
Nonlinear Dyn (2018) 92:1001–1021
https://doi.org/10.1007/s11071-018-4105-5

ORIGINAL PAPER

Nonlinear model predictive control based on piecewise linear
Hammerstein models

Jian Zhang · Kwai-Sang Chin ·
Maciej Ławryńczuk

Received: 16 April 2017 / Accepted: 26 January 2018 / Published online: 15 February 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract This paper develops a nonlinear model pre-
dictive control (MPC) algorithm for dynamic systems
represented by piecewise linear (PWL) Hammerstein
models. At each sampling instant, the predicted out-
put trajectory is linearized online at an assumed input
trajectory such that the control actions can be easily cal-
culated by solving a quadratic programming optimiza-
tion problem, and such linearization and optimization
may be repeated a few times for good linear approxi-
mation accuracy. A three-step procedure is developed
to linearize a PWL function, where the derivatives of
a PWL function are obtained by a computationally
efficient look-up table approach. Unlike many exist-
ing MPC algorithms for Hammerstein systems, it does
not require the inversion of static nonlinearity and can
directly cope with input constraints even in multivari-
able systems. Two benchmark chemical reactors are
studied to illustrate the effectiveness of the proposed
algorithm.

J. Zhang (B) · K.-S. Chin
Department of System Engineering and Engineering
Management, City University of Hong Kong, Kowloon
Tong, Hong Kong
e-mail: jzhang398-c@my.cityu.edu.hk

K.-.S Chin
e-mail: mekschin@cityu.edu.hk

M. Ławryńczuk
Institute of Control and Computation Engineering, Faculty
of Electronics and Information Technology, Warsaw
University of Technology, Warsaw, Poland
e-mail: M.Lawrynczuk@ia.pw.edu.pl

Keywords Nonlinear model predictive control ·
Hammerstein model · Piecewise linear function ·
Multistep linearization · Chemical reactor

1 Introduction

Model predictive control (MPC) refers to a class of con-
trol algorithms that employ an explicit dynamic model
of a controlled process to predict its future outputs, and
determine the control actions through optimization [1].
MPC has been one of the most successful control tech-
niques for the industrial processes with multivariable
coupling, constraints, and time-delay [2,3].With linear
MPC becoming mature, nonlinear MPC becomes the
focus of current research as it can contribute to good
control performance for highly nonlinear processes.

Many nonlinear models have been integrated in
MPC algorithms, such as first-principle models [4],
neural networks [5], support vector machines (SVM)
[6], and block-oriented models [7–10]. In particular,
a Hammerstein model, which consists of a static non-
linear model followed by a linear dynamic model, has
been demonstrated to be able to adequately approxi-
mate a large number of processes, such as a binary dis-
tillation column [7], a pH neutralization process [11], a
continuous stirred tank reactor [12], a solid oxide fuel
cell [13], a stretch reflex process [14], a turntable servo
system [15], and so on. Compared with other nonlinear
models, the Hammerstein model has the advantages of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-018-4105-5&domain=pdf
http://orcid.org/0000-0002-1530-6323

1002 J. Zhang et al.

simple structure and easy identification [7,8], and thus
is considered here.

In the most typical case, a polynomial is used as
the static part of the Hammerstein model. A significant
drawback of this model is that, for accurately approx-
imating complex nonlinearities, the polynomial order
is likely to be very high [16]. This will cause the diffi-
culty of identification and oscillatory interpolation. In
the view of nonlinear approximation, neural networks
are excellent approximators [5]. Unfortunately, train-
ing a neural network is not easy. Nonlinear optimiza-
tion problems have to be solved to compute the network
model parameters, and a number of networks should be
trained and compared to get a goodmodel. Support vec-
tor machines (SVM) are also employed to act the static
part of a Hammerstein model [17], but it has the dis-
advantage of lacking spareness, i.e., including a large
number of support vectors and corresponding param-
eters. For these reasons, it is necessary to find a suit-
able nonlinear approximator for Hammerstein models.
A piecewise linear (PWL) function is an interesting
alternative. Based on the so-called simplicial partition
method, the canonical PWL representation is studied in
[18,19]. The parameters of canonical PWL functions
can be identified by solving a least-square problem;
they can be easily calculated by using the existing PWL
toolbox [20]. It has been proven that PWL functions
can uniformly approximate any Lipschitz-continuous
function definedon a compact domain.Moreover, PWL
functions do not suffer from the problems of oscillatory
interpolation and lacking spareness.

Several MPC algorithms have been developed for
dynamic systems represented by Hammerstein mod-
els. The main focus of these algorithms is how to deal
with the static nonlinearity for optimizing control laws.
A pioneering study can be found in [21], where the
Hammersteinmodel is directly integrated into theMPC
controller and the corresponding control law is calcu-
lated by solving a complex non-convex nonlinear opti-
mization problem. By transforming the nonlinearity
to a polytopic description, the Robust MPC (RMPC)
has been designed for Hammerstein models [22,23].
This algorithm just requires to solve a quadratic pro-
gramming (QP) problem with linear matrix inequal-
ity (LMI) constraints, but the conservativeness and the
online computational burden should be carefully con-
sidered. By treating input nonlinearities as unknown
disturbances, the linear MPCwith an input disturbance
model is also studied for Hammerstein systems with

unknown input nonlinearities [24]. The most common
and the most used control algorithms for Hammerstein
models are the nonlinearity inversion-basedMPC algo-
rithms which consist of a linear controller followed by
the inversion of input nonlinearity [7,9,10]. For mul-
tivariable systems with complex nonlinearities, such
algorithms have to calculate numerical inversion of the
nonlinearities online and require extra transformation
of input constraints. An another idea is to find a linear
approximation of the model or of the predicted pro-
cess trajectory which makes formulation of a QP MPC
problem possible [5,17,25].

This paper develops a nonlinear MPC algorithm
based on PWL Hammerstein models. In contrast to the
aforementioned MPC algorithms, the proposed MPC
algorithm does not require inversion of input nonlin-
ear block, and thus, it can directly integrate input con-
straints without any transformation. To reduce compu-
tational burden, at each sampling period, the predicted
output trajectory is firstly linearized at an assumed
input trajectory, and then the optimal control actions
are simply calculated by solving a QP problem. In
particular, due to the character that a PWL function
becomes a linear function at a specific input subregion,
the derivatives used in the linearization process are
obtained in a computationally efficient look-up table
style. The developed control algorithm can integrate
various disturbance models, which makes it possible to
achieve better control performance than the controllers
just based on the traditional output disturbance model.
This paper extends the work of [17,25], where only
output disturbance models are considered, SVM and
neural networks are, respectively, used to act the non-
linear part of the model, and the derivatives of static
nonlinearities are calculated online. Two benchmark
systems, a continuous stirred tank reactor (CSTR) and
a PH neutralization reactor, are employed to show the
advantages of the proposed algorithm. The simulation
results illustrate that the algorithmcanmake a good bal-
ance between control performance and computational
efficiency. Namely, it can give almost same control
accuracy with that of the MPC algorithm with non-
linear optimization, at the cost of slightly higher com-
putational burden than the linear MPC.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the PWLHammerstein model and the
canonical representation for PWL functions. Section 3
details development of the nonlinearMPC based on the
PWL Hammerstein model. Section 4 gives the simula-

123

Nonlinear model predictive control 1003

tion results for the two benchmark systems. Section 5
concludes the paper.

2 Preliminaries

2.1 Piecewise linear Hammerstein model

The controlled dynamic system is represented by the
following discrete-time, nonlinear, state-space model

{
xk+1 = f (xk, uk)
yk = g(xk)

(1)

where uk ∈ R
nu is the system input vector (the vec-

tor of manipulated variables), xk ∈ R
nx is the system

state vector, yk ∈ R
ny is the system output vector (the

vector of controlled variables), k is the sample time,
f : Rnu+nx → R

nx and g : Rnx → R
ny are smooth

nonlinear functions.
A Hammerstein model is employed to approximate

the above nonlinear process. As shown in Fig. 1, the
Hammersteinmodel consists of a static nonlinear block
followed by a dynamic linear block. It can be described
by the following equations

⎧⎨
⎩

vk = F(uk)
xk+1 = Axk + Bvk
yk = Cxk

(2)

where vk ∈ R
nv is an intermediate variable vector

between model blocks, F : R
nu → R

nv is a static
nonlinear function. The model matrices A, B and C
are of dimensionality nx × nx , nx × nv and ny × nx ,
respectively.

