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Abstract For a Cm+1 differential system on R
n , we

study the limit cycles that can bifurcate from a zero–
Hopf singularity, i.e., from a singularity with eigenval-
ues ± bi and n−2 zeros for n ≥ 3. If the singularity is
at the origin and the Taylor expansion of the differential
system (without taking into account the linear terms)
starts with terms of order m, then � limit cycles can
bifurcate from the origin with � ∈ {0, 1, . . . , 2n−3} for
m = 2 [see Llibre and Zhang (Pac J Math 240:321–
341, 2009)], with � ∈ {0, 1, . . . , 3n−2} form = 3, with
� ≤ 6n−2 for m = 4, and with � ≤ 4 · 5n−2 for m = 5.
Moreover, � ∈ {0, 1, 2} for m = 4 and n = 3, and
� ∈ {0, 1, 2, 3, 4, 5} for m = 5 and n = 3. In partic-
ular, the maximum number of limit cycles bifurcating
from the zero–Hopf singularity grows up exponentially
with n for m = 2, 3.
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1 Introduction and statement of the main results

We recall that a zero–Hopf singularity is an isolated
equilibriumpoint of ann-dimensional autonomous sys-
tem with n ≥ 3 with linear part having n − 2 zero
eigenvalues and a pair of purely imaginary eigenval-
ues. It turns out that its unfolding has a rich dynamics
in a neighborhood of the singularity (see for example
Guckenheimer and Holmes [4,5], Scheurle and Mars-
den [12], Kuznetsov [6] and the references therein).
Moreover, a zero–Hopf bifurcation may lead to a local
birth of “chaos.” More precisely, it was shown that
some invariant sets of the unfolding can be obtained
from the bifurcation from the singularity under appro-
priate conditions (cf. [3,12]).

In this paper, we use the first-order averaging theory
to study the zero–Hopf bifurcation ofCm+1 differential
systems on Rn with n ≥ 3 and m ≤ 5. We assume that
these systems have a singularity at the originwith linear
part with eigenvalues εa±bi and εck for k = 3, . . . , n,
where ε is a small parameter. Each of these systems can
be written in the form

ẋ = εax − by

+
∑

i1+···+in=m

ai1···in xi1 yi2 z
i3
3 · · · zinn + P,

ẏ = bx + εay
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+
∑

i1+···+in=m

bi1···in xi1 yi2 z
i3
3 · · · zinn + Q,

żk = εckzk

+
∑

i1+···+in=m

ci1···in ,k xi1 yi2 z
i3
3 · · · zinn + Rk,

k = 3, . . . , n, (1)

where the constants ai1···in , bi1···in , ci1···in ,k , a, b and ck
are real, ab �= 0 and P , Q and Rk are the remainder
terms in the Taylor series. We refer the reader to [1,2,
10,11,14] and the references therein for details on the
study of limit cycles and averaging theory.

Our main result concerns the number of limit cycles
that can bifurcate from the origin in a zero–Hopf bifur-
cation. We show that the number of bifurcated limit
cycles can grow exponentially with the dimension of
the system.

Theorem 1 For m = 3, there exist C4 differential sys-
tems of the form (1) for which � limit cycles, with
� ∈ {0, 1, . . . , 3n−2}, bifurcate from the origin at
ε = 0. In other words, for ε > 0 sufficiently small there
are systems having exactly � limit cycles in a neighbor-
hood of the origin and these tend to the origin when
ε ↘ 0.

Theorem1 is proved inSect. 3. Forn = 3, this results
was established in [7] also with the description of the
type of stability of the limit cycles. Form = 2, a corre-
sponding result was established earlier in [8] showing
that there exist C3 differential systems of the form (1)
for which � limit cycles, with � ∈ {0, 1, . . . , 2n−3},
bifurcate from the origin at ε = 0.

Now we consider the cases m = 4 and m = 5.

