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Abstract In this paper, a hyperchaoticmemristive cir-
cuit based onWien-bridge chaotic circuitwas designed.
The mathematical model of the new circuit is estab-
lished by using the method of normalized parameter.
The equilibrium point and the stability point of the
system are calculated. Meanwhile, the stable interval
of corresponding parameter is determined. Using the
conventional dynamic analysis method, the dynamical
characteristics of the system are analyzed. During the
analysis, some special phenomenon such as coexisting
attractor is observed. Finally, the circuit simulation of
system is designed and the practical circuit is realized.
The results of theoretical analysis and numerical sim-
ulation show that the Wien-bridge hyperchaotic mem-
ristive circuit has very rich and complicated dynamical
characteristics. It provides a theoretical guidance and a
data support for the practical application of memristive
chaotic system.
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1 Introduction

TheAcademia have never stopped studying and explor-
ing for the chaotic systems. The most classic system is
the 3D continuous autonomous chaotic system [1–3].
However, the research for chaotic memristive system
has gradually become a hot academic research in recent
years. The good nonlinear characteristics of memristor
can perfectly combine with the chaotic system [4–7].
All the signs indicate that memristor would be the most
potential electronic element.

Memristor is a nonlinear resistance with memory
function [8,9]. It can change its resistance value by
controlling the current variation, and this variation can
continue to maintain even if the power goes off. So,
these advantages above make memristor become a nat-
ural nonvolatile memory [10,11]. In particular, the
good memory characteristic of memristor will pro-
duce a profound influence on the fields of computer
science [12,13], bioengineering [14,15], neural net-
work [16,17], electronic engineering [18,19] and con-
trol engineering [20–24]. Meanwhile, the existence of
memristor also makes the number of basic circuit ele-
ment increased to four. However, memristor is a nano
component [25–30], so it requires much higher tech-
nology content to physically implement. It indicated
thatmemristorwill not be used in commercial and civil-
ian in a short time.

Generally, memristor include flux-controlled mem-
ristor [31] and charge-controlled memristor [32]. The
organic combination of memristor and other compo-
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nents can compose a chaotic memristive circuit. In
particular, the researches on its complicated dynami-
cal characteristics have become a mainstream in the
direction of chaotic memristive circuit system [8,33–
35]. Meanwhile, in the field of chaotic circuit, the
most popular research is based on the circuit model
of Chua [36]. But the researches based on these hot
circuit model will be saturated one day. Thus, it is very
necessary to develop a new chaotic memristive circuit
model.

The Wien-bridge circuit is a RC oscillating circuit,
and it has the characteristics of oscillating stabilization
and good waveform. Adding two anti-parallel diodes
and a LC parallel circuit to the classical 2D Wien-
bridge chaotic circuit [37], which can constituted a
4D Wien-bridge chaotic circuit. Then, we use a flux-
controlled memristor [38,39] to replace a resistance of
the 4D Wien-bridge chaotic circuit. Finally, a new 5D
Wien-bridge hyperchaotic memristive circuit model is
established.

In this article, we focus on the new Wien-bridge
hyperchaotic circuit. It is organized as follows. In
Sect. 2, the model of memristive circuit is presented,
and the newmathematical model of normalized param-
eter was established. In Sect. 3, the stability of the
equilibrium set was analyzed. In Sect. 4, the dynam-
ical characteristics of system were analyzed by Lya-
punov exponents spectrum, bifurcation diagrams, spec-
tral entropy (SE) and C0 complexity. The phenomenon
of coexisting attractor was observed, and the mode of
coexisting bifurcation was found. Finally, the practical
circuit of Wien-bridge hyperchaotic memristive circuit
was realized. It make theoretical analysis and practi-
cal circuit unity. This article opens up a new model of
hyperchaotic memristive circuit and a creative idea of
mathematical modeling, and it also provides a theoret-
ical guidance for the practical application of chaotic
memristive circuit.

