of
out-going degree. (Color
figure online)
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Fig. 5 Topological entropy
for r = 3.75 through the
logistic map. Lines of
different colors represent
different length of time
series. (Color figure online)
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Fig. 6 Simulated data
irreversibility based the
value of TE
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the Formula 6 can help us to study the differences in
depth and further expose the irreversibility of differ-
ent time series. Through the analysis of Fig. 6, we find
that when n is greater than 20, the irreversibility of each
time series turns to be stable.Moreover, to our surprise,
after stabilization, r = 3.6 and r = 3.85 have the same
degree of irreversibility, and higher than the other four

time series. As well, the irreversibility of r = 3.75 is
the lowest.

Next, we apply theGEmethod to six groups of simu-
lated time seriesmentioned in Sect. 3.1 for detecting the
characteristics ofGE intuitively. Figure 7 including two
graphs displays the results of GE on in-going degree
sequence and out-going degree sequence, respectively.
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Fig. 7 Geometric entropy for six groups of simulated data with different parameter r through the logistic map. The left is the result of
GE on in-going degree, and the right is about out-going degree

Fig. 8 Topological entropy
for two symbolic series of
six stock time series. The
left represents the in-going
degree and the right
represents the out-going
degree
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Fig. 9 Topological entropy
for N225 through the
logistic map. Lines of
different colors represent
different length of time
series. (Color figure online)
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From the figure,we can clearly discover that at different
scales q, the GE method can distinguish the simulated
sequence betweendifferent parameters r , especially the
GE on out-going degree, which reflects that GE is an
efficient way to differentiate the statistical properties of
different time series and expose the interrelationships
between them.

5.2 Application to financial time series

In this section,wefirst performTEmethods onfinancial
time series and discuss the similarities of different stock
markets. Simultaneously, based on the results of topo-
logical entropy, we further compare the irreversibility
of these financial data. And then, we also employ the
GE method to the America and Asia market and ana-
lyze their differences and correlation. Additionally, in
order to strengthen the rationality of the conclusion, we
test the method proposed on surrogate data generated
by randomizing the financial time series.

5.2.1 TE analysis on financial time series

Firstly, TE method based on the symbolic series is
applied to investigate the complexity of six stock time
series: N225, STI, HIS, NASDAQ, S&P500 and TD.
In the same way, we also choose the maximum value

of n to 50 for observing the variance tendency of TE
more visually.

Figure 8 displays hinn and houtn of these six stock time
series, respectively. According to our observation, it is
relatively easy to find that although these data come
from different stock markets, they have similar vari-
ance tendency of the TE, which is consistent with the
results of simulated data. Consequently, the TE is an
efficient way to detect the system complexity and sim-
ilarity from different financial time series. Moreover,
combined with the TE theory, we can assume that the
n of the Formula 2 actually represents the data length
per unit time. With the increase in n, the information
loss per time unit about the state of the system, that is
the value of TE, is reduced. Consequently, this result
also reflects the characteristic of the TE, namely with
the increase in the amount of data, the information loss
per time unit about the state of the system is reduced.
On the other side, similarly, we choose N225 as an
example to discuss the relationship between topologi-
cal entropy and time series length. From Fig. 9, we can
see that the result is consistent with that of the simu-
lated data, that is, the result of topological entropy is
hardly affected by the length of financial time series.
Furthermore, based on the intrinsic relation between
topological entropy and geometric entropy, it can be
deduced that the results of geometric entropy are also
not influenced by the data length.
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Fig. 10 Financial time
series irreversibility based
the value of TE
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Fig. 11 GE results of different stock markets on in-going degree
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Fig. 12 GE results of different stock markets on out-going degree

Fig. 13 TE results of
surrogate data generated by
randomizing the different
financial time series

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

to
po

lo
gi

ca
l e

nt
ro

py
−i

n

N225
HSI
STI
NASDAQ
S&P500
TD

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

to
po

lo
gi

ca
l e

nt
ro

py
−o

ut
N225
HSI
STI
NASDAQ
S&P500
TD

Afterward, we compare the irreversibility of the six
groups of financial time series (see Fig. 10). As antici-
pated, when n is big enough, the irreversibility of time
series tends to be stable, which is similar to the result
of simulated data. Furthermore, after the irreversibil-
ity stabilized, it is noticeable that the irreversibility of
HSI and STI is the strongest, while the irreversibility
of TD is the weakest. This feature also points out that

the characteristic of HIS is more similar to STI. Based
on the ranking of financial time series irreversibility,
we can provide information for traders and the opti-
mal portfolio design. It is also worth emphasizing that,
depending on the degree of reversibility of each finan-
cial index, over time, if we use the irreversibility value
of each financial index, the financial turmoil can easily
identify and distinguish financial stability [11].
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Fig. 14 TE results of row data and surrogate data from different financial market when n = 10. The left one represents the in-going
degree and the other is out-going degree

5.2.2 GE application to different stock markets

In this subsection, we investigate six stock markets
employing GE method. To comprehensively charac-
terize the complexity, we choose the range of scales
from 1 to 10, since the complexity is different on dif-
ferent scales. Likewise, we always get two kinds of
symbolic series after Step 2 introduced in Sect. 2.2, so
we will discuss the GE results of these two symbolic
time series, respectively.