Theorem 2 For m = 4 and ε > 0 sufficiently small,
any C5 differential system of the form (1) can have at
most 6n−2 limit cycles in a neighborhood of the origin,
and these tend to the origin when ε ↘ 0. When n = 3,
the maximum number of limit cycles that can bifurcate
from the origin is 2 and this bound is attained.

The proof of Theorem 2 is given in Sect. 4.

Theorem 3 For m = 5 and ε > 0 sufficiently small,
any C6 differential system of the form (1) can have
at most 4 · 5n−2 limit cycles in a neighborhood of the
origin, and these tend to the origin when ε ↘ 0. When
n = 3, the maximum number of limit cycles which can
bifurcate from the origin is 5 and this bound is attained.

The proof of Theorem 3 is given in Sect. 5.

2 First-order averaging method for periodic orbits

In this section, we describe briefly the first-order aver-
aging method via the Brouwer degree obtained in [1]
(see [11] for the general theory). Roughly speaking,
the method relates the solutions of a non-autonomous
periodic differential system to the singularities of its
averaged differential system. The conditions for the
existence of a simple isolated zero of the averaged func-
tion are expressed in terms of the Brouwer degree. We
emphasize that the vector field need not be differen-
tiable.

Consider the system

ẋ(t) = ε f (t, x) + ε2g(t, x, ε), (2)

where f : R×D → R
n and g : R×D×(−δ, δ) → R

n

are continuous functions, T -periodic in the first vari-
able, and D is a bounded open subset of Rn . We define
a function f 0 : D → R

n by

f 0(x) = 1

T

∫ T

0
f (s, x)ds.

Finally, we denote by dB( f 0, V, v) theBrouwer degree
of f 0 in a neighborhood V of v.

Theorem 4 Assume that:

(i) f and g are locally Lipschitz with respect to x;
(ii) for v ∈ D with f 0(v) = 0, there exists a neighbor-

hood V of v such that f 0(z) �= 0 for z ∈ V \{v}
and dB( f 0, V, v) �= 0.

Then for |ε| > 0 sufficiently small, there exists an iso-
lated T -periodic solution x(t, ε) of system (2) such that
x(0, ε) → v when ε → 0. Moreover, if f is C2 and g
is C1 in a neighborhood of a simple zero v of f 0, the
stability of the limit cycle x(t, ε) is given by the stability
of the singularity v of the averaged system ż = ε f 0(z).

We recall that if f 0 is of class C1 and the determi-
nant of the Jacobian matrix at a zero v is nonzero, then
dB( f 0, V, v) �= 0, and the zeros are called simple zeros
of f 0 (see [9]).

3 Proof of Theorem 1

Making the change of variables

x = r cos θ, y = r sin θ, zi = zi , i = 3, . . . , n

(3)
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Limit cycles bifurcating from a zero–Hopf singularity 1161

with r > 0, system (1) becomes

ṙ = εar +
∑(

ai1···in cos θ + bi1···in sin θ
)
(r cos θ)i1

(r sin θ)i2 zi33 · · · zinn + O4,

θ̇ = 1

r

(
br +

∑ (
bi1···in cos θ − ai1···in sin θ

)
(r cos θ)i1

(r sin θ)i2 zi33 · · · zinn + O4

)
,

żk = εck zk +
∑

ci1···in ,k(r cos θ)i1

(r sin θ)i2 zi33 · · · zinn + O4, k = 3, . . . , n, (4)

whereO4 = O4(r, z3, . . . , zn) andwith the sums going
over i1 + · · · + in = 3. Taking a00ei j = b00ei j = 0,

where ei j ∈ Z
n−2+ has the sum of the entries equal to

3, one can easily verify that in some neighborhood of
(r, z3, . . . , zn) = (0, 0, . . . , 0)with r > 0wehave θ̇ �=
0 since b �= 0 (Z+ denotes the set of all nonnegative
integers). Taking θ as the new independent variable, in
a neighborhood of (r, z3, . . . , zn) = (0, 0, . . . , 0) with
r > 0, system (4) becomes