In this study, F(·) is represented by a PWL func-
tion. Note, in contrast to the previous studies on Ham-
merstein MPC [7,9,10], the nonlinear function F(·) is
allowed to be non-invertible and coupled multivariable
nonlinearities. The coupled multivariable nonlineari-
ties mean that multiple outputs of F(·) are nonlinear
functions of all inputs, which are often encountered in

ku kv ky

Static nonlinear block Dynamic linear block

1k k k

k k

x Ax Bv

y Cx
()k kFv u

Fig. 1 The discrete-time Hammerstein model

multivariable industrial processes [3]. In the processes
with coupled multivariable nonlinearities, transform-
ing input constraints to the constraints on immediate
variables is not easy, which seriously limits the applica-
tion of the previously proposed inversion-based Ham-
merstein MPC algorithms. This paper only assumes
F(·) is Lipschitz continuous. Such an assumption is
not restrictive because static description of numerous
technological processes, e.g., chemical reactors or dis-
tillation columns, satisfies that condition.

2.2 Canonical piecewise linear function

In its typical form, a PWL function simply consists of
a number of linear sub-functions, which are used only
in their specific subregions [19]. Such classical repre-
sentation requires an excessive number of parameters
andmaymake identification very difficult. For this rea-
son, Chua et al. [26] proposed a canonical expression
(with minimum and necessary number of parameters)
for PWL functions in R

1 in the 1970s. It is until 1999
that Julian et al. [18,19] by using the so-called sim-
plicial partition method, developed the canonical PWL
representation in R

n . The simplicial partition method
is employed to divide the input domain to determine
subregions, which has a wider range of application and
is much simpler than other partition methods (e.g., the
clustering method [27] and the prior knowledge-based
method [28]). The resulting canonical PWL represen-
tation can approximate nonlinearmappings sufficiently
closely, and the corresponding parameters can be calcu-
lated by the existing toolbox [20] directly and conve-
niently. In the following, the relevant definitions and
concepts of the canonical PWL function are briefly
reviewed. More details can be found in [18,19].

Definition 1 Simplex: Let u0, u1, . . . , un be n + 1
vectors in R

n . A simplex (polytope) S is defined by

S �
{
u

∣∣∣∣∣ u =
n∑

i=0

μiui

}
(3)

where μ = [μ0 μ1 . . . μn]T is the simplex parameter
vector, 0 ≤ μi ≤ 1 and

∑n
i=0 μi = 1.

Consider a domain in Rn of the form

D =
{
u ∈ R

n
∣∣∣ ui ≤ ui ≤ ui , i = 1, 2, . . . , n

}
(4)

123

1004 J. Zhang et al.

where ui and ui are the lower bound and the upper
bound of ui , respectively. The simplicial partition of D
consists of two steps. Firstly, by specifying the number
of divisions (mi) associated with the ui axis (i.e., divid-
ing the interval [ui , ui] into mi divisions), the domain
D is evenly divided into

∏n
i=1 mi hypercubes

Hh � [u1 + h1δ1, u1 + (h1 + 1)δ1]
× [u2 + h2δ2, u2 + (h2 + 1)δ2]
...

× [un + hnδn, un + (hn + 1)δn]

(5)

where h = [h1 h2 . . . hn]T, hi are integers and
0 ≤ hi ≤ mi − 1. In the axis ui , the grid step is
δi = (ui −ui)/mi . The corresponding grid step vector
is formed as δ = [δ1 δ2 . . . δn]T. Each hypercube is
characterized by 2n vertices. In particular, the vertex
uh = [u1 + h1δ1, u2 + h2δ2, . . . , un + hnδn]T can
uniquely characterize Hh, and thus, h is used as the
index for Hh. In the second stage of the partition pro-
cedure, each hypercube is subdivided into n! simplices
Ss, s = 1, . . . , n!. Each simplex is characterized by
n+1 vertices. All the simplices in the same hypercube
Hh have the common vertex uh. By using the two-step
simplicial partition, the domain D is finally divided into
n! ×∏n

i=1 mi regions (denoted as HhSs). Partitioning
of a domain in R2 is shown in Fig. 2.

Based on the simplicial partition, a PWL function is
represented in the following canonical style

F(u) = cT�(u) (6)

Fig. 2 The simplicial partition of a domain in R
2

where c is the parameter vector of length
∏n

i=1(mi +1)
and �(u) is a vector function formed by a set of gen-
erating functions (multiple nestings of absolute value
functions) [18,19].

3 Nonlinear MPC based on the PWL
Hammerstein model

To achieve offset-free control, some mechanism to
deal with potential process disturbance and unavoid-
able process model mismatch should be introduced in
the designed MPC algorithm. The standard method is
to augment the process state with the artificially intro-
duced disturbance [4,29–34]. As a result, the origi-
nal process model becomes the augmented state-space
model and the resulting MPC algorithm can achieve
offset-free control. It is also possible to use the non-
minimal state-space model, in which the extended
states consist of input increments, output increments
and output signals [35–37]. Considering the augmented
model method has the advantage of relatively low
matrix dimensionality, it is used in this study. In the fol-
lowing, based on the PWLHammersteinmodel defined
by Eqs. (2), the MPC algorithm is developed by fol-
lowing the standard flow [29], i.e., the three parts: the
augmented model design, the observer design, and the
controller design.

3.1 Augmented model design

Considering the PWLHammerstein model (2), the cor-
responding augmented model is designed as

vk = F(uk)[
xk+1

dk+1

]
=
[

A Bd

0nx×nd Ind×nd

]
︸ ︷︷ ︸

A

[
xk
dk

]
+
[

B
0nd×nv

]
︸ ︷︷ ︸

B

vk + ζ k

yk = [
C Cd

]
︸ ︷︷ ︸

C

[
xk
dk

]
+ ξ k

(7)

where dk ∈ R
nd is the augmented disturbance, Bd

and Cd are the disturbance model matrices of dimen-
sionality nx × nd and ny × nd , respectively; A, B,
and C are the augmented model matrices of dimen-
sionality (nx + nd) × (nx + nd), (nx + nd) × nv and
ny × (nx + nd), respectively; ζ k = [ζT

x,k ζT
d,k]T ∈

123

Nonlinear model predictive control 1005

R
nx+nd and ξ k ∈ R

ny are zero-mean white noise for
the augmented state and the output. The variances of
ζ x,k , ζ d,k , and ξ k are specified by matrices Qx , Qd ,
and Qy of dimensionality nx ×nx , nd×nd and ny×ny ,
respectively.

The disturbance model is of critical importance for
offset-free control. Although the matrices Bd and Cd

can be estimated from measured data, they are gen-
erally artificially selected for reducing modeling cost
and obtaining good control performance. The most
classical existing MPC algorithms for Hammerstein
models [7,9,10,17,25] use only the output disturbance
model in which Bd = 0nx×nd , Cd = Iny×nd with
nd = ny . It is because MPC with such a simplified
model may effectively compensate for a wide range
of typical disturbances and model mismatch. However,
the output disturbance model has two serious draw-
backs as detailed in [32,33,38]. First, it cannot result in
offset-free control if the controlled plant contains inte-
gration. Second, it often leads to sluggish closed-loop
performance due to its poor ability to model actual dis-
turbance dynamics. As an alternative to using the out-
put disturbance model, the input disturbance one has
been recommended in recent research for linear MPC
algorithms [32,33,38] since it is likely to alleviate the
aforementioned disadvantages. Because the nonlinear
function F(·) is static, the input disturbance model is
implemented by choosing Bd = B and Cd = 0ny×nd
with nd = nu . In this work, both input and output dis-
turbance models are considered for controller design
and finally one of them is chosen by comparing their
control quality.

3.2 Observer design

After designing the augmentedmodel, a proper observer
is required to estimate the state xk and the augmented
disturbance dk from the measured process input and
output signals. An Augmented Kalman Filter (AKF)
[32,33] can act as an observer to solve the estimation
problem.

The AKF consists of the following two steps: model
prediction and measurement correction. The first step
is described by the equation

vk = F(uk)[
xk|k−1

dk|k−1

]
= A

[
xk−1|k−1

dk−1|k−1

]
+ Bvk−1

(8)

whereas the second step is characterized by

[
xk|k
dk|k

]
=
[
xk|k−1

dk|k−1

]
+ LKF

(
yk − C

[
xk|k−1

dk|k−1

])
(9)

where LKF = [LT
x LT

d]T is the observer gain matrix of
dimensionality (nx +nd)×ny . LT

x and LT
d are the state

gain matrix and the augmented disturbance gain matrix
of dimensionalitynx×ny andnd×ny , respectively. The
gainmatrix LKF can be computed offline by solving the
following algebraic Riccati equation (ARE)

LKF = PC(CPC
T + Qy)

−1 (10)

where

P = AP A
T − APC

T
(CPC

T + Qy)
−1CP A

T + Q

(11)

where Q = diag(Qx , Qd). The variance matrices
Qx , Qd and Qy are treated as the adjustable observer
parameters to balance the offset-free control speed and
the control sensitivity to noises. Because F(·) is just a
nonlinear function of the system input uk rather than
the estimated states, the aboveAKF (8) and (9) is essen-
tially a linear Kalman filer, whose properties (e.g., the
observation error convergence) have been well studied
in previous literature [32,33] and thus is omitted here.