In Fig. 11, numbers in x-axis stand for the value
of scale q and y label represents the GE value of in-
going degree. First of all, we find that the value of
GE decreases with scale factor increasing for all cases,
which indicates that the complexity of each stock mar-
ket decreases over the time scale. Furthermore, through
observing the plots carefully, some interesting charac-
teristics are displayed after comparison:

1. For scale one, the NASDAQ series are assigned
the highest value of GE, the S&P500 series and
the TD series are assigned the lowest, while the

values of the Asia series are almost converge at a
point between them.

2. The entropy of theAmericamarkets is higher than
the N225 and the STI series when q is 2, neverthe-
less, the entropy of the STI and theHSI are greater
than the America markets when q is 5. Moreover,
since q ≥ 4, the entropy of the S&P500 is bigger
than the N225, and when q is between 5 and 9,
the entropy of S&P500 is smaller than the STI.

3. As for scale 10, the entropy of the America
time series converges at a point and is assigned
the highest, whereas the entropy of the Asia is
assigned the lowest.

With respect to theGE results of different stockmar-
kets on out-going degree (see Fig. 12), it also can be
seen that as scale q increases, theGEof each time series
decreases. Besides, for scale 10, the entropy of NAS-
DAQ and TD are at the lowest point, which is in con-
trast to the results of the GE on in-going degree. What
is worthy mentioning is that the GE of Asia intersects
at the same point which distributes between the Amer-
icas. When q is 5 to 8, the entropy of the TD series is
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Fig. 15 TE results of row data and surrogate data from different financial market when n = 15. The left one represents the in-going
degree and the other is out-going degree

bigger than the N225, but when q is 3, 4, 9 and 10, the
result is universe.

To sum up, some new conclusions are gotten by the
new characteristics we detected in the comparison. The
GEmethod can distinguish different stockmarketswell
and it is a precise way to quantify the complexity and
correlation of different financial time series.

5.2.3 Test on surrogate data generated by
randomizing the financial time series

In this subsection, in order to further validate our con-
clusions,we testTEandGEon surrogate data generated
by randomizing the financial time series. The results are
shown in Figs. 13, 14, 15, 16, 17, 18, and 19.

From Fig. 13, we find that, after randomizing the
financial time series, the overall trend of their topo-
logical entropy is similar to that before the disruption,
that is, the topological entropy from different markets
decreases with the increase in n. But, there are still
some internal differences between the surrogate data
and the raw data. As a validation, we choose NASDAQ

as an example to compare the changes of the topolog-
ical entropy of the raw data and that of the data after
disruption. In order tomake the comparisonmore obvi-
ous, we select some n and list the topological entropy
corresponding to every n (see Tables 1, 2). After com-
paring and analyzing, we can see that in spite of the
similar overall trend, the TE values under different n
of the surrogate data are different from that of the raw
data. Additionally, we select n = 10 and n = 15,
respectively, and compare the TE values between row
data and surrogate data from different financial market
(see Figs. 14, 15). From the figure, we can easily find
that, for the chosen n, there are significant differences
between the TE values of the time series from different
financial markets. There is no doubt that the reason for
this phenomenon is that we have destroyed the tem-
poral correlations of original time series. Besides, we
also carry out same experiments on the simulated data
generated by the logistic map, as shown in Figs. 16
and 17 and get similar conclusions. This also further
reflects the fact that topological entropy is an effective
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Fig. 16 TE results of row data and surrogate data from different parameter r of the logistic map when n = 10. The left one represents
the in-going degree and the other is out-going degree
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Fig. 17 TE results of row data and surrogate data from different parameter r of the logistic map when n = 10. The left one represents
the in-going degree and the other is out-going degree
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Fig. 18 Irreversibility of
surrogate data generated by
randomizing the different
financial time series based
on the TE results
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Fig. 19 GE results of surrogate data generated by randomizing the different financial time series
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Table 1 The TE results of NASDAQ time series and surrogate data under in-going degree

n 1 5 9 17 25 29 33 43

Raw data 0.6989 0.2968 0.1619 0.0809 0.0508 0.0416 0.0341 0.0189

Surrogate data 0.6477 0.2989 0.1670 0.0834 0.0523 0.0427 0.0351 0.0192

Table 2 The TE results of NASDAQ time series and surrogate data under out-going degree

n 1 5 9 17 25 29 33 43

Raw data 0.7211 0.3046 0.1671 0.0835 0.0524 0.0429 0.0352 0.0195

Surrogate data 0.6789 0.2868 0.1574 0.0786 0.0494 0.0404 0.0332 0.0168

way indeed to expose the similarity of time series from
different markets.