dr

dθ
=

r
(
εar + ∑ (

ai1···in cos θ + bi1···in sin θ
)
(r cos θ)i1(r sin θ)i2 zi33 · · · zinn + O4

)

br + ∑(
bi1···in cos θ − ai1···in sin θ

)
(r cos θ)i1(r sin θ)i2 zi33 · · · zinn + O4

,

dzk
dθ

=
r
(
εckzk + ∑

ci1···in ,k(r cos θ)i1(r sin θ)i2 zi33 · · · zinn + O4

)

br + ∑ (
bi1···in cos θ − ai1···in sin θ

)
(r cos θ)i1(r sin θ)i2 zi33 · · · zinn + O4

, (5)

for k = 3, . . . , n, with the sums going over i1 + · · · +
in = 3. Note that this system is 2π -periodic in θ .

In order to apply the averaging theory, we rescale
the variables by setting

(r, z3, . . . , zn) =
(
ε1/2σ, ε1/2τ3, . . . , ε

1/2τn

)
. (6)

Then system (1) becomes

dσ

dθ
= ε f1(θ, σ, τ3, . . . , τn) + ε2g1(θ, σ, τ3, . . . , τn),

dτk
dθ

= ε fk(θ, σ, τ3, . . . , τn) + ε2gk(θ, σ, τ3, . . . , τn),

(7)

for k = 3, . . . , n, where

f1 = 1

b

⎛

⎝aσ +
∑

i1+···+in=3

(
ai1···in cos θ + bi1···in sin θ

)

(σ cos θ)i1(σ sin θ)i2τ
i3
3 · · · τ inn

⎞

⎠ ,

fk = 1

b

⎛

⎝ckτk +
∑

i1+···+in=3

ci1···in ,k(σ cos θ)i1

(σ sin θ)i2τ
i3
3 · · · τ inn

⎞

⎠ .

Now system (7) has the normal form (2) for applying
the averaging theory with x = (σ, τ3, . . . , τn), t = θ ,
T = 2π , and

f (θ, σ, τ3, . . . , τn) = ( f1(θ, σ, τ3, . . . , τn),

f3(θ, σ, τ3, . . . , τn), . . . , fn(θ, σ, τ3, . . . , τn)). (8)

The averaged system of system (7) is given by

ẏ = ε f 0(y), y = (σ, τ3, . . . , τn) ∈ 	, (9)

where 	 is some neighborhood of the origin
(σ, τ3, . . . , τn) = (0, 0, . . . , 0), with σ > 0 and

f 0(y) =
(
f 01 (y), f 03 (y), . . . , f 0n (y)

)
, (10)

where

f 0i (y) = 1

2π

∫ 2π

0
fi (θ, σ, τ3, . . . , τn)dθ, i = 1, 3, . . . , n.

One can show after some calculations that

f 01 = 1

8b
σ

⎛

⎝8a + (
a120n−2 + b210n−2

+ 3
(
a300n−2 + b030n−2

))
σ 2

+ 4
n∑

3≤i≤ j≤n

(
a10ei j + b01ei j

)
τiτ j

⎞

⎠ ,

f 0k = 1

2b

⎛

⎝2ckτk +
n∑

j=3

(
c20e j ,k + c02e j ,k

)
σ 2τ j

+ 2
∑

3≤i≤ j≤l≤n

c00ei jl ,kτiτ jτl

⎞

⎠ , (11)
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for k = 3, . . . , n, where e j ∈ Z
n−2+ is the unit vector

with the j th entry equal to 1, and ei j ∈ Z
n−2+ has the

sum of the i th and j th entries equal to 2 and the other
equal to 0 (note that i can be equal to j), ei jl ∈ Z

n−2+
has the sum of the i th, j th and lth entries equal to 3 and
the other equal to zero (again, i , j and l can be equal).