In addition to AKF, moving horizon estimation
(MHE) [39] can also be used for state estimation. Dif-
ferent withAKF,MHE can explicitly deal with the con-
straints on the states to be estimated. On the other hand,
MHEgenerally has a higher computational burden than
AKF. If state constraints are available and the compu-
tational cost is acceptable, MHE may be alternatively
used.

3.3 MPC optimization problem

The objective of the MPC algorithm is to minimize
differences between the predefined reference trajectory
and the predicted process outputs and to avoid exces-
sive control actions. Thus, the future sequence of incre-
ments of the manipulated variables

�Uk =
[
�uTk|k �uTk+1|k . . . �uTk+Hc−1|k

]T
is determinedonline at each sampling instant by solving
the following optimization problem with constraints

123

1006 J. Zhang et al.

min
�uk|k ,···

�uk+Hc−1|k

k+Hp∑
i=k+1

∥∥∥ yri |k − yi |k
∥∥∥2
wy

+
k+Hc−1∑

i=k

∥∥�ui |k
∥∥2
w�u

s.t. yi |k = Cxi |k + Cd di |k
xi+1|k = Axi |k + Bd di |k + Bvi |k
vi |k = F(ui |k)
ui |k = ui−1|k + �ui |k
�ui |k = 0, if i ≥ Hc

ymin ≤ yi |k ≤ ymax

umin ≤ ui |k ≤ umax

�umin ≤ �ui |k ≤ �umax

(12)

where the norm is defined as ‖x‖2M � xTMx; yri |k ∈
R
ny is the assumed reference trajectory for the sam-

pling instant i known at the instant k; Hp is the predic-
tion horizon; Hc is the control horizon; wy ≥ 0ny×ny ,
w�u ≥ 0nu×nu are weights of the minimized cost-
function; ymin ∈ R

ny , ymax ∈ R
ny are the con-

straints imposed on the system outputs; umin ∈ R
nu ,

umax ∈ R
nu , �umin ∈ R

nu , and �umax are the con-
straints imposed on the magnitude and on the incre-
ments of system inputs, respectively. The output con-
straints may lead to infeasibility problems. In such
cases, the so-called soft constraints can be used to
replace the original output constraints, which is a stan-
dard approach in MPC. Readers can find more details
in the classical textbooks [5,34,35].

At each sampling instant, nuHc future control incre-
ments are calculated from the MPC optimization prob-
lem (12), then only the increments for the instant
k are actually applied to the process, namely uk =
uk−1 + �uk . At the next sampling instant, the whole
optimization procedure is repeated.

It should be noted that, because the mapping from
uk to vk (i.e., the function F(·)) is essentially nonlin-
ear, the predicted outputs (yi |k) are nonlinear functions
of the calculated online control increments �Uk . This
means that the future control increments are computed
by solving the complex nonlinear optimization prob-
lem (12) [40]. In this paper, such a control algorithm is
called as the MPC algorithm with nonlinear optimiza-
tion (MPC-NL). The significant online computational
burden seriously limits the application of the MPC-NL
algorithm.

Bearing in mind possible computational complex-
ity of the MPC-NL algorithm, this paper develops a
computationally efficient MPC algorithm based on a

multistep linearization technique (MPC-ML). At each
sampling instant, by using an assumed input trajectory
(multistep future inputs), the PWL functions are first
transformed within the control horizon into multiple
linear functions. Consequently, the predicted outputs
become the linear functions of the future control incre-
ments, and the nonlinear optimization problem (12) is
simplified into a QP problem, so that the future control
increments can be easily computed (computational bur-
den of quadratic optimization ismuch lower than that of
general nonlinear optimization and the global optimal
solution is always found). For achieving good approx-
imation accuracy, the above-mentioned linearization
and the resulting QP optimizationmay be repeated sev-
eral times in internal iterations at each sampling instant.

3.4 Linearization of predicted trajectory

Taking into account the augmentedHammersteinmodel
defined by Eq. (7), the predicted trajectory V k of the
intermediate variables between the static and dynamic
parts of the model (over the control horizon) is

⎡
⎢⎢⎢⎣

vk|k
vk+1|k

...

vk+Hc−1|k

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
V k

=

⎡
⎢⎢⎢⎣

F(uk−1 + �uk|k)
F(uk−1 + �uk+1|k)

...

F(uk−1 + �uk+Hc−1|k)

⎤
⎥⎥⎥⎦ , (13)

Consequently, the predicted output trajectory Y k (over
the prediction horizon) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yk+1|k
yk+2|k

.

.

.

yk+Hc|k
.
.
.

yk+Hp|k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 · · · 0
CAB CB · · · 0

.

.

.
.
.
.

. . .
.
.
.

CAHc−1B CAHc−2B · · · CB
.
.
.

.

.

.
. . .

.

.

.

CAHp−1B CAHp−2B · · · ∑Hp−Hc
i=0 CAi B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�v

V k

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA
CA2

.

.

.

CAHc

.

.

.

CAHp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�x

xk|k +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cd + CBd

Cd +∑1
i=0 CAi Bd

.

.

.

Cd +∑Hc−1
i=0 CAi Bd

.

.

.

Cd +∑Hp−1
i=0 CAi Bd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�d

dk|k .

(14)

123

Nonlinear model predictive control 1007

From Eq. (13) it is important to notice that the trajec-
tory V k is a nonlinear function of the calculated future
control increments, i.e.,�uk+i |k for i = 0, . . . ,Hc−1,
whereas from Eq. (14) one may notice that the output
trajectory Y k is linear in terms of the trajectory V k . If
it would be possible to obtain a linear representation of
the V k trajectory with respect to�uk+i |k , the resulting
output trajectory becomes linear in terms of the calcu-
lated control increments. For this purpose, the function
F(·) should be linearized and its linear approximation
should be used for prediction.

The following three-step procedure is designed to
linearize the function F(·) for a given input vector u̇ =
[u̇1, . . . , u̇n]T (a point in the domain D).

Step 1 Find the hypercube containing u̇. As indicated
in Eq. (5), a vector h = [h1 . . . hn]T can
uniquely index a hypercube Hh. Hence, one can
find the hypercube by computing the vector h
from u̇. The specific procedure for completing
Step 1 is:

(1a) Calculate hi = floor((u̇i − ui)/δi) i =
1, . . . , n.

(1b) If hi = mi , let hi = mi − 1.
(1c) Repeat step (1a) and (1b) for i = 1, . . . , n.

In Step 1, one canfind a unique hypercube Hh for the
given vector u̇ (which defines the current linearization
point), even if u̇ is located at the intersection between
hypercubes and the boundary of the domain D.

Step 2 Find the simplex that u̇ belongs to.

Lemma 1 Assume a simplex HhSs is characterized by
n + 1 vectors u0, . . . , un. The necessary and sufficient
condition of u̇ ∈ HhSs is there exists an unique simplex
parameter vector μ̂ = [μ̂0 μ̂1 . . . μ̂n]T subject to the
condition

⎧⎨
⎩

μ̂ =
[
u0 u1 · · · un
1 1 · · · 1

]−1

︸ ︷︷ ︸
S−1
u

[
u̇
1

]

0 ≤ μ̂i ≤ 1, i = 1, . . . , n.

(15)

The proof of Lemma 1 is straightforward from the def-
inition of a simplex (Definition 1).

By using the condition (15), one can check the sim-
plices in the hypercube Hh one by one. However, it
should be noted that the inversion of the matrix Su

Fig. 3 The translation T from Hh to Hunit in R2

has to be calculated online because Su changes with u̇,
which will lead to unnecessary computing cost.

A linear transformation T : Rn → R
n is defined as

z = T (u̇) = (u̇ − u)./δ − h (16)

where ’./’ represents the element-wise division.
The transformation T is employed to “translate” the

hypercube Hh into the unit hypercube Hunit = [0, 1]n
which is illustrated in Fig. 3 for R2. It is obvious that
the hypercube Hunit has the same number of simplices
as Hh has. Moreover, the relative locations of the sim-
plices in the same hypercube do not change after the
linear transformation. For example, both HhS1 and
HunitS1 are located at the bottom left in the correspond-
ing hypercubes. In this regard, one can determine the
simplex containing u̇ by judging which simplex in the
unit hypercube Hunit includes z.

Lemma 2 If and only if the following condition is sat-
isfied

⎧⎨
⎩

μ̂ =
[
z0 z1 · · · zn
1 1 · · · 1

]−1

︸ ︷︷ ︸
S−1
z

[
z
1

]

0 ≤ μ̂i ≤ 1, i = 1, . . . , n

(17)

where zi = T (ui), i = 0, . . . , n and z = T (u̇), then
u̇ ∈ HhSs .