Then we analyze the irreversibility of the random-
ized time series (see Fig. 18). When n is greater than
10, the irreversibility of time series tends to be sta-
ble, which is similar to the raw data result. However,
when the irreversibility is stationary, the irreversibility
of the different surrogate time series is different from
the results of raw data. For instance, the irreversibil-
ity of NASDAQ is similar to that of S&P500, and is
higher than that of the other four time series. More-
over, N225 and STI have similar irreversibility levels,
and their irreversibility is the weakest in these six sur-
rogate time series. These results farther confirm that we
propose a time series irreversibility measure based on
topological entropy—Rg , which is a reasonable way to
compare the irreversibility of different time series.

Furthermore, we apply the GE to randomized finan-
cial time series (see Fig. 19). Since the internal prop-
erties of the randomized time series may change, there
are some differences between these results and those of
the financial time series before the disruption. But by
comparing the analysis of Fig. 19, the results also verify
the conclusions we have in the previous section, that is,
the GE method can distinguish different stock markets
well and it can quantify the complexity and correlation
of different financial time series effectively.

6 Conclusion

To characterize the total exponential complexity of the
orbit structure with a single number, the topological
entropy was proposed and also has been successfully
applied to substitution sequences. On the other hand,

with the development of the study of group actions,
many researchers attach much interest in the geomet-
ric entropy of the continuous map. Inspired by these
theories and applications, this paper changes the per-
spective of research and improves these classical meth-
ods to apply them to time series (discrete dynami-
cal system). In summary, we first introduce topolog-
ical entropy based on time series, which is the most
important for smooth dynamical system. Then, we also
account for geometric entropy based on a finite time
series successfully. For a further validation, we apply
TE and GE to an original symbolic method, i.e., hori-
zontal visibility graph and construct a measure of time
series irreversibility combinedwith the results of TE. In
addition, we conduct experiments on a logisticmap and
stock time series from different markets to detect the
properties of these entropies. Moreover, we test these
methods on the surrogate data generated by randomiz-
ing the financial time series to ulteriorly examine the
conclusions.

As far as we know, due to the inherent nonlinear-
ity and nonstationary characteristics of financial stock
market price time series, it is significant to study the
complexity of financial time series. Nowadays, many
methods have been developed to quantify the com-
plexity of financial time series from different markets,
most of which are based on the purpose of distinguish-
ing the complexity of different time series. However,
for deeper exploration on the characteristic of finan-
cial dynamics system, it is not enough to just study the
differences of financial time series. It is also important
to discuss the regularity and similarity between differ-
ent time series. The topology entropy described in this
paper is from this point of view. Results are shown that
the TE value of financial time series decreases with

123



Topological entropy and geometric entropy 57

the value of n increasing, which is consistent with the
results of simulated data. These characteristics prove
that TE can effectively analyze the similarity of differ-
ent time series, on the other hand, there is no doubt that
it is an effective way to quantify the changes of com-
plexity for stock market data and reflects the regularity
dynamical changes well. In addition, they are able to
demonstrate the physical meaning of TE, namely the
loss of the information about the system state per time
unit reduces as the amount of data increases. Besides,
we have experimentally demonstrated that both TE
results and GE results are not affected by the length
of time series.

On the basis of the TE results, we quantify the time
series irreversibility, and make a comparison between
different time series. According to the comparison
results, the simulation time series and the financial time
series have a common characteristic, that is, when n
reaches a certain value, the time series irreversibility
tends to be stable. Once it remains stable, we can eas-
ily compare the irreversibility of different time series.
For instance, from the results of the analysis on the
financial time series irreversibility, it can be concluded
that the irreversibility of HSI and STI is stronger than
that of other stock markets after n reaches 10. All these
findings are more valuable. We know that stock market
price prediction is regarded as one of the most chal-
lenging tasks of financial time series prediction, while
the irreversibility is very useful for the predictability of
time series. Our approach can effectively distinguish
the irreversibility of different time series, and then can
be used to explore their predictability, which will also
be an important focus in our further study.

In accordance to the analysis of the GE results,
we find out that the financial time series under dif-
ferent markets have a common phenomenon that is
the value of geometric entropy decreases as the scale
factor q increases. This phenomenon reflects the fact
that, although different financial time series have sig-
nificant internal structural differences, their complex-
ity decreases with the increase of coarse-grain degree.
Furthermore, after comparing the results of the simu-
lated data and financial time series from America and
Asia, we discover that geometrical entropy can well
distinguish various time series at different scales. Con-
sequently, it is a fine way to do some otherness study of
different time series. Beyond all that, results of the test
on surrogate data generated by randomizing the finan-
cial time series further strengthen our summing-up.

In fact, TE and GE can analyze the features of dif-
ferent time series from different angles. They are both
proper tools for investigating the similarity and cor-
relation among time series. Additionally, TE and GE
can also be applied to other time series of multifarious
fields to detect complex behaviors. All in all, there are
still meaningful aspects that need further discussion.
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