Now we apply Theorem 4 to obtain limit cycles of
system (7). After applying the rescaling (6), these lim-
its become infinitesimal limit cycles for system (5) that
tend to the origin when ε ↘ 0. Consequently they will
be limit cycles bifurcating from the zero–Hopf bifur-
cation of (1) at the origin.

We first compute the simple singularities of system
(9). Since the transformation from the Cartesian coor-
dinates (x, y, z3, . . . , zn) to the cylindrical coordinates
(r, θ, z3, . . . , zn) is not a diffeomorphism at r = 0, we
consider the zeros of the averaged function f 0 of (11)
with σ > 0. So we need to compute the zeros of the
equations

8a + (
a120n−2 + b210n−2 + 3

(
a300n−2 + b030n−2

))
σ 2

+ 4
n∑

3≤i≤ j≤n

(
a10ei j + b01ei j

)
τiτ j = 0,

2ckτk +
n∑

j=3

(
c20e j ,k + c02e j ,k

)
σ 2τ j

+ 2
∑

3≤i≤ j≤l≤n

c00ei jl ,kτiτ jτl = 0, (12)

for k = 3, . . . , n. Since the coefficients of this equation
are arbitrary, one can simplify the notation by writing
it in the form

a + a1σ
2 +

n∑

3≤i≤ j≤n

ai jτiτ j = 0,

ckτk +
n∑

j=3

c j,kσ
2τ j +

∑

3≤i≤ j≤l≤n

ci jl,kτiτ jτl = 0,

(13)

for k = 3, . . . , n, where a1, ai j , c j,k and ci jl,k are
arbitrary constants.

Let C be the set of all algebraic systems of the form
in (13).We claim that there is a system in C with exactly
3n−2 simple zeros. An example is

a + a1σ
2 = 0, (14)

ckτk +
k∑

j=3

c j,kσ
2τ j

+
∑

3≤i≤ j≤l≤k

ci jl,kτiτ jτl = 0, k = 3, . . . , n, (15)

with all the coefficients nonzero. Equation (14) is lin-
ear in σ 2, and Eq. (15) is a cubic algebraic equation
in the τ j ’s. Substituting the unique positive solution
σ0 of (14) into (15) with k = 3, we find that this
last equation has exactly three different real solutions
τ30, τ31 and τ32 choosing appropriately the coefficients
c3,3 and c333,3. Introducing one of the four solutions
(σ0, τ3i ), i = 0, 1, 2, into (15) with k = 4, and choos-
ing appropriately the values of the coefficients of (15)
with k = 4, we obtain three different solutions τ i40,
τ i41 and τ i42 of τ4. Moreover, one can choose the coef-
ficients so that the nine solutions (τ3i , τ

i
40, τ

i
41, τ

i
42) for

i = 0, 1, 2 are distinct. Repeating this process, one can
show that for an appropriate choice of the coefficients
in (14) and (15), these equations have 3n−2 different
zeros. Since 3n−2 solutions of (14) and (15) is the max-
imum number that equations (13) can have by Bezout
theorem (see [13]), we conclude that every solution is
simple, and so the determinant of the Jacobian of the
system evaluated at the solutions (τ3i , τ

i
40, τ

i
41, τ

i
42) is

nonzero. This establishes the claim.
Using similar arguments, one can also choose the

coefficients of the former system so that it has � sim-
ple real solutions with � ∈ {0, 1, . . . , 3n−2}. Taking the
averaged system (9) with f 0 having the coefficients as
in (14)–(15), the averaged system (9) has exactly � ∈
{0, 1, . . . , 3n−2} singularities with σ > 0. Moreover,
the determinants of the Jacobianmatrix ∂ f 0/∂y at these
singularities do not vanish, because all the singularities
are simple. By Theorem 4, we conclude that there are
systems (1)with a number � ∈ {0, 1, . . . , 3n−2} of limit
cycles bifurcating from the origin. This completes the
proof of Theorem 1.

