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Abstract In this paper, the synchronization problem
and its application in secret communication are inves-
tigated for two fractional-order chaotic systems with
unequal orders, different structures, parameter uncer-
tainty and bounded external disturbance. On the basis
of matrix theory, properties of fractional calculus and
adaptive control theory,wedesign a feedback controller
for realizing the synchronization. In addition, in order
to make it better apply to secret communication, we
design an optimal controller based on optimal con-
trol theory. In the meantime, we propose an improved
quantum particle swarm optimization (QPSO) algo-
rithm by introducing an interval estimation mechanism
into QPSO algorithm. Further, we make use of QPSO
algorithm with interval estimation to optimize the pro-
posed controller according to some performance indi-
cator. Finally, by comparison, numerical simulations
show that the controller not only can achieve the syn-
chronization and secret communization well, but also
can estimate the unknown parameters of the systems
and bounds of external disturbance, which verify the
effectiveness and applicability of the proposed control
scheme.
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1 Introduction

Fractional calculus has a long history, which can be
traced back to the end of the seventeenth century.
As an ancient concept, the fractional calculus has not
been paid more attention on account of its intrinsic
complexity and lack of foreseen applications until it
is applied to physics and engineering recently [1,2].
Superficially, the fractional calculus is a generaliza-
tion of the ordinary differentiation and integration to
arbitrary order [3]. In fact, it has also its own char-
acteristics. Researches have shown that many systems
with memory feature and some complex materials can
bemore concisely and actually described by fractional-
order derivatives, such as the diffusion process, the heat
transfer process, viscoelastic systems, the dielectric
polarization, electromagnetic waves and the effect of
the frequency on induction machines [4–6]. Therefore,
the fractional-order model can describe the real-world
physical phenomena more reasonably and accurately
than the classical integer-order one at times, which
makes the fractional calculus play an important role
in the research of complex dynamic systems [7].

In recent years, many investigations are focused on
dynamic characteristics of fractional-order chaotic or
hyperchaotic systems such as fractional-order Lorenz
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system [8], fractional-order Rössler system [9],
fractional-order Chen system [10], fractional-order Lü
system [11], fractional-order Chua’s system [12,13],
fractional-order Duffing system [14]. Chaotic phe-
nomenon exists in nature and society widely. As an
essential branch of chaotic systems, the fractional-
order chaotic systems have been found in physics, biol-
ogy, sociology, economy and so on. Due to the fact that
there exist strong nonlinear dynamic characteristics,
the fractional-order chaotic systems have been applied
to many fields [15], such as signal processing, syn-
chronization control, electronic circuits, encryption–
decryption and secret communication [16–19], espe-
cially in the latter.

Up to now, how to design an appropriate controller
to realize the synchronization between the drive sys-
tem and response system has been a hot topic in the
field of control. As a result, various control schemes are
put forward and validated successfully, which include
PID control [20], linear and nonlinear feedback con-
trol [21,22], active control [23], state observer con-
trol [24,25], projective control [26], sliding mode
control [27,28], impulsive control [29–31], phase
synchronization[32], multi-scale synchronization[33,
34], robust control [35–37], adaptive control [38,39]
and so on.

Originally, the purpose for two same systems with
different initial values is to make the response system
track on the drive system completely [11,40]. But con-
sidering the actual situation, the two systems are with
different structures as usual. Then the synchronization
between different systems is reached [41,42], which
promotes the further development of relevant research.
However, the full or partial parameters of the two sys-
tems are likely to unknown in reality. Afterward, the
research on parameter uncertainty has attracted much
attention and made some progress [7,43]. Neverthe-
less, most of the previous works are based on identical
order from the drive system and response system. In
fact, many problems are not with the above feature.
Furthermore, as a matter of fact, the environment noise
or external disturbance, mechanical vibration or oscil-
lation, stochastic perturbation and other non-artificial
factors will have also a negative effect on the sys-
tems. Although there have been some research results,
such as the synchronization of nonidentical chaotic
fractional-order systems with different orders of frac-
tional derivatives [44], the disturbance observer-based
robust synchronization control for a class of fractional-

order chaotic systems [45] and the synchronization
of two different fractional-order chaotic systems with
fully unknown parameters and external disturbances
[43], previous works include only the partial cases of
them as above. If the factors are not taken into full con-
sideration, there will exist certain deviation from the
result. Meanwhile, most of the results are based on lin-
earized models and methods, which makes them loss
the generality. It is worth noting that the synchronized
systems with minimum error can provide higher reli-
ability and more efficient results for secure communi-
cation process. But, there exist much randomness such
as parameter selection for the controller in previous
methods, which cannot guarantee that the controller
we designed is an optimal controller in a way.

Motivated by the above analysis, the contribution of
this paper mainly displays in four aspects as follows:
(i) a new controller is proposed on the basis of the
knowledge including matrix theory, fractional calculus
and adaptive control, which makes the synchroniza-
tion problem with unequal orders, different structures,
parameter uncertainty and unknown bounded external
disturbance between the drive system and response sys-
tem solved. (ii) In order to reduce the influence of exter-
nal disturbance on synchronization error effectively,we
further design an optimal controller based on optimiza-
tion theory. (iii) Through bringing an interval estima-
tion strategy into quantum particle swarm optimization
(QPSO) algorithm, we put forward an improved QPSO
algorithm named by QPSO algorithm with interval
estimation (IEQPSO) according to the practical prob-
lem. Meanwhile, IEQPSO is used for optimizing the
controller. (iv) The proposed controller is applied in
the field of secret communication successfully, which
makes the signal source encrypted well and decoded
precisely. As an actual application, it conforms the
generality and practicability of the proposed control
scheme.

The rest of this paper is organized as follows. In
Sect. 2, we introduce the relevant definitions of frac-
tional calculus and some new operators. Besides, we
state the problem to be solved. Combining with the
property of fractional calculus, matrix theory and adap-
tive control theory, the controllers which can deal with
many types of complicated synchronization problem
are designed in two different cases, respectively, in
Sect. 3. In the meantime, we give some extension of
the controllers in this section. Based on optimal con-
trol theory, an optimal controller is proposed according
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to some performance indicator in Sect. 4. Furthermore,
as an improved QPSO algorithm, IEQPSO algorithm
is put forward and used to optimize the parameters in
the controller in this section. In Sect. 5, we first verify
the validity of IEQPSO algorithm by some benchmark
functions. Besides, two numerical examples including
the synchronization of fractional-order chaotic systems
and its application in secret communication are con-
ducted for the different cases, respectively, in this sec-
tion. Finally, a summary to this paper ismade in Sect. 6.

Notations In this paper, R stands for the set of real
numbers,C for the set of complex numbers, Z+ for the
set of positive real integers. For a matrix A ∈ Rn×n ,
AT and A−1 denote the transpose and inverse of A,
respectively. As a special matrix, In stands for the unit
matrix with n dimensions. Meanwhile, 1n is a column
vector consisting of the diagonal elements of In . For
x ∈ R, [x] denotes the largest integer no more than x ,
and |x | represents x · sign(x). Besides,⊗ stands for the
Kronecker product. For convenience, t0D

q
t and t0 J

q
t are

simplified as Dq and Jq , respectively. For the matrices
p̆ = [ p̆1, p̆2, . . . , p̆n]T and x = [x1, x2, . . . , xn]T ,
and a function f̆ (·) : R → R, D p̆x and f̆ (x) represent
the operations Dp̆x = [Dp̆1x1, Dp̆2x2, . . . , Dp̆n xn]T
and f̆ (x) = [ f̆ (x1), f̆ (x2), . . . , f̆ (xn)]T , respectively.
In addition, for p̆1 = [ p̆11, p̆12, . . . , p̆1n]T and p̆2 =
[ p̆21, p̆22, . . . , p̆2n]T , we set that the operations p̆1 �=
p̆2, p̆1 > p̆2 and p̆1 < p̆2 mean p̆1i �= p̆2i , p̆1i > p̆2i
and p̆1i < p̆2i for i = 1, 2, . . . , n, respectively.

2 Preliminaries and problem statement

2.1 Theoretical basis

Definition 1 For q > 0, t ∈ [t0, t f ] and f (t) ∈
L1[t0, t f ], theRiemann–Liouville fractional integral of
the function f (t) is defined as

Jq f (t) = 1

�(q)

∫ t

t0
(t − τ)q−1 f (τ ) dτ (1)

where Jq represents the fractional integral operator and
�(·) is the Gamma function.