2 Wien-bridge hyperchaotic memristive circuit

2.1 Model of circuit

We use a flux-controlled memristor to replace a resis-
tance R1 of 4D Wien-bridge chaotic circuit. Then, a
new 5DWien-bridge hyperchaotic circuit is built. Fig-
ure 1 shows that the circuit consists of three capaci-
tors C1, C2, C3, an operational amplifier, two nonlin-

Fig. 1 5D Wien-bridge memristive hyperchaotic circuit

ear diodes D1, D2 and three resistances and a flux-
controlled memristor. U1,U2,U3 are the correspond-
ing voltages of three capacitors.

2.2 Mathematical model

The newWien-bridge memristive circuit is a 5D circuit
system. There is a large gap in the numerical value of
components. So, we have to do the normalized parame-
ter processing for the initial circuit equations, and then
the new mathematical model are established. Accord-
ing to the Kirchhoff’s current and voltage laws and
voltage–current characteristics of all components, we
obtain the differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
du1
dt = R4

R2R3
u1 − w(φ)u1 − u2

R2
− id

C2
du2
dt = R4

R2R3
u1 − u2

R2

C3
du3
dt = id − i1

L1
di1
dt = u3

dφ

dt = u1

, (1)

where the voltage–current characteristics of two anti-
parallel diodes is:

id = gd [u1 − u3 + 0.5(|u1 − u3 −Uth|
−|u1 − u3 +Uth|)], (2)

in which Uth is the threshold voltage of diode, and gd
is the forward turn-on conductance.

{
q(φ1) = aφ1 + b1φ3

1

W (φ1) = a + 3b1φ2
1

, (3)
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Fig. 2 Hyperchaotic
attractor of the system.
a x − z plane. b y − z plane
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Fig. 3 Lyapunov exponents
spectrum with varying m.
a Range of m is [−2, 2].
b Range of m is [−0.05,
0.05]
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where,W (ϕ) is the memductance, a and b1 are the real
constant.

Let u1 = Uthx, u2 = Uthy, u3 = Uthz, i1 =
Uthw/(R2R3)

1/2, ϕ = UthC1(R2R3)
1/2v, id = Uth

H(R2R3)
1/2gd , t = C1(R2R3)

1/2τ, c = (R4/R2)
1/2,

d = (R4/R3)
1/2, e = (R2R3)

1/2, g = (R2R3)
1/2gd,

k = C1R2R3/L1,C1 = C2 = C3, b = U 2
thC

2
1 R2R3b1,

w(v) = a + 3bv2. It’s means:

H = x − z + 0.5(|x − z − 1| − |x − z + 1|). (4)

By employing the normalized operation Eq. (1)
becomes to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = [cd − e(a + 3bv2)]x − yc/d − gH

ẏ = cdx − yc/d

ż = gH − w

ẇ = kz

v̇ = x

(5)

Obviously, the new circuit system is a 5D system, and
it can be described by Eq. (5).

2.3 Hyperchaotic attractor

Setting a = 0.03, b = 0.02, c = 1.2, d = 2.83, e =
21.21, g = 21.21, k = 21.5, the initial value of Eq.
(5) is (1, 1, 1, 1, 0.01), and the time step is t =
0.01s. We can get a hyperchaotic attractor as shown
in Fig. 2. In this case, the Lyapunov exponents values
are LE1 = 0.0575, LE2 = 0.0342, LE3 = 0, LE4 =
−0.5051,LE5 = −27.8043, and the Lyapunov dimen-
sion dL = 3.1815. Obviously, there are two positive
values of Lyapunov exponents, so the new circuit is a
hyperchaotic system.

3 Characteristic analysis of system

3.1 Symmetry characteristic

The system (5) can remain unchanged after the transfor-
mation of (x, y, z, w, v) → (−x,−y,−z,−w,−v).
So, the system is symmetric about the origin.