4 Proof of Theorem 2

Making the cylindrical change of variables in (3) in the
region r > 0, system (1) becomes system (4), nowwith
the sum over i1+· · ·+in = 4. Taking a00ei j = b00ei j =
0, where ei j ∈ Z

n−2+ has the sum of its entries equal
to 4, it is easy to show that in an appropriate neighbor-
hood of (r, z3, . . . , zn) = (0, 0, . . . , 0)we have θ̇ �= 0.
Choosing θ as the new independent variable, in a neigh-
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borhood of (r, z3, . . . , zn) = (0, 0, . . . , 0) system (4)
becomes system (5), again with the sum running over
i1 + · · · + in = 4. Note that this system is 2π -periodic
in θ .

To apply the averaging theory in the proof of Theo-
rem 2, we rescale the variables, setting

(r, z3, . . . , zn) =
(
ε1/3σ, ε1/3τ3, . . . , ε

1/3τn

)
.

Then system (5) becomes system (7) with

f1 = 1

b

⎛

⎝aσ +
∑

i1+···+in=4

(
ai1···in cos θ + bi1···in sin θ

)

× (σ cos θ)i1(σ sin θ)i2τ
i3
3 · · · τ inn

⎞

⎠ ,

fk = 1

b

⎛

⎝ckτk +
∑

i1+···+in=4

ci1···in ,k

× (σ cos θ)i1(σ sin θ)i2τ
i3
3 · · · τ inn

⎞

⎠ .

Now (7) has the normal form (2) of the averaging the-
ory with x = (σ, τ3, . . . , σn), t = θ , T = 2π , and f as
in (8). The averaged system of system (7) with the pre-
vious functions f1 and fk can be written as system (9),
where 	 is an appropriate neighborhood of the origin
(σ, τ3, . . . , σn) = (0, 0, . . . , 0) with σ > 0 and f 0(y)
given by (10). After some computations, we obtain

f 01 = 1

8b
σ

⎛

⎝8a +
n∑

j=3

(a12e j + b21e j

+ 3(a30e j + b03e j ))σ
2τ j

+ 4
n∑

3≤i≤ j≤l≤n

(a10ei jl + b01ei jl )τiτ jτl

⎞

⎠ ,

f 0k = 1

8b

⎛

⎝8ckτk + 3
n∑

j=3

(c040n−2,k

+ c220n−2k + c400n−2,k)σ
4

+ 4
∑

3≤i≤ j≤n

(c20ei j ,k + c02ei j ,k)σ
2τiτ j

+ 8
∑

3≤i≤ j≤l≤u≤n

c00ei jlu ,kτiτ jτlτu

⎞

⎠

for k = 3, . . . , n, where ei jlu ∈ Z
n−2+ has the sum of

the i th, j th, lth and uth entries equal to 4 and the others
equal to 0 (these entries can coincide).

Now we apply Theorem 4 to obtain the limit cycles
of system (7) (with the sum running over i1+· · ·+in =
4). After the rescaling (6), these limits will become
infinitesimal limit cycles for system (5), which tend
to the origin when ε ↘ 0. Consequently they will be
limit cycles bifurcating from the origin of the zero–
Hopf bifurcation of system (1).

Using Theorem 4 to study the limit cycles of system
(7), we only need to compute the simple zeros of sys-
tem (9) (with the sum running over i1 + · · · + in = 4).
So we need to compute the zeros of the equations

8a +
n∑

j=3

(
a12e j + b21e j + 3(a30e j + b03e j )

)
σ 2τ j

+ 4
n∑

3≤i≤ j≤l≤n

(a10ei jl + b01ei jl )τiτ jτl = 0,

8ckτk + 3
n∑

j=3

(
c040n−2,k + c220n−2,k + c400n−2,k

)
σ 4

+ 4
∑

3≤i≤ j≤n

(
c20ei j ,k + c02ei j ,k

)
σ 2τiτ j

+ 8
∑

3≤i≤ j≤l≤u≤n

c00ei jlu ,kτiτ jτlτu = 0, (16)

for k = 3, . . . , n.
Isolating σ from the first equation in (16), taking

into account that σ > 0 and substituting it in the other
equations of (16), the numerator becomes a polynomial
equationof degree 6.ByBezout theorem, themaximum
number of solution that system (16) can have is 6n−2.
We do not know whether the bound is reached because
in the first equation of (16) it appears σ 2τ j instead of
σ 2 as in the first equation of (12). So we cannot apply
the same arguments as in the proof of Theorem 1, and
thus, we cannot show that the bounds are reached.