Definition 2 For m − 1 < q < m with m ∈ Z+, t ∈
[t0, t f ] and f (m)(t) ∈ L1[t0, t f ], the Caputo fractional
derivative is described as

Dq f (t) = Jm−q Dm f (t)

= 1

�(m − q)

∫ t

t0
(t − τ)m−q−1 f (m)(τ ) dτ

(2)

where Dq represents the fractional derivative operator.
Moreover, it meets Dqc = 0 for a constant c. Next, we
define a few operators for subsequent use.

Definition 3 For the vectors a = [a1, a2, . . . , an]T
and b = [b1, b2, . . . , bn]T , the operator Δ(a, b) is
defined as

Δ(a, b) = diag{a} · b (3)

Definition 4 For a and b as above, if b �= 0, the oper-
ator Δ(a, b) is defined as

Δ(a, b) = diag{a}diag−1{b} · 1n (4)

Definition 5 For the matrixes with same dimension X
and Y T , the operator Ts(·) is defined as

Ts(X,Y) = X + Y T (5)

Obviously, it meets TsT (X,Y) = Ts(Y , X).

2.2 Synchronization problem

For the synchronization problem between two
fractional-order chaotic systems with unequal orders,
different structures, parameter uncertainty and
unknown external disturbance, the drive system is
described as

D px = f (x) + F(x)α + w1(t) (6)

where p = [p1, p2, . . . , pn]T and x = [x1, x2, . . . ,
xn]T are the fractional-order vector and state vector
of the drive system, respectively, f (·) = [ f1(·), f2(·),
. . . , fn(·)]T is the function vector associated without
the parameters in the drive system, F(·) ∈ Rn×u

is the function matrix related to the parameters in
the drive system, α = [α1, α2, . . . , αu]T is the
parameter vector of the drive system, and w1(t) =
[w11(t), w12(t), . . . , w1n(t)]T is the unknown external
disturbance vector of the drive system.
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In the meantime, the response system is described
as

Dq y = g( y) + G( y)β + w2(t) (7)

where q = [q1, q2, . . . , qn]T and y = [y1, y2, . . . ,
yn]T are the fractional-order vector and state vec-
tor of the response system, respectively, g(·) =
[g1(·), g2(·), . . . , gn(·)]T is the function vector asso-
ciated without the parameters in the response sys-
tem, G(·) ∈ Rn×v is the function matrix related
to the parameters in the response system, β =
[β1, β2, . . . , βv]T is the parameter vector of the
response system, and w2(t) = [w21(t), w22(t), . . . ,
w2n(t)]T is the unknown external disturbance vector
of the response system.

Definition 6 The synchronization error of the drive
system and response system can be defined by

e(t) = y(t) − x(t) (8)

where e(t) = [e1(t), e2(t), . . . , en(t)]T is the error
vector with n dimensions. Obviously, if and only if
lim
t→∞e(t) = 0, the drive system and response system

can achieve the synchronization. Namely, y(t) → x(t)
as t → ∞. So we need to design a controller on (7) for
this purpose.

3 Controller design

Aiming at the proposed problem, we make the follow-
ing assumptions firstly.

Assumption 1 There exist different orders between the
drive system and response system. For fractional-order
chaotic systems in reality, most of them are with orders
less than 1. Therefore, it is assumed that p �= q and
0 < p, q < 1 in (6) and (7).

Assumption 2 For t ≥ t0, x ∈ Ω1 and y ∈ Ω2, let f :
[t0,∞)×Ω1 → Rn×1, g : [t0,∞)×Ω2 → Rn×1, F :
[t0,∞)×Ω1 → Rn×u and G : [t0,∞)×Ω2 → Rn×v

be all smooth functions. It is obvious that there exist the
arbitrary-order derivative and integral for f , g, F and
G, where x, f and F belong to (6), y, g and G belong
to (7).

Assumption 3 We assume that the unknown external
disturbance is bounded. Namely, it meets |w1(t)| ≤ ξ1

and |w2(t)| ≤ ξ2 in (6) and (7), respectively. Mean-
while, it also satisfies |Dq− pw1(t)| ≤ η1 for 0 < p <

q < 1 and |D p−qw2(t)| ≤ η2 for 1 > p > q > 0.
Therefore, |D p−qw2(t) − w1(t)| ≤ ξ1 + η2 = l
and |w2(t) − Dq− pw1(t)| ≤ η1 + ξ2 = m, where
ξ1, ξ2, η1, η2, l,m ∈ Rn×1 are constant vectors with
n dimensions.

As to the complicated synchronization problemwith
different orders in the drive system and response sys-
tem, the design of the controller is not very direct. Aim-
ing at the problem, a new control scheme is proposed
in this paper. On the basis of the size relationship of p
and q, the controllers are designed as follows.

3.1 Controller design as 1 > p > q > 0

Lemma 1 [46] Let f : [t0,∞) → R be a smooth
function. For n − 1 < p < n, m − 1 < q < m,
p+ q ≤ n and t ≥ t0, the fractional derivative has the
following relationship,

DpDq f (t) = Dp+q f (t)

−
m∑
i=1

Dq−i f (t0)

�(1 − p − i)
(t − t0)

−p−i (9)

where n,m ∈ Z+, and m = [q] + 1.

Lemma 2 Let x(t) ∈ Rn×1 be a continuous and
derivable function vector, A ∈ Rn×n is a positive
definite matrix. For all t ≥ t0 and 0 < q =
[q1, q2, . . . , qn]T < 1, it follows

Dq(xT Ax) ≤ 2xT ADq x (10)

Proof Since the positive definite matrix is with sym-
metry, there exists an orthogonal matrix T ∈ Rn×n

to make T−1AT = Λ = diag{λ1, λ2, . . . , λn} with
λi > 0 for i = 1, 2, . . . , n according to matrix theory.
Then A = TΛT−1 = TΛT T . Therefore, we have

Dq(xT Ax) = Dq(xT TΛT T x)

= Dq((T T x)TΛT T x)
(11)

Let y = T T x = [y1, y2, . . . , yn]T and combine
with Lemma 1 in [47], then (11) is equivalent to
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Adaptive synchronization control based on QPSO algorithm 939

Dq(xT Ax) = Dq( yTΛ y)

= Dq

(
n∑

i=1

λi y
2
i

)

≤ 2
n∑

i=1

λi yi D
qi yi

= 2 yTΛDq y

= 2xT ADq x (12)

So Lemma 2 is proved completely. 	

Theorem 1 For t ≥ t0, there exist the diagonal posi-
tive definite matrix M ∈ Rn×n, positive definite matri-
ces N ∈ Ru×u, S ∈ Rn×n, U ∈ Rn×n and V ∈ Rn×n

to make system (6) and (7) synchronize if the conditions
are satisfied as follows.

(i) The controller on system (7) is designed as

u(t) = u0(t) + J p−q( f (x) − D p−q g( y) + F(x)̃α

− D p−q(G( y)β̃) + K̃ e − sign(̃e) − r1(t))

(13)

where α̃ ∈ Ru×1 and β̃ ∈ Rv×1 are the estimates for
α and β, respectively, K̃ = diag{̃k1, k̃2, . . . , k̃n} and
L̃ = diag{̃l1, l̃2, . . . , l̃n} are the estimates for K =
diag{k1, k2, . . . , kn} and L = diag{l1, l2, . . . , ln},
respectively, and it satisfies ki < 0 and li > 0 for
i = 1, 2, . . . , n. Furthermore, e = [e1, e2, . . . , en]T is
the error vector between the response system and drive
system, u0(t) and r1(t) is, respectively, described as

u0(t) = D p−q−1u(t0)

�( p − q)
(t − t0)

p−q−1 (14)

r1(t) = Δ(Δ(Dq−1 y(t0), �(q − p)), (t − t0)
q− p−1)

(15)

(ii) Let k̃ = K̃ · 1n, l̃ = L̃ · 1n and E =
diag{Δ(e, e)} · 1n, then the unknown parameters to be
estimated in the drive system can be updated by

D pα̂ = X1α̂ + Y1D
p−q(G( y)β̂) − N−1FT (x)Me

(16)

where α̂ = α̃ − α and β̂ = β̃ − β represents the
estimation errors for α and β, respectively. Besides,
X1 ∈ Ru×u and Y1 ∈ Ru×n comply with condition
(iii).