3.2 Dissipation characteristic

If the system (5) is a hyperchaotic system, it mustmeets
the condition:
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Table 1 Dynamical behaviors with different m

m Dynamical behaviors

− 4 to − 1.284 Unstable sink

− 1.283 Stable sink

− 1.282 ∼ − 0.009 Chaotic attractor

− 0.01 to 0.01 Hyperchaotic attractor

0.011–1.3962 Chaotic attractor

1.3963 Stable sink

1.3964 Chaotic attractor

1.3965–1.3967 Stable sink

1.3968–4 Unstable sink

∇V = ∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
+ ∂ẇ

∂w
+ ∂v̇

∂v
< 0 . (6)

Thus, we can obtain that the condition of system (5) is
a hyperchaotic system:

cd − 2g

(
∂H

∂x
− ∂H

∂z

)

− ew(v) < 0. (7)

3.3 Equilibrium points set and analysis of stability

Let ẋ = ẏ = ż = ẇ = x = 0, we get the equilib-
rium point set E = [(x, y, z, w, v)|x = y = z = w =
0, v = m]. So, any point set located on v plane are all
equilibrium points, where m is a real constant. Select
normalized parameters a = 0.03, b = 0.02, c =
1.2, d = 2.83, e = 21.21, g = 21.21, k = 21.5.
In which d and m are variable parameters, the Jacobi-
matrix in equilibrium points of system. (5) is:

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.2d − 21.21(0.03 + 0.06m2) −1.2/d 0 0 0

1.2d −1.2/d 0 0 0

0 0 0 −1 0

0 0 21.5 0 0

1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(8)

The characteristic root equations of equilibrium point
set are :

λ(λ4 + a1λ
3 + a2λ

2 + a3λ + a4) = 0, (9)

Fig. 4 Phase portraits with
different initial states m. a
Unstable sink (m = −2). b
Stable sink (m = −1.283).
c Chaotic attractor
(m = −1). d Hyperchaotic
attractor (m = 0.01)
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Table 2 Dynamical behaviors with different d

d Dynamical behaviors

2–2.7 Period-1 cycle

2.71–2.75 Chaotic attractor

2.76 Period-1 windows

2.77 Chaotic attractor

2.78–2.81 Period-1 windows

2.82 Chaotic attractor

2.83–2.84 Hyperchaotic attractor

2.85–2.88 Chaotic attractor

2.89–2.95 Period-3 windows

2.96–3.05 Chaotic attractor

3.06 Hyperchaotic attractor

3.07–4.64 Chaotic attractor

4.65–5 Period-1 cycle

where,

a1 = 1.2726m2 + 1.2/d + 0.6363 − 1.2d

a2 = 1.52712m2/d + 0.76356/d + 21.5

a3 = 27.3609m2 + 25.8/d + 13.68045 − 25.8d

a4 = 32.83308m2/d + 16.41654/d (10)

According to the stability condition of Routh–
Hurwitz, the necessary and sufficient condition of all
roots have negative real parts are:

Hk =

⎡

⎢
⎢
⎢
⎢
⎣

a1 a3 0 0

1 a2 a4 0

0 a1 a3 0

0 1 a2 a4

⎤

⎥
⎥
⎥
⎥
⎦

> 0, (11)

in which, k = 1, 2, 3, 4.

H1 = a1 > 0

H2 = a1a2 − a3 > 0

H3 = a1(a2a3 − a1a4) − a23 > 0

H4 = a4H3 > 0 (12)

Select circuit parameters d = 2.83, we can get the
stability range of m is :

|m| ≥ 1.3548. (13)

Fig. 5 Dynamical
behaviors with different d. a
Lyapunov exponents. b
Bifurcation diagram. c SE
complexity. d C0
complexity

LE1

2 3 5
-2

0

0.5

d

-1

LE2

LE3

LE4

4

Ly
ap

un
ov

 e
xp

on
en

ts

2 4 5
-5

10

25

d

y

32 4 5
-5

10

25

d

y

3

(a) (b)

2 3 5
0

0.5

d

0.25

4

SE

2 3 5
0

0.5

d

0.25

4

SE

2 3 5
0

0.06

d

0.03

4

C 0

2 3 5
0

0.06

d

0.03

4

C 0

(c) (d)

123



928 X. Ye et al.

Fig. 6 Phase portraits with
different d. a Type I
period-1 (d = 2.5). b Type
II period-1 (d = 2.8). c
Chaotic attractor
(d = 2.82). d Hyperchaotic
attractor (d = 2.83). e
Period-3 windows
(d = 2.9). f Type II chaotic
attractor (d = 4)
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4 Dynamic analysis of hyperchaotic memristive
system

4.1 Dynamic analysis with different memristive initial
states

The time evolution of system is unpredictable under
the different initial conditions, but its track always lim-
ited to a certain area. That is to say, the range of chaos
is bounded. In order to further studying the nonlinear
dynamic characteristics of system, we select the Lya-
punov exponents spectrum as a research object.