Unlike S−1
u , S−1

z can be calculated offline and stored
and can be used online in a look-up table manner.

The specific procedure for completing Step 2 is:

(2a) Compute z = T (u̇).
(2b) For each HunitSs : if the condition (17) is satisfied,

then u̇ is in HhSs ; otherwise repeat checking the
condition (17) for other simplices in Hunit until the
simplex including u̇ is found.

123

1008 J. Zhang et al.

Step 3 Linearize the PWL function F(·). In each sim-
plex HhSs , the PWL function is equivalent to
the following linear function

F(u) = F(ũh) + ∂F

∂u1

∣∣∣∣
h,s

(u1 − ũ1h) + · · ·

+ ∂F

∂un

∣∣∣∣
h,s

(un − ũnh)

= φu + ψ

(18)

where ũh = [ũ1h . . . ũnh] is an arbitrary point in

HhSs (typically uh); φ =
[

∂F
∂u1

∣∣∣
h,s

· · · ∂F
∂un
∣∣
h,s

]
;

ψ = F(ũh) − φũh. Note that given an identified PWL
function,φ in different simplices can be also calculated
offline and stored for online use. The specific procedure
for completing Step 3 is:

(3a) Find φ.
(3b) Calculate ψ .

The above 3-step procedure can be used to linearize
the function F(·) at a single vector u̇. In order to lin-
earize the trajectory V k and finally linearize the pre-
dicted output trajectory Y k , the linearization is per-
formed for some trajectory of the manipulated vari-
ables defined over the whole control horizon, which is
defined in the following way

U̇
t
k =

[
(u̇tk|k)

T, (u̇tk+1|k)
T . . . (u̇tk+Hc−1|k)

T
]T

(19)

The trajectory of future values of the manipulated
variables (19) of course depends on the current oper-
ating point of the process, i.e., it depends on the sam-
pling time k. Moreover, at the same sampling instant it
is possible to repeat linearization a few times, the index
t indicates the internal iteration (repetition of lineariza-
tion).

By repeatedly using the 3-step procedure, the trajec-
tory of the intermediate variables between the static and
dynamic parts of the model (over the control horizon),
V k , is linearized around the trajectory of the future pro-
cess inputs (over the control horizon), U̇

t
. From Eq.

(18), the linearized trajectory is

Ṽ t =

⎡
⎢⎢⎢⎢⎣

φt
k|k 0 · · · 0

0 φt
k+1|k · · · 0

...
...

. . .
...

0 0 · · · φt
k+Hc−1|k

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
	t

k

U t+

⎡
⎢⎢⎢⎢⎣

ψ t
k|k

ψ t
k+1|k
...

ψ t
k+Hc−1|k

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸

 t

k

(20)

Considering that U t
k = L�U t

k + Uk−1 where the
matrix L, of dimensionality nuHc × nuHc, and the
vector Uk−1, of length nuHc, are

L =

⎡
⎢⎢⎢⎣
Inu×nu 0nu×nu · · · 0nu×nu
Inu×nu Inu×nu · · · 0nu×nu

...
...

. . .
...

Inu×nu Inu×nu · · · Inu×nu

⎤
⎥⎥⎥⎦ ,Uk−1 =

⎡
⎢⎢⎢⎣
uk−1

uk−1
...

uk−1

⎤
⎥⎥⎥⎦

the linearized trajectory (20) may be compactly
expressed

Ṽ
t
k = 	t

kL�U t
k + 	t

kUk−1 +
 t
k (21)

Next, taking into account Eq. (14), the linearized
trajectory of output predictions is

Ỹ
t
k = �v	

t
kL�U t

k + Y0,t
k (22)

where the so-called free trajectory (independent of the
currently calculated future control sequence) is defined
as

Y0,t
k = �v	

t
kUk−1 + �v

t
k + �x xk|k + �ddk|k (23)

3.5 Efficient MPC algorithm

Taking into account the linear approximation of the pre-
dicted output trajectory defined by Eq. (22), the general
nonlinearMPCoptimization problem (12) becomes the
following QP problem

min
�U t

k

∥∥∥Y r
k − �v	

t
kL�U t

k − Y0,t
k

∥∥∥2
W y

+ ∥∥�U t
∥∥2
W�u

s.t. Y l ≤ �v	
t
kL�U t

k + Y0,t
k ≤ Yu

U l ≤ Uk−1 + L�U t
k ≤ Uu

�U l ≤ �U t
k ≤ �Uu

(24)

123

Nonlinear model predictive control 1009

where the vectors of length nyHc are

Y r
k =

⎡
⎢⎢⎢⎢⎣

yrk+1|k
yrk+2|k

...

yrk+Hp|k

⎤
⎥⎥⎥⎥⎦ , Y l =

⎡
⎢⎢⎢⎣
ymin
ymin
...

ymin

⎤
⎥⎥⎥⎦ , Yu =

⎡
⎢⎢⎢⎣
ymax
ymax

...

ymax

⎤
⎥⎥⎥⎦

and the vectors of length nuHp are

U l =

⎡
⎢⎢⎢⎣
umin

umin
...

umin

⎤
⎥⎥⎥⎦ , Uu =

⎡
⎢⎢⎢⎣
umax

umax
...

umax

⎤
⎥⎥⎥⎦ ,

�U l =

⎡
⎢⎢⎢⎣

�umin

�umin
...

�umin

⎤
⎥⎥⎥⎦ , �Uu =

⎡
⎢⎢⎢⎣

�umax

�umax
...

�umax

⎤
⎥⎥⎥⎦

To sum up, the proposed MPC-ML algorithm con-
sists of the following steps, which are repeated at each
sampling instant k:

1. The state vector xk|k and the disturbance vector dk|k
are estimated.

2. The vector which defines the linearization point is

initialized, U̇
1
k = [

uTk−1 u
T
k−1 . . . uTk−1

]T
, the index

t is set to 1.
3. The linearized predicted output trajectory Ỹ

t
k is cal-

culated, i.e., the matrices 	t
k and
 t

k are found.
4. The MPC QP problem (24) is solved to find �U t

k

and the vector U̇
t
k = Uk−1 + L�U t

k is updated.
5. Decide whether internal iterations should be termi-

nated. If the trajectory�U t
k is close to the trajectory

at the previous internal iteration, i.e.,

∥∥∥�U t
k − �U t−1

k

∥∥∥2 < T Vu (25)

or t > tmax, then go to Step 6; (T Vu is a threshold
value to be tuned). Otherwise, update t := t + 1
and go to Step 3.

6. Apply the first nu elements of the vector �U t
k (i.e.,

the vector �utk|k) to the process.

At the next sampling instant, the algorithm starts from
Step 1 and the above six-step procedure is repeated.

Remark 1 Asimilarmethod,which is calledMPCwith
nonlinear prediction and linearization along predicted
trajectory (MPC-NPLPT), has been proposed for dif-
ferent types of processmodels, includingHammerstein
[17,25], Wiener [5], Hammerstein-Wiener [41] as well
as Wiener-Hammerstein cascade structures [42]. The
MPC-NPLPT algorithm requires the process model to
be differentiable and calculates the derivatives online,
while the proposed MPC-ML algorithm linearizes the
PWL function in the form of a look-up table.Moreover,
the proposed MPC-ML can integrate various distur-
bance models, and thus can contribute to better control
performance than MPC-NPLPT.

4 Simulation experiments

In this section, an single-input single-output (SISO)
CSTR and a multiple-input multiple-output (MIMO)
pHneutralization reactor are studied to show the advan-
tages of the proposed MPC-ML algorithm.

First of all, the Hammerstein models are identified
by the linear-nonlinear (L-N) approach [27,43]. This
approach is straightforward and ensures an accurate
estimation of the static nonlinearity. In the first step
of the L-N approach, the linear block of the Hammer-
stein model is identified using the dynamic training
data (the signals u and y) and the ‘n4sid’ algorithm
[44]. Then, the intermediate variable vector v is calcu-
lated using the process output of the steady-state train-
ing data and the static gain matrix of the linear model
(K lin) from the equation v = K−1

lin × y. Finally, the
nonlinear PWL block of the model is found from the
steady-state training data (the signals v and y) using
the PWL toolbox [20]. Multiple PWL Hammerstein
models with different numbers of divisions are firstly
identified, and then they are evaluated and selected by
an independent dynamic test data set.