The unknown parameters to be estimated in the
response system can be updated by

D2 p−q(G( y)β̂) = X2α̂ + Y2D
p−q(G( y)β̂)

+ S−1Me + m(t)
(17)

where X2 ∈ Rn×u and Y2 ∈ Rn×n comply with condi-
tion (iii), and m(t) is presented as

m(t) = Δ(Δ(D p−q−1(G( y(t0))β̂(t0)),

�(− p)), (t − t0)
− p−1)

(18)

The adaptive rate with uncertainty in the controller
can be estimated by

D pk̃ = −U−1M|E| (19)

The upper bound for the unknown external distur-
bances exists in the drive system and response system
can be estimated by

D p̃ l = V−1M|e| (20)

(iii) NX1 < 0 and SY2 < 0 are both negative defi-
nite matrixes with appropriate dimensions. In addition,
it also satisfies the following condition.

Ts(NY1, SX2) = 0 (21)

Proof For achieving a synchronization between (6) and
(7), we bring u(t) into (7). Further, take ( p− q)-order
differential operation on both sides of it, which makes

D p y = D p−q g( y) + D p−q(G( y)β)

+D p−qw2(t) + r1(t) + U(t) (22)

where U(t) is described as

U(t) = f (x) − D p−q g( y) + F(x)̃α − D p−q(G( y)β̃)

+K̃ e − sign(̃e) − r1(t) (23)

	

Subtracting (6) from (22), we get

D pe = D p y − D px

= F(x)̂α − D p−q(G( y)β̂) + K̃ e

− L̃sign(e) + D p−qw2(t) − w1(t) (24)
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Let D p−q(G( y)β̂) = B̂, it holds

D p B̂ = D2 p−q(G( y)β̂) − m(t)

= X2α̂ + Y2 B̂ + S−1Me (25)

Let k = K ·1n and l = L ·1n , and denote k̂ = k̃−k
and l̂ = l̃ − l . The Lyapunov function is selected as

V =
5∑

i=1

Vi (26)

where V1 = eT Me, V2 = α̂T Nα̂, V3 = B̂
T
SB̂, V4 =

k̂
T
Uk̂ and V5 = l̂

T
V l̂ . So V = [eT , α̂T , B̂

T
, k̂

T
, l̂

T ]·
diag{M, N, S,U, V }[eT , α̂T , B̂

T
, k̂

T
, l̂

T ]T . Since
M, N, S,U, V > 0, it follows that diag{M, N, S,

U, V } > 0. Further, we have

D pV =
5∑

i=1

D pVi

≤ 2(eT MD pe + α̂T ND pα̂ + B̂
T
SD p B̂

+ k̂
T
UD pk̂ + l̂

T
VD p̂ l)

= 2{eT M[F(x)̂α − B̂ + K̃ e

− L̃sign(e) + D p−qw2(t) − w1(t)]
+ α̂T N[X1α̂ + Y1 B̂ − N−1FT (x)Me]
+ B̂

T
S(X2α̂ + Y2 B̂ + S−1Me)

+ k̂
T
U(−U−1ME)

+ l̂
T
V (V−1M|e|)} (27)

In (27), it satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eT M[D p−qw2(t) − w1(t)] ≤ |eT |Ml

eT M[L̃sign(e)] = |eT |Ml̃

eT MK̃e = k̃
T
ME

k̂
T
U(U−1ME) = (̃k

T − kT )ME

(28)

Substituting (28) into (27), we obtain

D pV ≤ 2[̂αT NX1α̂ + B̂
T
SY2 B̂

+ α̂TTs(NY1, SX2)B̂ + kT ME]
≤ 0 (29)

Hence, the error system is asymptotically stable at
the equilibrium point 0. Apparently, the synchroniza-
tion problem to the two systems has been dealt, but the
parameter identification question to β in the response
system has not been solved yet.

Lemma 3 [3] Let f : [t0,∞) → R be a smooth func-
tion. For 0 < p ≤ q, and t ≥ t0, there exists the
following relation between the fractional integral oper-
ator and fractional derivative operator

J pDq f (t) = Dq−p f (t) −
m∑
i=1

Dq−i f (t0)

�(1 + p − i)
(t − t0)

p−i

(30)

where m = [q] + 1.

Assumption 4 For the response system at t > T , it is
assumed as follows: (i) v = dim(β) ≤ n; (ii) G( y) is
with full rank at some point; (iii) G( y1)−G( y2) is with
full rank sometimes. As a matter of fact, most systems
satisfy the assumption.

Theorem 2 For B̂ = D p−q(G( y)β̂) denoted as
above and lim

t→∞B̂(t) = 0 drawn the conclusion from

Theorem 1, it satisfies lim
t→∞β̂(t) = 0 such that β can

be estimated by β̃ precisely.

Proof Taking ( p − q)-order integral operation on B̂,
we get

G( y)β̂ = J p−q B̂ + Δ(Δ(D p−q−1(G( y(t0))β̂(t0)),

�( p − q)), (t − t0)
p−q−1)

= Δ(

∫ T

t0
Δ(B̂(τ ), (t − τ) p−q−1) dτ

+
∫ t

T
Δ(B̂(τ ), (t − τ) p−q−1) dτ, �( p − q))

+ Δ(Δ(D p−q−1(G( y(t0))β̂(t0)),

�( p − q)), (t − t0)
p−q−1)

(31)

Since lim
t→∞B̂(t) = 0 and lim

t→∞(t − t0) p−q−1 =
0, there exist B̂(t) → 0 as t ≥ tM1 and (t −
t0) p−q−1 → 0 as t ≥ tM2. Let T = max{tM1, tM2},
for t > T , lim

t→∞G( y(t))β̂(t) = Δ(
∫ T
t0

Δ(B̂(τ ), (t −
τ) p−q−1) dτ, �( p − q)) = B0.

DenoteG( y(ti ))β̂(ti ) = Gi β̂ i . For different ti , t j >

T meet Δt = t j − ti → 0, it follows that ΔG = G j −
Gi → 0. Denote G j = Gi + ΔG and β̂ j = β̂ i + Δβ̂.
Since Gi β̂ i → G j β̂ j → B0, it satisfies Gi β̂ i →
G j β̂ j = (Gi + ΔG)(β̂ i + Δβ). For ΔG → 0, it
follows that GiΔβ → 0. By rank(Gi ) = min{v, n} =
v, we know that Δβ → 0. Namely, β̂ i → β̂ j . In turn,
it can be calculated that β̂1 → β̂2 → · · · → β̂ for
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t > T . Combining with Assumption 4, there exist Gk

and Gl to make Gk β̂k → Gl β̂l for k, l = 1, 2, · · · and
k �= l. Therefore, Gk β̂k − Gl β̂l → (Gk − Gl)β̂ → 0.
According to rank(Gk − Gl) = v, it is known that
β̂ → 0 for t > T . That is to say, lim

t→∞β̂(t) = 0 and

B0 = 0. Then it shows that the estimate β̃ for β can
be obtained precisely. So the prove for this theorem is
complete. 	


In theory, we have proved the feasibility for the pro-
posed controller completely. But it can be seen from
the above that how to solve β̂ or β̃ from B̂ is still a
difficult problem. Next, we will deal with the problem.

Definition 7 For t ≥ t0 and h > 0, the Grunwald–
Letnikov definition of the fractional calculus is
described as

Dq f (t) = lim
h→0

1

hq

k∑
i=0

(−1)iCi
q f (t − ih) (32)

where h is the time step, and k = [(t − t0)/h]. It is
worth nothing that q > 0 and q < 0 for (32) repre-
sent the differential operation and integral operation,
respectively.

The researches show that (32) has the following
approximate form with the precision about o(h) at
every time point t j = t0 + jh for j = 0, 1, . . . since h
is small enough,

Dq f (t j ) ≈ 1

hq

j∑
i=0

(−1)iCi
q f (t j − ih) (33)

wherew
(q)
i = (−1)iCi

q is the polynomial coefficient of

the function (1− z)q . Moreover, for i = 1, 2, . . ., w(q)
i

can be calculated by the following recursive relations.