Keeping other parameters the same as mentioned
above, and select the initial value of system is (1, 1, 1,
1, v(0)), where v(0) is variable parameter m. Setting
the simulation step size is h = 0.01, time step is
t = 0.01s. The Lyapunov exponents spectrum chang-
ing with different initial value m as shown in Fig. 3.
In order to better observing and studying, the mini-
mum Lyapunov exponent is ignored. There are two
positive Lyapunov exponents can be observed, so the
system is a hyperchaotic system. In particular,we select
the range of m [− 0.05, 0.05] as a study range. As
shown in Fig. 3b, we can clearly observe the whole
process that the system goes into the hyperchaotic state
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Fig. 7 Coexisting attractors
with different initial states.
a Coexisting period-1
(d = 1.7). b Coexisting
chaotic attractor (d = 1.79).
c Type II coexisting
period-1 (d = 2.6). d Type
II coexisting hyperchaotic
attractor (d = 2.83)
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Fig. 8 Coexisting bifurcation diagram

from the chaotic state. The detailed dynamical behav-
iors of system with different parameter m are summa-
rized in Table 1. However, there are a few differences
between numerical simulation and theoretical analy-
sis. It is mainly because the equilibrium points set has
a zero characteristic root in addition to the four nonzero
characteristic roots.

To further present its dynamic characteristics, x − y
phase portraits with different initial states m are pre-
sented in Fig. 4. With the increase in m, the system
transform from unstable sink to hyperchaotic attractor.

4.2 Dynamical behaviors with different circuit
parameter

Keeping other parameters the same asmentioned above
and select d is the variable parameter, the initial value
of system is (1, 1, 1, 1, 0.01). The dynamical character-
istic of system is analyzed by using SE algorithm and
C0 algorithm. It can reflect the complexity of contin-
uous chaotic systems accurately and effectually. With
parameter d increasing, the system presents a variety
of dynamic characteristics. The range of system into
the limit cycle orbit is [2, 2.7]. When the system is
in the periodic state, the complexity values of corre-
sponding system are very small too. When the range is
[2.71, 2.89), the system changes states between chaotic
state and hyperchaotic state. In this case, the corre-
sponding complexity value is much larger. If the sys-
tem (5) is used in the field of secret communication,
it is best to choose the parameters within this interval
as a secret key. We can see a larger periodic window
when the range is [2.76, 2.82), and the corresponding
complexity values also sudden decline.When the range
is (3.06, 4.64], the chaotic state of system is disappear-
ing, and the corresponding complexity value is much
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Fig. 9 Wien-bridge
hyperchaotic memristive
circuit
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Fig. 10 Equivalent circuit of memristor

smaller, even to 0. The detailed state interval varying
with parameter d is shown in Table 2. The varying ten-
dency of numerical simulation reflected in Fig. 5 is
basically the same.

In order to more clearly show the complex charac-
teristics of system, x − y phase portraits with differ-
ent circuit parameter d are presented in Fig. 6. With
varying d, the system display different topological
structures.

4.3 Coexisting attractor

Let parameters a = 0.03, b = 0.02, c = 1.2, d =
2.83, e = 21.21, g = 21.21, k = 21.5, and d is
the variable parameter. The blue track represents the
orbit starts from the initial state (1, 1, 1, 1, 0), while

the red track starts from the initial state (− 1, − 1,
− 1, − 1, 0). When d = 1.7, the system is in the
coexisting limit cycles with period-4. With the param-
eter d increases, the system transforms state from the
limit cycle to the chaotic state. The coexisting chaotic
attractors are shown in Fig. 7b. They are evolved from
the coexisting limit cycles after many periods. When
d = 2.6, the system is in the coexisting limit cycles
with period-3 as shown in Fig. 7c. With the parameter
d varying, this pair of coexisting limit cycles evolved
into the coexisting hyperchaotic attractors. The system
shows different topological structures with varying d,
andwe can see that the hyperchaoticmemristive system
has rich dynamic characteristics.