Based on the identified Hammerstein models, three
types of MPC controllers, i.e., linear MPC (MPC-
L), MPC based on a multistep linearization tech-
nique (MPC-ML) and MPC algorithm with nonlinear
optimization (MPC-NL) are designed. In the above-
mentioned algorithms, the same Hammerstein models
are used as well as the same input and output distur-
bance models. For comparison, a MPC algorithm with
nonlinear prediction and linearization along predicted
trajectory (MPC-NPLPT) [41] is also designed based
on the differentiable semiempirical Hammerstein pro-

123

1010 J. Zhang et al.

cess models [45]. Because the input disturbance model
is not applicable in MPC-NPLPT, only the output dis-
turbance model is used in this algorithm. Finally, the
resulting MPC controllers are compared to show the
advantages of the proposed MPC-ML algorithm. All
the simulations are carried out using the softwareMAT-
LAB R2015b in an Intel Core i5-4590, 3.30GHz com-
puter with a 64-bit Windows 7 operating system.

4.1 Example 1: an SISO CSTR

Considering an SISO continuous stirred tank process,
which consists of irreversible, exothermic reaction,
A→B, in a constant volume reactor cooled by a single
coolant stream (see Fig. 4). It can be modeled by the
following continuous-time nonlinear equations [11]

⎧⎨
⎩

ĊA = q

V
(CA0 − CA) − k0CAe

− E
RT

Ṫ = q

V
(T0 − T) − �Hk0

ρCp
CAe

− E
RT

+ ρcCpc

ρCpV
qc

(
1 − e

− hA
ρcCpcqc

)
(Tc0 − T)

(26)

The process output variable is the concentration of
A, denoted by CA. The process input variable is the
coolant flow rate, denoted by qc. The variation ranges
of the output and the input are CA ∈ [0.02, 0.15] and
qc ∈ [60, 115], respectively. The control objective is
to regulate CA for set-point tracking by manipulating
qc. The nominal model parameters are listed in Table
1. The sampling period is Ts = 0.1 min.

4.1.1 Modeling of the CSTR

At first, two training data sets, i.e., the dynamic training
set and the steady-state one, are generated to identify
the dynamic linear part and the static PWLpart, respec-
tively. The first set consists of 2000 samples around
the nominal set-point, whereas the second one consists
of 220 equidistant steady-state data points in the range
qc ∈ [60, 115]. Next, a dynamic test set with 1000 sam-
ples in the range qc ∈ [60, 115] is also generated for
model evaluation and model selection. All the training
data sets and the test data set are scaled by the nominal
process input (103.41 Lmin−1) and process output (0.1
mol L−1): u = qc − 103.41, y = CA − 0.1.

A0 0q C T

AC T
V

c c0q T

Fig. 4 The SISO continuous stirred tank reactor

Table 1 Nominal model parameters of CSTR

Measured product concentration CA 0.1 mol/L

Reactor temperature T 438.5 K

Coolant flow rate qc 103.41 L/min

Process flow rate q 100 L/min

Feed concentration CA0 1 mol/L

Feed temperature T0 350 K

Inlet coolant temperature Tc0 350 K

CSTR Volume V 100 L

Heat transfer term hA 7 × 105 cal/(min K)

Reaction rate constant k0 7.2 × 1010 min−1

Activation energy term E/R 1 × 104 K

Heat of reaction �H − 2 × 105 cal/min

Liquid densities ρ, ρc 1 × 103 g/L

Specific Heats Cp,Cpc 1 ca/(g K)

The linear model is identified by the ‘n4sid’ algo-
rithm [44]. The order of the linear model is determined
by 4 (nx = 4) as in [40]. Next, the static PWL model
is found. It is interesting to consider the influence of
the number of divisions (m) used in the static part of
the model on the overall accuracy of the whole model.
Total nine PWL functions are calculated, whose num-
ber of divisions (m) are 2, 3, . . . 10, respectively. Fig-
ure 5 depicts the steady-state data set versus the outputs
of four PWL functions.

By combining the PWL functions and the lin-
ear model, the PWL Hammerstein models are finally
formed. The mean squared errors (MSEtest) for the test
data set are calculated to evaluate the identified Ham-
merstein models

MSEtest = 1

ntest

ntest∑
k=1

(CA,k − Cmod
A,k)2 (27)

123

Nonlinear model predictive control 1011

Fig. 5 Modeling of the
CSTR: the training
steady-state data set versus
the obtained output of the
PWL functions with
different numbers of
divisions

60 80 100 120
q
c

-20

-10

0

10

20

v(
K
-1 lin

C
A
)

Training data
PWL functions
(m=2)

60 80 100 120
q
c

-20

-10

0

10

20

v(
K
-1 lin

C
A
)

Training data
PWL functions
(m=3)

60 80 100 120
q
c

-20

-10

0

10

20

v(
K
-1 lin

C
A
)

Training data
PWL functions
(m=5)

60 80 100 120
q
c

-20

-10

0

10

20

v(
K
-1 lin

C
A
)

Training data
PWL functions
(m=10)

where ntest is the number of samples in the test set,
CA,k denotes the real process output, Cmod

A,k is the out-
put of the models. Table 2 shows model test errors for
the linear and PWL Hammerstein models with diffi-
dent numbers of divisions. The outputs of the PWL
Hammerstein models with different numbers of divi-
sions are depicted in Fig. 6. Additionally, the output of
the linear model of the same order of dynamics is also
shown. It is easily to notice that in general the PWL
Hammerstein models are much more precise than the
linear one. Finally, as a compromise between model
complexity and accuracy, the model with less than six
divisions (m ≤ 5) is used in the MPC-ML algorithms.

4.1.2 Predictive control of the CSTR

To evaluate the influence of the number of divisions (m)
on control performance, the PWL Hammerstein mod-
els with 2, 3, 4, and 5 divisions are used in the MPC-
ML controllers. The most accurate PWL Hammerstein
model, the one with 5 divisions, is used in theMPC-NL
controllers. All MPC controllers have the same param-
eters Hp = 100, Hc = 10, wy = 1000 and w�u = 1.
Additional parameters of the MPC-ML controller are:
T Vu = 0.1, tmax = 3. Constraints on the manipulated
variables are: 60 L min−1 ≤ qc ≤ 115 L min−1.

Table 2 Comparison of linear and PWL Hammerstein models
of CSTR

Model m MSEtest

Linear – 1.1311 × 10−3

PWL Hammerstein 2 1.8400 × 10−4

PWL Hammerstein 3 1.0979 × 10−4

PWL Hammerstein 4 9.0949 × 10−5

PWL Hammerstein 5 8.5112 × 10−5

PWL Hammerstein 6 9.0115 × 10−5

PWL Hammerstein 7 9.1333 × 10−5

PWL Hammerstein 8 9.2411 × 10−5

PWL Hammerstein 9 9.2107 × 10−5

PWL Hammerstein 10 8.7813 × 10−5

Figures 7 and 8 show the closed-loop responses of
CSTR for a chosen trajectory of set-point, with input
and output disturbance models, respectively. In order
to compare the MPC algorithms, the following integral
square error (ISE) criterion is defined

ISE =
400∑
k=1

(Cr
A,k − CA,k)

2 (28)

whereCr
A,k represents the set-points. Table 3 compares

the MPC controllers in terms of the ISE indicator and
the scaled computation time (in relation to the most

123

1012 J. Zhang et al.

Fig. 6 Modeling of the
CSTR: the linear model
versus the Hammerstein
models with different
numbers of divisions

0 200 400 600 800 1000
Sampling point

-0.05

0

0.05

0.1

0.15

C
A

Data
Linear model

0 200 400 600 800 1000
Sampling point

-0.05

0

0.05

0.1

0.15

C
A

Data
Hammerstein model(m=2)

0 200 400 600 800 1000
Sampling point

-0.05

0

0.05

0.1

0.15

C
A

Data
Hammerstein model(m=5)

0 200 400 600 800 1000
Sampling point

-0.05

0

0.05

0.1

0.15

C
A

Data
Hammerstein model(m=10)

Fig. 7 Closed-loop
responses of CSTR with the
input disturbance model

0 100 200 300 400
k

0.02

0.04

0.06

0.08

0.1

0.12

C
A

Cr
A

MPC-L
MPC-ML(m=2)
MPC-ML(m=5)
MPC-NL

0 100 200 300 400
k

70

80

90

100

110

q c

MPC-L
MPC-ML(m=2)
MPC-ML(m=5)
MPC-NL

computationally demandingMPC-NL schemewith the
output disturbance model, whose computation time is
191.53s).