{
w

(q)
0 = 1

w
(q)
i = (1 − q+1

i )w
(q)
i−1

(34)

Obviously, as a simple way, Definition 7 with the
approximate form as (33) can be applied to work out
the fractional-order integral of a given time series at
every time point successfully. Let G( y)β̂ = B̆. For B̂
solved from the error system by Adomian decompo-
sition method (ADM) [48–51], J p−q B̂ can be calcu-

lated on the basis of (33). Further, B̆ can be calculated
according to (31). Therefore, β̂ can be calculated by

β̂ = [GT ( y)G( y)]−1GT ( y)B̆ (35)

Remark 1 The methods for solving differential equa-
tion of the fractional-order chaotic system include
mainly frequency domain method (FDM), Adams–
Bashforth–Moulton method (ABMM) and ADM.
Although the accuracy of FDM is within 2dB or 3dB,
the approximation to real system can only be met in the
desired frequencyband.The truncation error ofABMM
is o(h p) with p = min{2, 1+q}, where h and q repre-
sent the time step and order of the differential equation.
But ABMM consumes too many computer resources,
and its calculation speed is very slow. Not only does
ADM have simple operation and high speed, but also
highprecision, i.e., the truncation error of thismethod is
less than cn

n! , where c is a positive bounded constant and
n stands for the truncation number. Besides, Runge–
Kutta method and Euler method can be used only if q
is an integer.

Up to now, the synchronization problem with
unknown parameters and bounded external disturbance
between two fractional-order chaotic systems with dif-
ferent orders and structures has been dealt completely.
Further, we can also draw the following conclusions.

Corollary 1 If there exist not the disturbance in the
drive system and response system, we can know that
w1 = w2 = 0 and l = 0. So the controller can be
designed as

u(t) = u0(t) + J p−q( f (x) − D p−q g( y) + F(x)̃α

− D p−q(G( y)β̃) + K̃ e − r1(t)) (36)

In addition, the update rules of unknown parameters
and adaptive rate satisfy (16), (17) and (19).

Corollary 2 If the drive system and response system
are with same structure, it will be obvious to satisfy
f (·) = g(·) and F(·) = G(·). In the case of distur-
bance, the controller is designed as

u(t) = u0(t) + J p−q( f (x) − D p−q f ( y) + F(x)̃α

− D p−q(F( y)β̃) + K̃ e − L̃sign(e) − r1(t))

(37)

Furthermore, the update rules of the controller meet
(16), (17), (19) and (20).
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942 R.-G. Li, H.-N. Wu

Corollary 3 If the parameters α and β of the systems
are known in advance, we can design the controller as

u(t) = u0(t) + J p−q( f (x) − D p−q g( y) + F(x)α

− D p−q(G( y)β) + K̃ e − L̃sign(e) − r1(t))

(38)

Besides, conditions (19) and (20) are satisfied with the
controller.

3.2 Controller design as 0 < p < q < 1

Theorem 3 For t ≥ t0, there exist the diagonal
positive definite matrix L ∈ Rn×n, positive definite
matrixes N ∈ Rn×n, S ∈ Rv×v , U ∈ Rn×n and
V ∈ Rn×n to make system (6) and (7) synchronize
if the conditions are satisfied as follows.

(i) The controller on system (7) is designed as

u(t) = Dq− p f (x) − g( y) + Dq− p(F(x)̃α)

− G( y)β̃ + K̃ e − M̃sign(e) + r2(t) (39)

where what α̃, β̃, K̃ and e represent is the same as that
in Sect.3.1, M̃ = diag{m̃1, m̃2, . . . , m̃n} is the estimate
forM = diag{m1,m2, . . . ,mn}, and it satisfiesmi > 0
for i = 1, 2, . . . , n. Besides, r2(t) is described as

r2(t) = Δ(Δ(D p−1x(t0), �( p − q)), (t − t0)
p−q−1)

(40)

(ii) Let m̃ = M̃ ·1n, then the update rule of unknown
parameters in the drive system can be presented as

D2q− p(F(x)̂α) = X1D
q− p(F(x)̂α) + Y1β̂

−N−1Le + n(t) (41)

where X1 ∈ Rn×n and Y1 ∈ Rn×v comply with condi-
tion (iii), and n(t) is presented as

n(t) = Δ(Δ(Dq− p−1(F(x(t0))̂α(t0)),

�(−q)), (t − t0)
−q−1) (42)

The update rule of unknown parameters in the
response system can be presented as

Dq β̂ = X2D
q− p(F(x)̂α) + Y2β̂ + S−1GT ( y)Le

(43)

where X2 ∈ Rv×n and Y2 ∈ Rv×v comply with condi-
tion (iii).

The adaptive rate with uncertainty in the controller
can be estimated by

Dq k̃ = −U−1LE (44)

The upper bound of disturbances between the drive
system and response system can be estimated by

Dq m̃ = V−1L|e| (45)

where k̃ and E describe what as above.
(iii) The condition is the same as the third one in

Sect. 3.1. But the corresponding dimensions of these
matrixes are different from the above.

Proof Taking (q− p)-order integral operation on both
sides of (6), we have

Dq x = Dq− p f (x) + Dq− p(F(x)α)

+ Dq− pw1(t) + r2(t)
(46)

	

Then the synchronization problem to (6) and (7) is
equivalent to design a controller on (7) for realizing
a synchronization between (46) and (7). Therefore, it
follows

Dq y = g( y) + G(y)β + w2(t) + u(t) (47)

Substituting (39) into (47) and subtracting (46) from
(47), we obtain

Dq e = Dq y − Dq x

= Dq− p(F(x)̂α) − G( y)β̂ + K̃ e

− M̃sign(e) + w2(t) − Dq− pw1(t) (48)

Let Dq− p(F(x)̂α) = Â, it holds

Dq Â = D2q− p(F(x)̂α) − n(t)

= X1 Â + Y1β̂ − N−1Le (49)

Let m = M · 1n , and denote m̂ = m̃− m. The Lya-
punov function is chosen as the same as (26), where

V1 = eT Le , V2 = Â
T
N Â, V3 = β̂

T
Sβ̂, V4 = k̂

T
Uk̂

and V5 = m̂T Vm̂. Moreover, k̂ is defined as above.
So, V = [eT , Â

T
, β̂

T
, k̂

T
, m̂T ]diag{L, N, S,U, V }

[eT , Â
T
, β̂

T
, k̂

T
, m̂T ]T . Since L, N, S,U, V > 0, it
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follows that diag{L, N, S,U, V } > 0. Besides, it fol-
lows

DqV =
5∑

i=1

DqVi

≤ 2(eT LDq e + Â
T
NDq Â + β̂

T
SDq β̂

+k̂
T
UDq k̂ + m̂T VDq m̂)

= 2{eT L[ Â − G( y)β̂ + K̃ e

−M̃sign(e) + w2(t) − Dq− pw1(t)]
+ Â

T
N(X1 Â + Y1β̂ − N−1Le)

+ β̂
T
S[X2 Â + Y2β̂ + S−1GT ( y)Le)]

+ k̂
T
U(−U−1LE)

+ m̂T V (V−1L|e|)} (50)

In (50), it meets

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eT L[w2(t) − Dq− pw1(t)] ≤ |eT |Lm
eT L[M̃sign(e)] = |eT |Lm̃
eT L K̃ e = k̃

T
LE

k̂U(U−1LE) = (̃k
T − kT )LE

(51)

Substituting (51) into (50), we get

DqV ≤ 2[ ÂT
NX1 Â + β̂

T
SY2β̂

+ Â
T
Ts(NY1, SX2)β̂ + kT LE]

≤ 0 (52)

So the error system is asymptotically stable at the
equilibrium point. Though the synchronization prob-
lem to the drive system and response system has been
dealt in this case, but the parameter identification ques-
tion to α in the drive system has not been solved yet.

Assumption 5 For the drive system at t > T , it is
assumed as follows: (i) u = dim(α) ≤ n; (ii) F(x)

are with full rank at some point; (iii) F(x1) − F(x2)
are with full rank sometimes. As a matter of fact, most
systems satisfy the assumption.

Theorem 4 For Â = Dq− p(F(x)̂α) denoted as above
and lim

t→∞ Â(t) = 0 drawn the conclusion from Theorem

3, it meets lim
t→∞α̂(t) = 0 such that α can be estimated

by α̃ accurately.

Proof Taking (q − p)-order integral operation on Â,
we obtain

F(x)̂α = J q− p Â + Δ(Δ(Dq− p−1(F(x(t0))̂α(t0)),

�(q − p)), (t − t0)
q− p−1)

= Δ(

∫ T

t0
Δ( Â(τ ), (t − τ)q− p−1) dτ

+
∫ t

T
Δ( Â(τ ), (t − τ)q− p−1) dτ, �(q − p))

+ Δ(Δ(Dq− p−1(F(x(t0))̂α(t0)),

�(q − p)), (t − t0)
q− p−1)

(53)

Since lim
t→∞ Â(t) = 0 and lim

t→∞(t − t0)q− p−1 =
0, there exist Â(t) → 0 as t ≥ tN1 and (t −
t0)q− p−1 → 0 as t ≥ tN2. Let T = max{tN1, tN2},
for t > T , lim

t→∞F(x(t))̂α(t) = Δ(
∫ T
t0

Δ( Â(τ ), (t −
τ)q− p−1) dτ, �(q − p)) = A0.