Now we consider the particular case of R3. In this
case, we have

f 01 = σ

8b

(
8a + (a121 + b211 + 3(a301 + b031))σ

2τ3

+ 4(a103 + b013)τ
3
3

)
,

f 02 = 1

8b

(
8c3τ3 + (3c040,3 + c220,3 + 3c400,3)σ

4

+ 4(c022,3 + c202,3)σ
2τ 23 + 8c004,3τ

4
3

)
.
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We need to compute the zeros of

8a + (a121 + b211 + 3(a301 + b031))σ
2τ3

+ 4(a103 + b013)τ
3
3 = 0,

8c3τ3 + (
3c040,3 + c220,3 + 3c400,3

)
σ 4

+ 4
(
c022,3 + c202,3

)
σ 2τ 23 + 8c004,3τ

4
3 = 0.

Setting σ 2 = R, from the first equation we get

R = − 4(2a + (a103 + b013)τ 33 )

τ3(a121 + 3a301 + 3b031 + b211)
.

Substituting σ 2 into the second equation and looking
at the numerator, we get a polynomial of degree two in
the variable τ 33 . It has two solutions. Note that there is
only one real solution for the cubic equation x3 = A
for A real and so the second equation has at most two
solutions. We claim that σ can be chosen to be positive
for these two real solutions and that these solutions are
simple. The claim can be verified using the example

ẋ = εax − by + 2xy2z,
ẏ = bx + εay,

ż = εz + ax2y2 + 3z4

32a3
.

The averaged function for this system is

(
f 01 , f 02

) =
(

σ
(
8a + 2σ 2τ

)

8b
,
1

8b

(
3τ 4

4a3
+ aσ 4 + 8τ

))
.

It has only two zeros with σ > 0, which give the two
periodic solutions

(xi (t, ε), yi (t, ε), zi (t, ε))

for i = 1, 2 such that

(x1(0, ε), y1(0, ε), z1(0, ε)) → (
√
2, 0,−2a)

and

(x2(0, ε), y2(0, ε), z2(0, ε)) → (
√
2 · 31/6, 0,−2a/31/3)

when ε → 0. This completes the proof of Theorem 2.

5 Proof of Theorem 3

Making the cylindrical change of variables in (3) in the
region r > 0, system (1) becomes system (4), with the
sum running over i1 + · · · + in = 5. Proceeding as in
the proofs of Theorems 1 and 2, in a neighborhood of
(r, z3, . . . , zn) = (0, 0, . . . , 0) with r > 0 system (4)
becomes system (5), again with the sum running over

i1 +· · ·+ in = 5. We note that this system 2π -periodic
in θ .

To apply the averaging theory, we rescale the vari-
ables, setting

(r, z3, . . . , zn) = (ε1/4σ, ε1/4τ3, . . . , ε
1/4τn).

Then system (1) becomes system (7), with i1 + · · · +
in = 5. Note that system (7) has the form (2) of the
averaging theory. Proceeding as in the proofs of Theo-
rems 1 and 2, we obtain

f 01 = σ

16b

⎛

⎝16a + (
a140n−2 + a320n−2 + a500n−2

+ b410n−2 + b230n−2 + b050n−2

)
σ 4

+
k∑

j=3

2
(
a12ei j + b21ei j + 3(a30ei j + b03ei j )