It can be seen that the MPC-ML controllers, the
MPC-NPLPT controller (only applicable to the out-
put disturbance model), and the MPC-NL controllers

123

Nonlinear model predictive control 1013

Fig. 8 Closed-loop
responses of CSTR with
output disturbance model

0 100 200 300 400
k

0.02

0.04

0.06

0.08

0.1

0.12

C
A Cr

A

MPC-L
MPC-ML(m=2)
MPC-ML(m=5)
MPC-NPLPT
MPC-NL

0 100 200 300 400
k

70

80

90

100

110

q c

MPC-L
MPC-ML(m=2)
MPC-ML(m=5)
MPC-NPLPT
MPC-NL

Table 3 Control accuracy
and computational burden
for the CSTR

Algorithm m Disturbance ISE Scaled time (%)

MPC-L – Input 9.30 × 10−2 2.69

MPC-ML 2 Input 8.63 × 10−2 4.57

MPC-ML 3 Input 8.24 × 10−2 4.39

MPC-ML 4 Input 8.23 × 10−2 4.52

MPC-ML 5 Input 8.20 × 10−2 4.31

MPC-NL 5 Input 8.09 × 10−2 99.96

MPC-L – Output 9.93 × 10−2 2.62

MPC-ML 2 Output 8.93 × 10−2 4.73

MPC-ML 3 Output 8.44 × 10−2 4.58

MPC-ML 4 Output 8.40 × 10−2 4.42

MPC-ML 5 Output 8.32 × 10−2 4.67

MPC-NPLPT – Output 8.30 × 10−2 23.54

MPC-NL 5 Output 8.18 × 10−2 100.00

have similar closed-loop performance, both of which
perform better than the MPC-L controllers. Because
the identified linear model is only effective for the
nominal working point, the MPC-L controllers give
unsatisfactory sluggish tracking responses as the set-
point being far away from the nominal working point
(CA = 0.1). By comparison, the nonlinear PWL Ham-
merstein model is effective in the entire working range.
Besides, for this CSTR process, the MPC-ML based

on more divisions (larger m) contribute to higher con-
trol accuracy than thosewith less divisions (smallerm).
Meanwhile, the computation time of theMPC-MLcon-
trollers is far less than that for the MPC-NPLPT con-
troller and the MPC-NL controllers, and is just slightly
longer than that for the MPC-L controllers. Therefore,
compared with other MPC controllers, the proposed
MPC-ML can achieve a better balance between con-
trol performance and computational efficiency.

123

1014 J. Zhang et al.

Moreover, the simulation results show all the con-
trollers based on the input disturbance model perform
better than their counterparts based on the output dis-
turbance model. This illustrates the necessity of try-
ing the input disturbance model and demonstrates the
another advantage of MPC-ML over the traditional
MPC-NPLPT (MPC-ML has the ability to integrate
various disturbance model).

Based on the resulting control performance, the
MPC-ML based on the input disturbance model and
five divisions is recommended for the CSTR.

4.2 Example 2: a pH neutralization reactor

The pH neutralization reactor is shown in Fig. 9, in
which the neutralization reaction takes place among
acid (HNO3), buffer (NaHCO3), and base (NaOH).
This process can be described by the following three
continuous-time nonlinear differential equations [25,
46]

⎧⎨
⎩

Ẇa4 = 1

Ah
[(Wa1 − Wa4)q1 + (Wa2 − Wa4)q2

+ (Wa3 − Wa4)q3]
Ẇb4 = 1

Ah
[(Wb1 − Wb4)q1 + (Wb2 − Wb4)q2

+ (Wb3 − Wb4)q3]
ḣ = 1

A
(q1 + q2 + q3 − cvh

0.5)

(29)

and the nonlinear algebraic output equation

Wa4 + 10pH−14 − 10−pH

+ Wb4 × 1 + 2 × 10pH−pK2

1 + 10pK1−pH + 10pH−pK2
= 0

(30)

whereqi ,Wai , andWbi are the flows, the charge balance
factors, and the material balance factors, respectively;
pK1 and pK2 are constant chemical coefficients. The
control objective is to regulate the pH value of the efflu-
ent stream to predefined values and keep the liquid level
h constant at the nominal value, i.e., y = [pH h]T. The
manipulated variables are the acid flow q1 and the base
flow q3, i.e., u = [q1 q3]T. The operating range of the
manipulated variables is: q1 ∈ [0, 30] and q3 ∈ [0, 30].

PH

PH

3base ()q
2buffer ()q

1acid ()q

4effluent stream ()q

h

Fig. 9 The pH neutralization reactor

Table 4 Nominal model parameters of pH reactor

pH = 7.0255 h = 14.0090 cm

q1 = 16.6 mL/s q2 = 0.55 mL/s

q3 = 15.6 mL/s Wa1 = − 4.32 × 10−4 mol/L

Wa2 = − 3 × 10−2 mol/L Wa3 = 5.28 × 10−4 mol/L

Wb1 = 0 Wb2 = 3 × 10−2 mol/L

Wb3 = 5 × 10−5 mol/L A = 207 cm2

cv = 8.75 mL/(cm s) pK1 = 6.35

pK2 = 10.25

The nominal parameters are listed in Table 4. The sam-
pling period is Ts = 10s.

4.2.1 Modeling of the pH reactor

To model the pH reactor, the similar procedures as in
Example 1 are performed. Two training sets, i.e., the
dynamic training set and the steady-state one, are gen-
erated for the identification. The first set consists of
2000 samples around the nominal set-point, whereas
the second one consists of 961 equidistant steady-state
data points in the range q1 ∈ [0, 30] and q3 ∈ [0, 30].
Also, a dynamic test set with 2000 samples in the
range q1 ∈ [0, 30] and q3 ∈ [0, 30] is also gener-
ated for model evaluation and model selection. All
the data sets are scaled by the nominal process input
(unorm = [16.6, 15.6]T) and process output (ynorm =
[7.0255, 14.009]T): u = u − unorm, y = y − ynorm.

A five-order linear model (nx = 5) is identified by
the ‘n4sid’ algorithm[44], whose order has been proven
to be sufficient to describe the dynamic of the neutral-
ization reaction [25]. Then, to identify the PWL func-
tion, the steady-state intermediate variable vector v is
computed as: v = [v1, v2]T = K−1

lin × y.

123

Nonlinear model predictive control 1015

-15

-10

-5

0

0303

5

10

15

20

v 1

0202
q3q1

10 1000

Training data
PWL functions
(m1=2, m2=2)

-15

-10

-5

0

3030

5

10

15

20

v 1

0202
q1 q3

1010 00

Training data
PWL functions
(m1=3, m2=3)

-15

-10

-5

0

0303

5

10

15

20

v 1

2020
q1 q3

10 1000

Training data
PWL functions
(m1=9, m2=9)

-15

-10

-5

0

0303

5

10

15

20

v 1

0202
q3q1

10 1000

Training data
PWL functions
(m1=10, m2=10)

Fig. 10 Modeling of the pH reactor: the training steady-state data v1 versus the obtained outputs of the PWL functions with different
numbers of divisions

In this case, the influence of different numbers of
divisions m1 (associated with the q1 variable) and m2

(associatedwith theq3 variable) on the overall accuracy
of the final PWL Hammerstein model is studied. For
simplicity, m1 and m2 are bundled together and are
represented as m1 × m2. The same values of m1 and
m2 are always used. Moreover, the same configuration
of m1 × m2 grid is used for the two submodels, i.e.,
for the variables v1 and v2. Total nine kinds of PWL
functions are identified for v1 and v2, whose number of
divisions (m1 ×m2) are 2×2, 3×3, 4×4, …10×10,
respectively. Figures 10 and 11 depict the steady-state
data set versus the outputs of the PWL functions.

Finally, the PWL Hammerstein models are formed
by combining the PWL functions and the linear model.
The mean squared errors (MSEtest) for the test data set
are defined to evaluate the Hammerstein models

MSEtest = 1

ntest

ntest∑
k=1

×
[
(pHk − pHmod

k)2 + (hk − hmod
k)2

]

(31)

where pHk and hk denote the real process outputs,
pHmod

k and hmod
k are the outputs of the models. Table 5

shows test errors for the linear and PWL Hammerstein
models with diffident numbers of divisions. Figure 12
depicts the outputs of the PWL Hammerstein models
with different numbers of divisions and the outputs of
the linear model. Apparently, the PWL Hammerstein
models can approximate the pH reactor more precisely
than the linear one. Considering the models with 2× 2
and 3 × 3 divisions have relatively low model com-

123

1016 J. Zhang et al.

-15

-10

-5

3030

0

5

10

15

v 2

20

2020
q1 q3

10 1000

Training data
PWL functions
(m1=2, m2=2)

-15

-10

-5

3030

0

5

10

15

v 2

20

2020
q1 q3

1010 00

Training data
PWL functions
(m1=3, m2=3)

-15

-10

-5

3030

0

5

10

15

v 2

20

0202
q3q1

1010 00

Training data
PWL functions
(m1=9, m2=9)

-15

-10

-5

0303

0

5

10

15
v 2

20

2020
q3q1

10 1000

Training data
PWL functions
(m1=10, m2=10)

Fig. 11 Modeling of the pH reactor: the training steady-state data v2 versus the obtained outputs of the PWL functions with different
numbers of divisions

Table 5 Comparison of linear and PWL Hammerstein models
of the pH reactor

Model m1 × m2 MSEtest

Linear – 9.0496

PWL Hammerstein 2 × 2 3.0790

PWL Hammerstein 3 × 3 2.2955

PWL Hammerstein 4 × 4 2.2180

PWL Hammerstein 5 × 5 2.2062

PWL Hammerstein 6 × 6 2.1801

PWL Hammerstein 7 × 7 2.1344

PWL Hammerstein 8 × 8 2.0712

PWL Hammerstein 9 × 9 2.0590

PWL Hammerstein 10 × 10 2.0741

plexity and the models with 8 × 8 and 9 × 9 divisions
have high accuracy, they are selected to formMPC-ML
controllers.