Denote F(x(ti ))̂α(ti ) = Fi α̂i . For different ti , t j >

T satisfyΔt = t j −ti → 0, it follows thatΔF = F j −
Fi → 0. Denote F j = Fi + ΔF and α̂ j = α̂i + Δα̂.
Since Fi α̂i → F j α̂ j → A0, it satisfies Fi α̂i →
F j α̂ j = (Fi+ΔF)(̂αi+Δα̂). ForΔF → 0, it follows
that FiΔα̂ → 0. By rank(Fi ) = min{u, n} = u, we
know that Δα̂ → 0. Namely, α̂i → α̂ j . In turn, it can
be calculated that α̂1 → α̂2 → · · · → Δα̂ for t > T .
Combining with Assumption 5, there exist Fk and Fl

for k, l = 1, 2, . . . and k �= l to make Fk α̂k → Fl α̂l .
So, Fk α̂k − Fl α̂l → (Fk − Fl )̂α → 0. According to
rank(Fk − Fl) = u, it is known that α̂ → 0 for t > T .
Namely, lim

t→∞α̂(t) = 0 and A0 = 0. Then it shows that

the estimate α̃ for α can be gained accurately. Theorem
4 is proved completely. 	


In addition, let F(x)̂α = Ă. Since Âhas been solved
from the error system according to ADM, Ă can be
calculated by combining with (53) and (33). Conse-
quently, α̂ can be calculated as follows.

α̂ = [FT (x)F(x)]−1FT (x) Ă (54)

Therefore, the synchronization problem can be
achieved completely in this case. Based on Theorem
3, we can also summarize the following results.

Corollary 4 If there exist not the disturbance in the
drive system and response system, we can know that
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944 R.-G. Li, H.-N. Wu

w1 = w2 = 0 and m = 0. So the controller can be
designed as

u(t) = Dq− p f (x) − g( y) + Dq− p(F(x)̃α)

−G( y)β̃ + K̃ e + r2(t) (55)

In addition, the update rules of unknown parameters
and adaptive rate are satisfied with (41), (43) and (44).

Corollary 5 If the drive system and response system
are with same structure, it will be obvious to satisfy
f (·) = g(·) and F(·) = G(·). Under the disturbance,
the controller is designed as

u(t) = Dq− p f (x) − f ( y) + Dq− p(F(x)̃α)

−F( y)β̃ + K̃ e − M̃sign(e) + r2(t) (56)

Moreover, the update rules of the controller meet (41),
(43), (44) and (45).

Corollary 6 If the parameters α and β of the two sys-
tems are known beforehand, we can design the con-
troller as

u(t) = Dq− p f (x) − g( y) + Dq− p(F(x)α)

−G( y)β + K̃ e − M̃sign(e) + r2(t) (57)

Furthermore, conditions (44) and (45) are met with the
controller.

Further, for some special situations implied in the
above theorems and corollaries, we make comments as
follows.

Remark 2 For one thing, we consider that K̃ is chang-
ing with the time in this paper. In fact, we may also
give a constant matrix K̃ < 0, which make us reduce
the design for the update rule of k̃. But it will bring us
the blindness since it is very difficult for us to select an
appropriate K̃ . As a result, the convergence speed and
robustness of the error system can be affected in a way.
For another thing, as to the certainty and uncertainty of
α, β or k̃, the existence and nonexistence of unknown
bounded external disturbance w1 or w2, and whether
the drive system and response system have same struc-
ture, we can design the controller by adjusting certain
update rules in Theorems 1 and 3.

Remark 3 As a kind of complex synchronization prob-
lem to fractional-order chaotic systems, the case with
orders p �= q in the drive system and response system
has been researched in this paper. Of course, if only one
is equal to 1 between p and q, the problem become a

synchronization problem to integer-order chaotic sys-
tem and fractional-order chaotic system. It is clear that
the above theorems and corollaries are also suitable
for the problem. However, if p = q holds, we need
only let r1(t) or r2(t) and m(t) or n(t) be 0. Then for
the synchronization problems under different cases as
mentioned in Remark 2, we can design the controller
to through applying Theorems 1 and 3.

Remark 4 In fact, the external disturbance has an
important impact on system performance such as the
stability, robustness and synchronization error. In this
section, we can deal with the first two problems accord-
ing to our theory.Whatwe design is only a feasible con-
troller by choosing an arbitrary positive definite matrix
V with appropriate dimension, it cannot make sure that
the controller is optimal one. Therefore, we propose an
approach to optimize V tominimize the system error in
Sect. 4, which can decrease the synchronization error
and improve the decode precision in secret commu-
nization effectively.

4 Parameter optimization in the controller

As a matter of fact, this section is an improvement on
the above designed controller, which reduces the sys-
tem error effectively and enhances the control effect
further.

4.1 Principle of parameter optimization

To improve synchronization performance between the
drive system and response system, the key is appropri-
ate selection for the positive definite matrix V related
to the external disturbance in (20) or (45). Meanwhile,
the matrices M or L, N , S andU are given in advance.
For simplicity without loss of generality, we consider
V as the diagonalmatrix. Then, we transform the selec-
tion for V into a parameter optimization problem. The
principle is shown in Fig. 1, where FOES(Es, Ṽ ) rep-
resents the fractional-order error system in Sects. 3.1
or 3.2, Ṽ = V−1 · 1n = [v1, v2, . . . , vn]T , es1 = e,
es2 = α̂ or es2 = Â, es3 = B̂ or es3 = β̂, es4 = k̂,
and es5 = l̂ or es5 = m̂.

Figure 1 shows that the steady-state output of system
under the action of parameter vector Ṽ is
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Fig. 1 Parameter optimization principle

Oss = min
Ṽ

{
Kp

√
eT e + α̂T α̂ + B̂

T
B̂ + k̂

T
k̂ + l̂

T
l̂
}

(58)

or

Oss = min
Ṽ

{
Kp

√
eT e + Â

T
Â + β̂

T
β̂ + k̂

T
k̂ + l̂

T
l̂
}

(59)

Constantly adjusting Ṽ makes (58) or (59) have
a minimum on the vectors including synchroniza-
tion error, parameter identification error, adaptive rate
error and disturbance estimation error. In addition, we
choose Kp = 1/

√
5nLv , where Lv = length(e).

Therefore, the fitness function is set as a root mean
square error (RMSE) of the above error vectors as fol-
lows.

F(Ṽ ) = RMSE(e, α̂, B̂, k̂, l̂) (60)

or

F(Ṽ ) = RMSE(e, Â, β̂, k̂, m̂) (61)

So the parameter optimization problem is converted
into a function optimization problem in the parameter
space, that is to find theminimumof F(Ṽ ). At the same
time, the corresponding independent variable is taken
as

Ṽ b = arg(min
Ṽ

{F(Ṽ )}) (62)

Since the fitness function is amultivariable function,
theremaybemultiple local optimal solutions.Although
there aremany kinds of optimizationmethods, gradient

descent (GD)method and artificial intelligent optimiza-
tion algorithm represented by particle swarm optimiza-
tion (PSO) algorithm are the two most commonly used
methods. However, GDmethod not only operates com-
plicatedly but also traps into the local optimal solution
easily and converges slowly, which make this method
unsuitable to use in this paper. As a parallel optimiza-
tion algorithm, PSO algorithm is with two operators
including the position variable and velocity variable,
but this method is easy to get into an early maturity
state and the convergence speed is also slow. As an
improved method for PSO algorithm, QPSO algorithm
makes up for the above defects. But the selection of
search range has also an effect on the performance
of this algorithm. Therefore, we put forward IEQPSO
algorithm to improve QPSO algorithm and make use
of it to optimize the parameter vector Ṽ .

4.2 IEQPSO algorithm

Individual thoughts are very complicated in a biotic
community, where there exist various uncertainties just
as particles have quantum behaviors. So the quantum
theory is applied to PSOalgorithm tomakeQPSOalgo-
rithm be proposed.