)
σ 2τiτ j

+ 8
∑

3≤i≤ j≤l≤u≤n

(
a10ei jlu + b01ei jlu

)
τiτ jτlτu

⎞

⎠ ,

f 0k = 1

8b

⎛

⎝8ckτk +
n∑

j=3

(
3c04e j ,k + 3c40e j ,k + c22e j ,k

)
σ 4τ j

+ 4
∑

3≤i≤ j≤l≤n

(
c02ei jl ,k + c20ei jl ,k )σ 2τiτ jτl

+ 8
∑

3≤i≤ j≤l≤u≤v≤n

c00ei jluv,kτiτ jτlτuτv

⎞

⎠ ,

for k = 3, . . . , n, where ei jluv ∈ Z
n−2+ has the sum of

the i th, j th, lth, uth and vth entries equal to 5 and the
other entries equal to zero (these entries can coincide).

We need to compute the zeros of the equations

16a + (
a140n−2 + a320n−2 + a500n−2 + b410n−2

+ b230n−2 + b050n−2

)
σ 4

+
k∑

j=3

2
(
a12ei j + b21ei j + 3(a30ei j + b03ei j )

)
σ 2τiτ j

+ 8
∑

3≤i≤ j≤l≤u≤n

(a10ei jlu + b01ei jlu )τiτ jτlτu = 0,

8ckτk +
n∑

j=3

(
3c04e j ,k + 3c40e j ,k + c22e j ,k

)
σ 4τ j

+ 4
∑

3≤i≤ j≤l≤n

(
c02ei jl ,k + c20ei jl ,k

)
σ 2τiτ jτl

+ 8
∑

3≤i≤ j≤l≤u≤v≤n

c00ei jluv,kτiτ jτlτuτv = 0,
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for k = 3, . . . , n. By Bezout theorem, the maximum
number of solutions that we can have is 4 · 5n−2. As in
the proof of Theorem 2, in general this upper bound is
not reached, as we will verify in dimension three.

Now consider the particular case ofR3. In this case,
we have

f 01 = σ

16b

(
16a + Aσ 4 + Bσ 2τ 23 + Cτ 43

)
,

f 02 = τ3

8b

(
8c3 + Dσ 4 + Fσ 2τ 23 + Gτ 43

)
,

where

A = a140 + a320 + 5a500 + b410 + b230 + 5b050,

B = 2(a122 + b212 + 3(a302 + b032)),

C = 8(a104 + b014),

D = 3(c041 + c401) + c221,

F = 4(c023 + c203),

G = 8c005.

We need to compute the zeros of the system

16a + Aσ 4 + Bσ 2τ 23 + Cτ 43 = 0,

τ3

(
8c3 + Dσ 4 + Fσ 2τ 23 + Gτ 43

)
= 0.

If τ3 = 0, then f 01 = 0 has a unique real positive solu-
tion σ that we write as (σ0, 0). Now we consider the
case τ3 �= 0. Let

W1 = 2

√
α − β

δ
,

R1 = W1
(− DB2 + AFB + 2aDFB − 2aAF2 + β

)

2(2aD − A)(BD − AF)
,

W3 = 2

√
α + β

δ
,

R3 = W3
(− DB2 + AFB + 2aDFB − 2aAF2 − β

)

2(2aD − A)(BD − AF)
,

where

α = 2ACD + ABF − B2D − 2A2G − 4CD2a + 2BDFa − 2AF2a + 4ADGa,

β =
√

(BD − AF)2(B2 − 4BFa − 4A(C − 2Ga) + 4a(2CD + F2a − 4DGa)),

δ = C2D2 + G(B2D − ABF + A2G) + C(− BDF + A(F2 − 2DG)).

Setting ( f 01 , f 02 ) = 0 in R = σ 2 and W = τ 23 , we
get four solutions, say

(R1,W1), (− R1,− W1), (R3,W3), (− R3,− W3).