4.4 Mode of coexisting bifurcation

The coexisting bifurcation mode is essentially a phe-
nomenon of coexisting oscillation. With the varying
initial value, different topological structures produced
in the same plane of bifurcation diagram.Keeping other
parameters the same as mentioned above and select d
is the variable parameter. The blue bifurcation diagram
generated from the initial state (1, 1, 1, 1, 0), while the
red bifurcation diagram generated from the initial state
(− 1, − 1, − 1, − 1, 0). When the range of parameter
d is [2, 3.5], the system has the phenomenon of coex-
isting bifurcation. As Fig. 8 shown, we can see that
the coexisting periodic state and the coexisting chaotic
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Fig. 11 Attractors observed
in circuit simulation. a
x − z plane R4 = 7.05 k�.
b x−z plane R4 = 8.05 k�.
c y−z plane R4 = 7.05 k�.
d y−z plane R4 = 8.05 k�

state. When the range of parameter d is [2.82, 2.85],
we can obtain the coexisting hyperchaotic state. There
are many missing parts on their own phase plane, but
they complement each other. Finally, a complete bifur-
cation diagram is formed. The coexisting state reflects
the sensitivity and dependency of system to the initial
value.

5 Circuit implementation of the system

Using NI Multisim 14.0 software of circuit simulation.
We use a 3D flux-controlled memristor equivalent cir-
cuit to replace the resistance R1 of the 4DWien-bridge
chaotic circuit. As shown inFig. 9,we can rebuild a new
hyperchaotic memristive circuit. In particular, select
the circuit parameters of hyperchaotic memristive cir-
cuit R1 = 2.0 k�, R2 = 5.6 k�, R3 = 1 k�, C1 =
C2 = C3 = 33 nF and L1 = 10mH, the model
of the operational amplifier is OP07, and the model
of two nonlinear diodes D1 and D2 are all 1N4148.
Figure 10 shows the equivalent circuit of memristor
Ra = Rb = 10k�, Rw = 2k�, Cw = 33nF, the
model of the multiplier is AD633, and the model of the
operational amplifier isOP07.By adjusting the variable
resistor R4, the phase diagrams of attractors in different

states can be observed on the oscilloscope. The periodic
orbits and the hyperchaotic orbits are shown in Fig. 11.
Finally, as shown in Fig. 12, the practical circuit is
designed and completed. The experimental results and
the conclusions of theoretical analysis are basically the
same.

6 Conclusions

Anew5DWien-bridgehyperchaoticmemristive circuit
was designed, then the normalized parameter mathe-
maticalmodelwas rebuilt. The phenomenon of coexist-
ing attractor was observed, and the mode of coexisting
bifurcation was found. The dynamic behaviors of sys-
tem were analyzed by using the conventional method.
With different initial states and varying circuit parame-
ters, the system display rich dynamical characteristics.
The circuit simulation was realized by using the equiv-
alent circuit, the parameters of all components have
been found. Finally, the practical circuit has been real-
ized successfully. It makes the theoretical analysis and
the practical circuit closely together. Therefore, based
on these findings and researches, we can obtain the
new hyperchaotic memristive circuit system is differ-
ent from the ordinary chaotic circuit systems.
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Fig. 12 Attractors observed
in circuit experiment. a x−z
plane R4 = 7.05 k� b x−z
plane R4 = 8.05 k� c y−z
plane R4 = 7.05 k� d y−z
plane R4 = 8.05 k�

The conclusions of theoretical analysis and the
results of circuit implementation are basically the same.
It shows that theWien-bridge hyperchaotic memristive
circuit system has very rich dynamical behaviors. All
these above provide the theoretical guidance and the
practical significance for the research of chaotic mem-
ristive circuit. In particular, it can be widely used in the
field of chaotic encryption and synchronous control.
Next, we will try to find more hyperchaotic charac-
teristics in the Wien-bridge hyperchaotic memristive
circuit.
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