QPSO algorithm can be described as follows. We
suppose that a population X̆ = [X̆1, X̆2, . . . , X̆N ]T is
composed of N D-dimensional particles in the quan-
tum space which represent the potential solution to
problem, where X̆ i = [xi1, xi2, . . . , xiD]T for i =
1, 2, . . . , N . Furthermore, the individual and global
optimal positions of particles are recorded as P i =
[pi1, pi2, . . . , piD]T and Pg = [pg1, pg2, . . . , pgD]T ,
respectively. Among them, the update rule of the cur-
rent individual optimal position is

P i (t) =
⎧⎨
⎩
P i (t) f (P i (t)) < f (P i (t − 1))

P i (t − 1) others
(63)

and the update rule of the current global optimal posi-
tion is

Pg(t) = arg

(
min

i=1,2,...,N
{ f (P i (t))}

)
(64)

where f (·) represents the evaluation function.
In the quantum space, the position and velocity of

every particle cannot be determined simultaneously,
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and the state of it is ascertained by the wave function
which is described as

ψ(X̆ i (t + 1)) = Δ(exp(Δ(X̆ i (t + 1) − δi (t),

L̆i (t))), L̆
1/2
i (t))

(65)

In (65), δi (t) is described as

δi (t) = Φ i (t)P i (t) + [ID − Φ i (t)]Pg(t) (66)

where δi = [δi1, δi2, . . . , δi D]T , L̆i = [Li1, Li2, . . . ,

LiD]T , and Φ i = diag{φ1, φ2, . . . , φD} with φi ∈
[0, 1] for i = 1, 2, . . . , N represent the potential
energy trap of X̆ i , the characteristic length of δi and
the state transition matrix, respectively. Obviously, it
follows

∫ +∞

−∞
Δ(Δ(ψ(X̆ i ), ψ(X̆ i )), d X̆ i ) = 1N (67)

The above formula shows that wherever the particle
is originally, it will depend on the potential energy field
to converge to the optimal position with probability 1,
which is a good proof for the global convergence of
this algorithm.

According toMonteCarlo’s rule, the evolution equa-
tion of particles from the t th to (t + 1)th algebra is

X̆ i (t + 1) = δi (t) ± 1

2
Δ(L̆i (t), ln(u

−1
i (t))) (68)

where ui = [ui1, ui2, . . . , uiD]T is a random input
vector with uid ∈ [0, 1] for i = 1, 2, . . . , N and d =
1, 2, . . . , D. In addition, L̆i (t) can be calculated by

L̆i (t) = 2α(t)|Pm(t) − X̆ i (t)| (69)

where Pm represents the average optimal position,
which can be computed by

Pm = 1

N

N∑
i=1

P i

= 1

N

(
N∑
i=1

pi1,
N∑
i=1

pi2, . . . ,
N∑
i=1

piD

)
(70)

and α(t) is a compression–expansion factor. The effect
is usually better with a linear decrease of α from 1.0 to
0.5, so α with the evolution algebra is selected as

α(t) = 1 − 0.5t/T f (71)

where T f represents the largest evolution algebra.
Therefore, on the basis of (68)–(71), we can obtain

the evolution equation of particles and make the itera-
tion continue until t > T f . Meanwhile, it can be seen
from the above that QPSO algorithm has more simple
operation and stronger search capability, which makes
PSO algorithm be well improved in a way.

Remark 5 Since QPSO algorithm is with global con-
vergence, the optimal solution can be got if we choose a
large enough search space and appropriate parameters.
In fact, in addition to the accuracy, the convergence
speed is also an important test indicator for the algo-
rithm. However, what has a significant effect on the
convergence speed is a selection of the search space. In
many cases, it is very difficult to choose an appropriate
search interval. But in this paper, combining with the
specific problem, we can estimate a smaller range of
search interval beforehand, which is denoted as [c, c]
for each component of the particle. So we call QPSO
algorithm with this mechanism as IEQPSO algorithm.
It is very obvious that it can shorten the search time
and improve the convergence speed to some extent by
using IEQPSO algorithm.

4.3 Algorithm flow

When IEQPSO algorithm is used to optimize the con-
troller, the parameter vector Ṽ = [v1, v2, . . . , vn]T is
compared to a particle in the algorithm. Under the eval-
uation of the fitness function (60) or (61), the process
is described as follows.

Step 1 According to the actual requirements of con-
troller design, determining a big enough search inter-
val which is denoted as Ib = [C,C]⊗ 1n , and divided
into QI uniform intervals. Then, picking somepoints in
those subintervals, and making use of them and (60) or
(61) to draw the corresponding fitness function curve.
Finally, based on the curve, a smaller search interval is
decided, which is denoted as I s = [c, c] ⊗ 1n .

Step 2 Setting the evolution algebra T f , population size
N , particle’s dimension D and initialing the position of
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particle swarm in I s to be X̆ = [X̆1, X̆2, . . . , X̆N ]T
by random means, where X̆ i = [xi1, xi2, . . . , xiD]T
for i = 1, 2, . . . , N , and D = dim(Ṽ ).

Step 3 Calculating the fitness value of every particle
according to the fitness function as follows,

Fi = F(X̆ i ) = RMSE(e, α̂, B̂, k̂, l̂), 1 ≤ i ≤ N

(72)

or

Fi = F(X̆ i ) = RMSE(e, Â, β̂, k̂, m̂), 1 ≤ i ≤ N

(73)

Step 4 Updating the position of all particles though
(68)–(71) and computing the new fitness value of every
particle as follows,

Fnew,i = F(X̆new,i ) = RMSE(e, α̂, B̂, k̂, l̂),

1 ≤ i ≤ N (74)

or

Fnew,i = F(X̆new,i ) = RMSE(e, Â, β̂, k̂, m̂),

1 ≤ i ≤ N (75)

Step 5 Evaluating the individual optimal solution P i

and the global optimal solution Pg basedon Fi , Fnew,i ,
(63) and (64), then updating them.

Step 6 Judging whether the terminate condition is
reached; if not, going to Step 3; otherwise, the evolution
is over, and we let Ṽ = Pg(T f ) be the final result.

Therefore, in combination with the given matrices
M or L, N , S and U and the above Ṽ , we can design
the optimal controller.

5 Numerical simulation

Firstly, on the basis of several typical benchmark func-
tions, we verify the effectiveness of IEQPSO algorithm
through comparing to PSO algorithmwith interval esti-
mation (IEPSO).

5.1 Performance test on IEQPSO algorithm

The test functions are chosen as Schaffer function,
Sphere function, Rosenbrock function and Griewank
function, which are expressed by f (x1, x2) = 0.5 +
cos2[sin(|x21−x22 |)]−0.5

[1+0.001(x21+x22 )]2 , f (x1, x2) = ∑2
i=1 x

2
i , f (x1, x2, x3)

= ∑2
i=1[100(xi+1−x2i )

2+(xi−1)2] and f (x1, x2, x3) =
1+ 1

4000

∑3
i=1 x

2
i −∏3

i=1 cos(
xi√
i
), respectively, where

xi ∈ [−100, 100] for i = 1, 2, 3. In the meantime,
the corresponding independent variables of minimum
points of the above functions are (0, ± 1.2531) (or (±
1.2531,0)), (0,0), (1,1,1) and (0,0,0), respectively. In
the process of searching minimum point, we select
T f = 20, N = 30, D = 2, 2, 3, 3, the velocity
of IEPSO algorithm is set to vs = [− 0.2, 0.2] ⊗
12, [− 0.2, 0.2]⊗12, [− 0.2, 0.2]⊗13, [− 0.2, 0.2]⊗
13. For different functions, the search processes based
on IEQPSO algorithm and IEPSO algorithm are shown
in Figs. 2, 3, 4 and 5.

From Figs. 2, 3, 4 and 5, we can see that the fit-
ness curves of IEQPSO algorithm drop faster than cor-
responding curves of IEPSO algorithm, which show
strong search capability of the proposed method. It
can be seen from the change process of the indepen-
dent variable that the corresponding variable would
converge to the real value by IEQPSO algorithm, but
IEPSO algorithm may be either in precocious or slow
convergence. Obviously, IEQPSO algorithm is well
improved.

For quantitative analysis on the performance of
IEQPSO algorithm, we give three performance indi-
cators as follows: mean absolute error (MAE), worst
absolute error (WAE) and functional absolute error
(FAE). Letting xs = {xsi }ni=1 be the series consisting
of minimum point search result, x∗ = {x∗

i }ni=1 for the

real point, we define MAE = 1
n

n∑
i=1

|xsi − x∗
i |, WAE =

max
i=1,2,...,n

{|xsi −x∗
i |} and FAE = | f (xs)− f (x∗)|. Based

on different search methods for the test functions,
the corresponding performance evaluation is shown in
Table 1.