Since R = σ 2 must be positive, we conclude that only
two of them are possible. Then we can have five simple
solutions (σ0, 0), (

√
R1,± √

W1) and (
√
R3,± √

W3)

as illustrated by the system

ẋ = − ε

35
x − by + 16

35
xy4 + 34

35
xy2z2,

ẏ = bx − ε

35
y,

ż = εz + y4z

4
.

The averaged function ( f 01 , f 02 ) for this system is
(

σ

16b

(
16σ 4

35
+ 68σ 2τ 23

35
+ 64τ 43

35
− 16

35

)
,

τ3

4b

(
3σ 4

4
+ σ 2τ 23 − 23τ 43

4
+ 8

))
.

This function has five zeros with σ > 0, which pro-
vide five periodic solutions (xi (t, ε), yi (t, ε), zi (t, ε))
for i = 0, . . . , 4 such that

(x0(0, ε), y0(0, ε), z0(0, ε)) → (1, 0, 0),

(x1(0, ε), y1(0, ε), z1(0, ε)) →
(√

2/31/4, 0,
√
2/31/4

)
,

(x2(0, ε), y2(0, ε), z2(0, ε)) →
(√

2/31/4, 0,− √
2/31/4

)
,

(x3(0, ε), y3(0, ε), z3(0, ε)) → (
√
6, 0,

√
2),

and

(x4(0, ε), y4(0, ε), z4(0, ε)) → (
√
6, 0,−√

2),

when ε → 0. This completes the proof of Theorem 3.

Acknowledgements The first and third author are partially
supported by FCT/Portugal throughUID/MAT/04459/2013. The
second author is partially supported by a FEDER-MINECO
GrantMTM2016-77278-P, aMINECOGrantMTM2013-40998-
P, and an AGAUR Grant 2014SGR-568.

123



1166 L. Barreira et al.

References

1. Buica, A., Llibre, J.: Averagingmethods for finding periodic
orbits via Brouwer degree. Bull. Sci.Math. 128, 7–22 (2004)

2. Cardin, P.T., Llibre, J.: Transcritical and zero–Hopf bifur-
cations in the Genesio system. Nonlinear Dynam. 88,
547–553 (2017)

3. Champneys, A.R., Kirk, V.: The entwined wiggling of
homoclinic curves emerging from saddle-node/Hopf
instabilities. Phys. D 195, 77–105 (2004)

4. Guckenheimer, J.: On a codimension two bifurcation. Lect.
Notes Math. 898, 99–142 (1980)

5. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations,
Dynamical Systems and Bifurcations of Vector Fields.
Springer, Berlin (1983)

6. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory,
3rd edn. Springer, Berlin (2004)

7. Llibre, J., Valls, C.: Hopf bifurcation for some analytic
differential systems in R3 via averaging theory. Discret.
Contin. Dyn. Syst. Ser. A 30, 779–790 (2011)

8. Llibre, J., Zhang, X.: Hopf bifurcation in higher dimen-
sional differential systems via the averaging method. Pac.
J. Math. 240, 321–341 (2009)

9. Lloyd, N.G.: Degree Theory. Cambridge University Press,
Cambridge (1978)

10. Marsden, J.E., McCracken, M.: The Hopf bifurcation and
its applications. In: Applied Mathematical Sciences, vol.
19, Springer: New York (1976)

11. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging methods
in nonlinear dynamical systems. In: Applied Mathematical
Sciences, vol. 59, 2nd Edn. Springer, New York (2007)

12. Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori
in the interaction of steady state and Hopf bifurcations.
SIAM. J. Math. Anal. 15, 1055–1074 (1984)

13. Shafarevich, I.R.: Basic Algebraic Geometry. Springer,
Berlin (1974)

14. Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qual-
itative theory of differential equations. Translations of
Mathematical Monographs, vol. 101. American Mathemat-
ical Society, Providence (1992)

123


	Limit cycles bifurcating from a zero–Hopf singularity in arbitrary dimension
	Abstract
	1 Introduction and statement of the main results
	2 First-order averaging method for periodic orbits
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Proof of Theorem 3
	Acknowledgements
	References