4.2.2 Predictive control of the pH reactor

In this part, the PWL Hammerstein models with 2× 2,
3×3, 8×8 and9×9divisions are used to form theMPC-
ML controllers. The MPC-NL controllers are based on
the PWL Hammerstein model with 9 × 9 divisions as
this model has the highest modeling precision among
the identified models. All MPC controllers use the

same parameters: Hp =20, Hc = 10, wy =
[
1 0
0 1000

]
,

w�u = 0.5I2×2, T Vu = 1, and tmax = 3. Constraints
on the manipulated variables are: 10 mL/s ≤ q1 ≤ 20
mL/s and 10 mL/s ≤ q3 ≤ 20 mL/s.

123

Nonlinear model predictive control 1017

Fig. 12 Modeling of the
pH reactor: the linear model
versus the Hammerstein
models with different
numbers of divisions

0 500 1000 1500 2000
Sampling point

0

5

10

15

pH

Data
Linear model

0 500 1000 1500 2000
Sampling point

-10

0

10

20

30

40

h

Data
Linear model

0 500 1000 1500 2000
Sampling point

0

5

10

15

pH

Data
Hammerstein model
(m1=2, m2=2)

0 500 1000 1500 2000
Sampling point

-10

0

10

20

30

40

h

Data
Hammerstein model
(m1=2, m2=2)

0 500 1000 1500 2000
Sampling point

0

5

10

15

pH

Data
Hammerstein model
(m1=9, m2=9)

0 500 1000 1500 2000
Sampling point

-10

0

10

20

30

40
h

Data
Hammerstein model
(m1=9, m2=9)

Figures 13 and 14 show the closed-loop responses of
the pH reactor for a predefined trajectory of set-point,
with input and output disturbancemodels, respectively.
To compare theMPC algorithms, the following integral
square error (ISE) criterion is defined

ISE =
125∑
k=1

[
(pHr

k − pHk)
2 + (hrk − hk)

2
]

(32)

where pHr
k and hrk denote the set-points. Table 3 com-

pares the MPC controllers in terms of the ISE indicator
and the scaled computation time (in relation to themost
computationally demandingMPC-NL schemewith the

input disturbance model, whose computation time is
30.46s).

The simulation results show that, in terms of the ISE
indicator, the controllers based on the output distur-
bance model perform better than the controllers based
on the input disturbance model. This means the output
disturbance model is more appropriate and should be
adopted for the pH neutralization process.

Compared with the linear controllers, the MPC-ML
controllers with 2 × 2 and 3 × 3 divisions give worse
control performance. That is because the corresponding
PWLHammerstein models are not sufficiently precise,
and thus, the resulting MPC-ML controllers frequently
switchmodel static gains between input subregions and

123

1018 J. Zhang et al.

0 25 50 75 100 125
k

5

6

7

8

9
pH

pHr

MPC-L
MPC-ML(m1=2,m2=2)

MPC-ML(m1=9,m2=9)

MPC-NL

0 25 50 75 100 125
k

13.9

13.95

14

14.05

14.1

h

hr

MPC-L
MPC-ML(m1=2,m2=2)

MPC-ML(m1=9,m2=9)

MPC-NL

0 25 50 75 100 125
k

15

16

17

18

19

20

q 1

MPC-L
MPC-ML(m1=2,m2=2)

MPC-ML(m1=9,m2=9)

MPC-NL

0 25 50 75 100 125
k

12

13

14

15

16

17

18

q 3

MPC-L
MPC-ML(m1=2,m2=2)

MPC-ML(m1=9,m2=9)

MPC-NL

Fig. 13 Closed-loop responses of pH reactor with the input disturbance model

lead to output chatting (see Fig. 13) and large oscilla-
tions (see Fig. 14). Nevertheless, the proposed MPC-
ML controllers wtih 8 × 8 and 9 × 9 divisions show
much better control performance than the MPC-L con-
trollers, which illustrates the necessity of using PWL
Hammerstein models.

With the output disturbance model, the proposed
MPC-ML controller with 9×9 divisions and theMPC-
NPLPT controller give similar control performance,
both of which perform just slightly poorer than the
MPC-NL controller. However, the computation time
of MPC-ML is significantly less than that of MPC-
NPLPT andMPC-NL.All things considered, theMPC-
ML controller based the output disturbance model and
9 × 9 divisions is recommended (Table 6).

5 Conclusion

In this study, a computationally efficient nonlinear
MPC algorithm (MPC-ML) is developed for PWL
Hammerstein models. By using the simplicial partition
method, PWL functions are represented in the canon-
ical style. Control laws are efficiently calculated via
multistep linearization of the predicted output trajec-
tory. A three-step procedure is designed to linearize
PWL functions, where the derivatives of PWL func-
tions are used in a simple look-up table manner. The
most attractive advantage of this algorithm is that it can
achieve a good balance between control accuracy and
computational burden. Besides, it can integrate vari-
ous disturbance models, which is likely to contribute
to better control performance than the existing MPC-
NPLPTalgorithm. Inversion of input nonlinearity is not

123

Nonlinear model predictive control 1019

0 25 50 75 100 125
k

5

6

7

8

9
pH

pHr

MPC-L
MPC-ML(m1=2,m2=2)

MPC-ML(m1=9,m2=9)

MPC-NPLPT
MPC-NL

0 25 50 75 100 125
k

13.9

13.95

14

14.05

14.1

h

hr

MPC-L
MPC-ML(m1=2,m2=2)

MPC-ML(m1=9,m2=9)

MPC-NPLPT
MPC-NL

0 25 50 75 100 125
k

15

16

17

18

19

20

q 1

MPC-L
MPC-ML(m1=2,m2=2)

MPC-ML(m1=9,m2=9)

MPC-NPLPT
MPC-NL

0 25 50 75 100 125
k

12

13

14

15

16

17

18

q 3

MPC-L
MPC-ML(m1=2,m2=2)

MPC-ML(m1=9,m2=9)

MPC-NPLPT
MPC-NL

Fig. 14 Closed-loop responses of pH reactor with the output disturbance model

Table 6 Control accuracy
and computational burden
for the pH reactor

Algorithm m1 × m2 Disturbance ISE Scaled time (%)

MPC-L – Input 19.97 3.13

MPC-ML 2 × 2 Input 20.53 5.91

MPC-ML 3 × 3 Input 20.65 5.86

MPC-ML 8 × 8 Input 19.46 5.72

MPC-ML 9 × 9 Input 19.35 5.65

MPC-NL 9 × 9 Input 19.13 100.00

MPC-L – Output 18.33 3.17

MPC-ML 2 × 2 Output 18.91 5.67

MPC-ML 3 × 3 Output 18.87 5.64

MPC-ML 8 × 8 Output 18.27 5.57

MPC-ML 9 × 9 Output 18.21 5.59

MPC-NPLPT – Output 18.27 35.59

MPC-NL 9 × 9 Output 18.02 99.53

123

1020 J. Zhang et al.

required byMPC-ML, and thus, it can directly integrate
input constraints without any transformation.

The advantages of the proposed algorithm are
demonstrated by two benchmark nonlinear processes:
the CSTR and the pH reactor are considered. These two
nonlinear processes can be precisely approximated by
the PWL Hammerstein model with 5 divisions and the
model with 9×9 divisions, respectively. In both the two
cases, the proposed MPC-ML algorithm gives almost
same control accuracy as in the MPC-NL algorithm
with nonlinear optimization, whereas its computational
time just accounts for around 5% of that consumed by
the MPC-NL algorithm. All things considered, good
control accuracy and computational efficiency are two
main advantages of the described MPC-ML algorithm.