According to Table 1, MAE and FAE relying on
IEQPSOalgorithm are about zero to two orders ofmag-
nitude lower than that of IEPSO algorithm, which con-
firm that IEQPSO algorithm has higher search preci-
sion.Meanwhile,WAE of IEQPSO algorithm is almost
one-seventh to one-half of the corresponding indica-
tor depending on comparison algorithm, which show
that IEQPSO algorithm has stronger robustness. Visi-
bly, IEQPSO algorithm strengthens the search perfor-
mance. Through Figs. 2, 3, 4 and 5 and Table 1, the
superiority and generalization of IEQPSO algorithm
are illustrated.
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Fig. 4 Minimum point search process for Rosenbrock function: a interval estimation process, b fitness value changes with the algebra,
c–e independent variable varies with the algebra

Furthermore, in order to verify the effectiveness of
the proposed control scheme in this paper, we take the
following two simulation tests as examples to illustrate
it.

5.2 Synchronization control for fractional-order
chaotic systems

As to the case with 1 > p > q > 0, we take the
fractional-order Lü chaotic system and fractional-order
Lorenz chaotic system as the drive system and response
system, respectively. Among them, the two systems are
described in (76) and (77), respectively.

⎧⎪⎨
⎪⎩

Dp1x1 = a1(x2 − x1)

Dp2x2 = −x1x3 + c1x2

Dp3x3 = x1x2 − b1x3

(76)

In the fractional-order Lü chaotic system, if it holds
p = [p1, p2, p3]T = [0.95, 0.95, 0.95]T and α =
[a1, b1, c1]T = [36, 3, 20]T , the system will present
the chaotic characteristic. Meanwhile, the chaotic
attractor is shown in Fig. 6a.

⎧⎪⎨
⎪⎩

Dq1 y1 = a2(y2 − y1)

Dq2 y2 = b2y1 − y2 − y1y3

Dq3 y3 = y1y2 − c2y3

(77)
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Fig. 5 Minimum point search process for Griewank function: a interval estimation process, b fitness value changes with the algebra,
c–e independent variable varies with the algebra

Table 1 Minimum point search results

Test function Algorithm Interval estimation Independent variable MAE WAE FAE

Schaffer IEQPSO [−2.0000, 2.0000]⊗12 (−0.0003, 1.2530) 0.0002 0.0003 0

IEPSO − (−1.2533, 0.0005) 3.5000e−04 0.0005 0

Sphere IEQPSO [−2.0000, 2.0000]⊗12 (−0.0001, 0) 5.0000e−05 0.0001 1.0000e−08

IEPSO − (−0.0002, −0.0002) 0.0002 0.0002 8.0000e−08

Rosenbrock IEQPSO [0.5000, 1.5000]⊗13 (1.0037, 1.0074, 1.0151, 1.5000) 0.0087 0.0151 7.4483e−05

IEPSO − (0.9965, 0.9936, 0.9792) 0.0102 0.0208 0.0066

Griewank IEQPSO [−5.0000, 5.0000]⊗13 (−0.0004, 0.0001, 0.0003) 2.6667e−04 0.0004 9.7565e−08

IEPSO − (0.0003, 0.0003, 0.0026) 0.0011 0.0026 1.1959e−06
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Fig. 6 Chaotic attractors from system (76) and (77): a chaotic
attractor from system (76), b chaotic attractor from system (77)

In the fractional-order Lorenz chaotic system, we
select q = [q1, q2, q3]T = [0.93, 9.93, 0.93]T and
β = [a2, b2, c2]T = [10, 28, 8/3]T . Further, the
chaotic attractor in the system is shown in Fig. 6b.

In the simulation, for the controller, let M, N, S,

U = I3, X1 = Y2 = −I3 and X2 = Y1 = 03.
As to bounded external disturbance, we set w1(t) =
[0.1cost, 0.1sint,−0.1cost]T and w2(t)=[−0.1cost,
−0.1cost, 0.1sint]T . As to the initial conditions, let
x0 =[6,−2, 8]T , y0 =[1, 2, 3]T , α̂0 = [−3,−1, 2]T ,
B̂0 = [−5, 6, 8]T , k̃0 = [0, 0, 0]T and l̃0 = [0, 0, 0]T .
When the differential equations are solved according
to ADM, the truncation number n = 6, the time step
h = 0.01, and the time t ∈ [0, 12]. Further, we make
use of IEQPSO algorithm to optimize Ṽ for V in the
controller. Firstly, we set a big enough search interval
Ib = [0, 60] ⊗ 13 with a step hI = 3. In addition,
we let Ṽ = [v0, v0, v0]T for the interval estimation.
Then the interval estimation curve based on the fitness
function is shown in Fig. 7.

According to Fig. 7, we select I s = [0, 10] ⊗ 13
as the search interval for IEQPSO algorithm. To illus-
trate the effectiveness of IEQPSO algorithm, IEPSO
algorithm is compared with it. In IEQPSO algorithm
and IEPSO algorithm, the evolution algebra, popula-
tion size and particle’s dimension are set to T f = 30,

0 10 20 30 40 50 600
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15

v0

R
M

SE

Fig. 7 Interval estimation process

N = 20 and D = 3, respectively. Besides, the velocity
of IEPSO algorithm is limited to vs = [−0.2, 0.2]⊗13.
Then the evolution curve based on the two algorithms
is shown in Fig. 8.

According to Fig. 8, the fitness function curve of
IEQPSO algorithm drops fast, and the solution of it
converges to Ṽ b = [0.4774, 0.4735, 0.3675]T quickly.
Obviously, as an improved algorithm for IEPSO algo-
rithm, IEQPSO algorithm improves the global search
capability and convergence speed effectively. Next, we
design the controller by Ṽ b. Finally, the simulation
curve is shown in Fig. 9.

Figure 9a shows that the synchronization error is
close to be zero quickly, which shows that the response
system can achieve the synchronization with the drive
system fast. At the same time, we can see from Fig.
9b, c that the unknown parameters can be estimated
accurately and quickly, which provide a new method
for the parameter identification problem to complicated
systems. In addition, Figure 9d, e shows that the rele-
vant change rates can converge to certain values sev-
erally, which imply that the adaptive method plays an
important role in the synchronization problem. So the
example verifies the practicability of the proposed con-
trol scheme for the first case. To further illustrate its
effectiveness, the quantitative analysis based on MAE
is shown in Table 2.

We can see from Table 2 that MAE of synchroniza-
tion error in the controller based on IEQPSO algorithm
is basically less than corresponding indicator in con-
trast controllers, which verifies that the proposed con-
trol scheme improve the synchronization performance
in accuracy. Meanwhile, it also confirms that IEQPSO
algorithm has a stronger search capability than IEPSO
algorithm.
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Fig. 8 Evolution process based on IEQPSO algorithm and IEPSO algorithm: a fitness value changes with the algebra, b v1 changes
with the algebra, c v2 changes with the algebra, d v3 changes with the algebra

5.3 Synchronization application to secret
communication

For the case with 0 < p < q < 1, we take signal
encryption–decryption process existing in secret com-
munication as an example to illustrate the practicabil-
ity of the proposed method. Here, the system contain-
ing an encrypted signal is regarded as the drive system
described by (78), which is composed of the fractional-
order Lorenz chaotic system and encrypted signal. As
a decryption system, the fractional-order Wang hyper-
chaotic system with complicated dynamic characteris-
tic is considered as the response system described by
(79). In the meantime, the signal processing process is
shown in Fig. 10.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dp1x1 = a1(x2 − x1)

Dp2x2 = b1x1 − x2 − x1x3

Dp3x3 = x1x2 − c1x3

s = ks x1 + ws

(78)

In the drive system as above, the signal source is
set to ws = 0.25sint , the encryption coefficient is

chosen as ks = 2, if it meets p = [p1, p2, p3]T =
[0.95, 0.95, 0.95]T and α = [a1, b1, c1]T = [10, 28,
8/3]T , the chaotic characteristic will emerge. At the
same time, the chaotic attractor is shown in Fig. 11a.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dq1 y1 = γ1(y2 − y1)

Dq2 y2 = γ2y1 − y1y3 + y4

Dq3 y3 = 4y21 − γ3y3

Dq4 y4 = −γ4y1

(79)

In the response system as above, we choose q =
[q1, q2, q3, q4]T = [0.98, 9.98, 0.98, 0.98]T and β =
[γ1, γ2, γ3, γ4]T = [10, 40, 25, 10.6]T . Furthermore,
the chaotic attractors are shown in Fig. 11b–d.

In the simulation, we let L, N, S,U = I4, X1 =
Y2 = −I4 and X2 = Y1 = 04 for the con-
troller. Let w1(t) = [0.2cost,− 0.2sint, 0.2sint]T
and w2(t) = [0.3sint, 0.3cost,− 0.2sint,− 0.2cost]T
for bounded external disturbance, respectively. Let
x0 = [3,− 7, 4]T , y0 = [− 2, 6, 9,− 10]T , Â0 =
[− 4,− 6, 8, 5]T , β̂0 = [− 5, 3,− 8, 7]T , k̃0 = [0, 0,
0, 0]T and m̃0 = [0, 0, 0, 0]T for the initial conditions.
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Fig. 9 Synchronization between system (76) and system (77):
a synchronization error of the two systems, b parameter iden-
tification in system (76), c parameter identification in system

(77), d adaptive rate estimation of the error system, e external
disturbance estimation of the error system

When the differential equations are solved by ADM,
the truncation number is chosen as n = 6, the time step
is set to h = 0.01, and the time is limited to t ∈ [0, 16].
Next, IEQPSO algorithm is used to optimize Ṽ for V
in the controller. First of all, we set a big enough search
interval Ib = [0, 60]⊗14 with a step hI = 3. Besides,
we let Ṽ = [v0, v0, v0, v0]T for the interval estimation.
Then the interval estimation curve based on the fitness
function is shown in Fig. 12.

Based on Fig. 12, we select I s = [0, 10] ⊗ 14 as
the search interval for IEQPSO algorithm. In IEQPSO
algorithm and IEPSO algorithm, the evolution alge-
bra, population size and particle’s dimension are set to
T f = 30, N = 20 and D = 4, respectively. Further-
more, the velocity of IEPSO algorithm is limited to
vs = [− 0.2, 0.2]⊗14. Then the evolution curve about
IEQPSO algorithm and IEPSO algorithm is shown in
Fig. 13.

123



954 R.-G. Li, H.-N. Wu

Table 2 MAE on synchronization error at t ∈ [1.9, 12]
Indicator Method

IEQPSO IEPSO Given1 Given2 Given3

Ṽ v1 0.4774 0.9541 5.6882 10.1137 18.6729

v2 0.4735 0.8063 4.6939 4.8655 31.7120

v3 0.3675 3.0275 0.1190 23.8285 9.9389

MAE e1 0.0056 0.0080 0.0300 0.0451 0.0685

e2 0.0059 0.0097 0.0414 0.0425 0.1253

e3 0.0038 0.0261 0.0013 0.1204 0.0672

Fig. 10 Signal processing process

We can see fromFig. 13, the fitness function curve of
IEQPSOalgorithmgoes down quickly, and the solution
of it converges to Ṽ b = [0.3453, 0.4256, 0.3983, 0.5150]T

fast. In comparison with IEPSO algorithm, it is very
obvious that IEQPSO algorithm improves the global
search capability and convergence speed effectively.
Further, we design the controller by Ṽ b. At last, the
simulation curve is shown in Fig. 14.

We can see from Fig. 14a that the synchronization
error converges to zero fast, which shows that the drive
system and response system can realize the synchro-
nization quickly. Meanwhile, Fig. 14b, c shows that the
unknown parameters included in the drive system and
response system can be identified fast and precisely,
which offer a new way for the parameter identification
problem to complicated systems. Furthermore, we can
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Fig. 11 Chaotic attractors from system (78) and (79): a chaotic attractor from system (78), b–d chaotic attractors from system (79)

123



Adaptive synchronization control based on QPSO algorithm 955

0 10 20 30 40 50 60
5

10

15

20

25

v0

R
M

SE

Fig. 12 Interval estimation process

also see fromFig. 14d, e that the change rates existing in
the error system can be close to certain values, respec-
tively, which suggest that they are changing before the
error system is stable. Obviously, the proposed method
to the second case iswell verified by the actual example.
In addition, according to MAE of the synchronization
error, the quantitative analysis is shown in Table 3.

Table 3 shows that the performance indicator of
the controller based on IEQPSO algorithm is obvi-
ously less than that contrast controllers, which implies
that the proposed control scheme improves effectively
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Fig. 13 Evolution process based on IEQPSO algorithm and IEPSO algorithm: a fitness value changes with the algebra, b v1 changes
with the algebra, c v2 changes with the algebra, d v3 changes with the algebra, e v4 changes with the algebra
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Fig. 14 Synchronization between system (78) and system (79):
a synchronization error of the two systems, b parameter iden-
tification in system (78), c parameter identification in system

(79), d adaptive rate estimation of the error system, e external
disturbance estimation of the error system

the synchronization performance in a way. Meanwhile,
it also verifies that IEQPSO algorithm enhances the
search capability compared to IEPSO algorithm. To
make further illustration on secret communication, the
signal source, encrypted signal and decryption signal
are shown in Fig. 15. It can be seen that the proposed
control scheme can achieve the encryption and decryp-
tion process for the signal source very well.

Remark 6 In secret communication, the encryption
coefficient ks plays an important role in matching the
signal source s and signal to be added such as x1, which

0 2 4 6 8 10 12 14
−10

−5

0

5

10

Time (s)

En
cr

yp
tio

n−
de

cr
yp

tio
n

w s s /4 y4− ksy1

Fig. 15 Signal encryption–decryption process
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Table 3 MAE on synchronization error at t ∈ [1.9, 16]
Indicator Method

IEQPSO IEPSO Given 1 Given 2 Given 3

Ṽ v1 0.3453 3.4294 7.5127 26.7271 8.9576

v2 0.4256 2.7559 2.5510 28.7787 15.4505

v3 0.3983 0.8171 5.0596 16.4165 50.4430

v4 0.5150 5.0360 6.9908 4.1587 15.2569

MAE e1 0.0067 0.0268 0.0510 0.1293 0.0602

e2 0.0048 0.0231 0.0216 0.1751 0.1065

e3 0.0057 0.0083 0.0442 0.1131 0.2384

e4 0.0050 0.0426 0.0580 0.0349 0.1169

makes sure that the signal source is not distorted after
being encrypted. Further, the bigger the synchroniza-
tion error is, the harder it is to decrypt the signal source.
From Tables 2 and 3, we can see the controller based
on IEQPSO algorithm decreases the synchronization
error about one to two orders of magnitude than con-
trast controllers, which improves effectively the accu-
racy of secret communication. In particular, the smaller
the amplitude of the signal to be added is, the more
obvious the superiority of the proposed controller is.

Remark 7 In order to enhance communication security
further, secondary encryption of the signal is needed
in some case. Thus the artificial noise 
 is introduced
into the encrypted signal s, which makes s be protected
by rs = H(s + 
 ), where H represents the linear
operator. To avoid the impact on the main channel, 

is set in the null space ofH, so that
 ∈ N (H) = {v ∈
D(H)|Hv = 0}, where D(H) stands for the domain
of H. Letting 
 ∼ N (μ,Δ(σ , σ )), 
 in the drive
system and response system can be regarded as the
bounded external disturbance. Meanwhile, it is noted
that rs = Hs. Since the introduction of artificial noise
makes no contribution to the structure of the whole
system, the proposed method has little influence on the
synchronization process and parameter identification
in it. For convenience without loss of generality, we
choose the unit operator I in Sect. 5.3.

6 Conclusion

In this paper, we investigate the synchronization prob-
lem to different fractional-order chaotic systems with

parameter uncertainty and bounded external distur-
bance. Combining with the matrix knowledge, theory
on fractional calculus and adaptive method, we design
a controller which can deal with the proposed prob-
lem in a way. Further, based on the optimal theory, we
design an optimal controller according to some per-
formance indicator. Meanwhile, we propose IEQPSO
algorithm and apply it into the parameter optimization
of the controller. Aiming at different cases, we design
two types of optimal controllers. Furthermore, we give
some corollaries and remarks, which broaden the scope
of research. Finally, in two different cases, we take two
couples of examples including synchronization control
of fractional-order chaotic systems and synchroniza-
tion application in secret communication to illustrate
the effectiveness and practicability of proposed con-
trol schemes. As a future work, we can consider the
problem and corresponding application that there exist
the orders more than 1, different dimensions and time
delay between the drive system and response system.
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