References

1. Maciejowski, J.M.: Predictive Control: with Constraints.
Pearson Education, London (2002)

2. Darby,M.L., Nikolaou,M.: MPC: current practice and chal-
lenges. Control Eng. Pract. 20, 328–342 (2012)

3. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control,
pp. 43–66. Springer, Berlin (2011)

4. Xu, Z., Zhao, J., Qian, J., Zhu, Y.: Nonlinear MPC using an
identified LPVmodel. Ind. Eng. Chem. Res. 48, 3043–3051
(2009)

5. Ławryńczuk, M.: Computationally Efficient Model Predic-
tiveControlAlgorithms:ANeuralNetworkApproach. Stud-
ies inSystems,Decision andControl. Springer,Cham(2014)

6. Zhang, R., Wang, S.: Support vector machine based pre-
dictive functional control design for output temperature of
coking furnace. J. Process Control 18, 439–448 (2008)

7. Fruzzetti, K., Palazoğlu, A., McDonald, K.: Nolinear model
predictive control using Hammerstein models. J. Process
Control 7, 31–41 (1997)

8. Giri, F., Bai, E.W.: Block-Oriented Nonlinear System Iden-
tification, vol. 1. Springer, London (2010)

9. Patwardhan, R.S., Lakshminarayanan, S., Shah, S.L.: Con-
strained nonlinear MPC using Hammerstein and Wiener
models: PLS framework. AIChE J. 44, 1611–1622 (1998)

10. Chan, K.H., Bao, J.: Model predictive control of Hammer-
stein systems with multivariable nonlinearities. Ind. Eng.
Chem. Res. 46, 168–180 (2007)

11. Du, J., Song, C., Li, P.: Multilinear model control of
Hammerstein-like systems based on an included angle divid-
ing method and the MLD-MPC strategy. Ind. Eng. Chem.
Res. 48, 3934–3943 (2009)

12. Menold, P., Allgöwer, F., Pearson, R.: Nonlinear structure
identification of chemical processes. Comput. Chem. Eng.
21, S137–S142 (1997)

13. Huo, H., Zhu, X., Hu, W., Tu, H., Li, J., Yang, J.: Nonlinear
model predictive control of SOFC based on a Hammerstein
model. J. Power Sour. 185, 338–344 (2008)

14. Jalaleddini, K., Kearney, R.E.: Subspace identification of
SISO Hammerstein systems: application to stretch reflex

identification. IEEE Trans. Biomed. Eng. 60, 2725–2734
(2013)

15. Zhang,Q.,Wang,Q., Li,G.:Nonlinearmodeling and predic-
tive functional control of Hammerstein system with appli-
cation to the turntable servo system.Mech. Syst. Signal Pro-
cess. 72, 383–394 (2016)

16. Ławryńczuk,M.: Practical nonlinear predictive control algo-
rithms for neuralWienermodels. J. ProcessControl 23, 696–
714 (2013)

17. Ławryńczuk,M.:Nonlinear predictive control based on least
squares support vector machines Hammerstein models. In:
International Conference on Adaptive and Natural Comput-
ing Algorithms, pp. 246–255. Springer (2013)

18. Julian, P., Desages, A., Agamennoni, O.: High-level canon-
ical piecewise linear representation using a simplicial par-
tition. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
46, 463–480 (1999)

19. Julian, P.: A high level canonical piecewise linear represen-
tation: theory and applications. Ph. D. Thesis: Universidad
Nacional del Sur, Bahia Blanca, Argentina (1999)

20. Julian, P.: PWL Matlab Toolbox. http://uns.academia.edu/
PedroJulian/Matlab-PWL-Toolbox (2000)

21. Sentoni, G., Agamennoni, O., Desages, A., Romagnoli, J.:
Approximate models for nonlinear process control. AIChE
J. 42, 2240–2250 (1996)

22. Bloemen, H., Van den Boom, T., Verbruggen, H.: Model-
based predictive control for Hammerstein systems. In: Pro-
ceedings of the 39th IEEEConference onDecision andCon-
trol, vol. 5, pp. 4963–4968. IEEE (2000)

23. Bloemen, H., Van Den Boom, T., Verbruggen, H.: Model-
based predictive control for Hammerstein-Wiener systems.
Int. J. Control 74, 482–495 (2001)

24. Wang, H., Zhao, J., Xu, Z., Shao, Z.: Model predictive con-
trol for Hammerstein systems with unknown input nonlin-
earities. Ind. Eng. Chem. Res. 53, 7714–7722 (2014)

25. Ławryńczuk, M.: Suboptimal nonlinear predictive control
based on multivariable neural Hammerstein models. Appl.
Intell. 32, 173–192 (2010)

26. Chua, L.O., Kang, S.M.: Section-wise piecewise-linear
functions: canonical representation, properties, and appli-
cations. Proc. IEEE 65, 915–929 (1977)

27. Oblak, S., Škrjanc, I.: Continuous-time Wiener-model pre-
dictive control of a pH process based on a PWL approxima-
tion. Chem. Eng. Sci. 65, 1720–1728 (2010)

28. Yu, F., Mao, Z., Jia, M.: Recursive identification for
Hammerstein-Wiener systems with dead-zone input nonlin-
earity. J. Process Control 23, 1108–1115 (2013)

29. Borrelli, F., Bemporad, A., Morari, M.: Predictive Control
forLinear andHybridSystems.CambridgeUniversityPress,
Cambridge (2013)

30. Gonzalez, A., Adam, E., Marchetti, J.: Conditions for offset
elimination in state space receding horizon controllers: a
tutorial analysis. Chem.Eng. Process. 47, 2184–2194 (2008)

31. Maeder, U., Borrelli, F., Morari, M.: Linear offset-free
model predictive control. Automatica 45, 2214–2222 (2009)

32. Muske, K.R., Badgwell, T.A.: Disturbance modeling for
offset-free linear model predictive control. J. Process Con-
trol 12, 617–632 (2002)

33. Pannocchia, G., Rawlings, J.B.: Disturbance models for
offset-free model-predictive control. AIChE J. 49, 426–437
(2003)

123

http://uns.academia.edu/PedroJulian/Matlab-PWL-Toolbox
http://uns.academia.edu/PedroJulian/Matlab-PWL-Toolbox

Nonlinear model predictive control 1021

34. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control:
Theory and Design. Nob Hill Publishing, Madison (2009)

35. Wang, L.: Model Predictive Control System Design and
Implementation UsingMATLAB®. Springer, Berlin (2009)

36. Zhang, R., Xue, A., Wang, S., Ren, Z.: An improved model
predictive control approach based on extended non-minimal
state space formulation. J. Process Control 21, 1183–1192
(2011)

37. Zhang, J.: Improved decoupled nonminimal state space
model based PID for multivariable processes. Ind. Eng.
Chem. Res. 54, 1640–1645 (2015)

38. Morari, M., Maeder, U.: Nonlinear offset-free model pre-
dictive control. Automatica 48, 2059–2067 (2012)

39. Rao, C.V., Rawlings, J.B., Lee, J.H.: Constrained linear
state estimation–a moving horizon approach. Automatica
37, 1619–1628 (2001)

40. Yue,Y., Li,H., Shao,W.,Wu,B.:Nonlinearmodel predictive
control based on Hammerstein piecewise linear models. In:
Proceedings of the 32ndChineseControl Conference (2013)

41. Ławryńczuk, M.: Nonlinear predictive control for
Hammerstein-Wiener systems. ISA Trans. 55, 49–62
(2015)

42. Ławryńczuk, M.: Nonlinear predictive control of dynamic
systems represented byWiener-Hammerstein models. Non-
linear Dyn. 86, 1193–1214 (2016)

43. Verhaegen, M., Westwick, D.: Identifying MIMOHammer-
stein systems in the context of subspacemodel identification
methods. Int. J. Control 63, 331–349 (1996)

44. VanOverschee, P., DeMoor, B.: N4sid: subspace algorithms
for the identification of combined deterministic-stochastic
systems. Automatica 30, 75–93 (1994)

45. Cao, X., Ayalew, B.: Control-oriented MIMO modeling of
laser-aided powder deposition processes. In: AmericanCon-
trol Conference (ACC), pp. 3637–3642. IEEE (2015)

46. Marusak, P.M.: Advantages of an easy to design fuzzy pre-
dictive algorithm in control systems of nonlinear chemical
reactors. Appl. Soft Comput. 9, 1111–1125 (2009)

123

	Nonlinear model predictive control based on piecewise linear Hammerstein models
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Piecewise linear Hammerstein model
	2.2 Canonical piecewise linear function

	3 Nonlinear MPC based on the PWL Hammerstein model
	3.1 Augmented model design
	3.2 Observer design
	3.3 MPC optimization problem
	3.4 Linearization of predicted trajectory
	3.5 Efficient MPC algorithm

	4 Simulation experiments
	4.1 Example 1: an SISO CSTR
	4.1.1 Modeling of the CSTR
	4.1.2 Predictive control of the CSTR

	4.2 Example 2: a pH neutralization reactor
	4.2.1 Modeling of the pH reactor
	4.2.2 Predictive control of the pH reactor

	5 Conclusion
	References

