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Abstract This paper investigates the problem of pin-
ning cluster synchronization for colored community
networks via adaptive aperiodically intermittent con-
trol. Firstly, a general colored community network
model is proposed, where the isolated nodes can inter-
act through different kinds of connections in differ-
ent communities and the interactions between different
pair of communities can also be different, and more-
over, the nodes in different communities can have dif-
ferent state dimensions. Then, an adaptive aperiodi-
cally intermittent control strategy combined with pin-
ning scheme is developed to realize cluster synchro-
nization of such colored community network. By intro-
ducing a novel piecewise continuous auxiliary func-
tion, some globally exponential cluster synchroniza-
tion criteria are rigorously derived according to Lya-
punov stability theory andpiecewise analysis approach.
Based on the derived criteria, a guideline to illustrate
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which nodes in each community should be preferen-
tially pinned is given. It is noted that the adaptive inter-
mittent pinning control is aperiodic, in which both con-
trol width and control period are allowed to be variable.
Finally, a numerical example is provided to show the
effectiveness of the theoretical results obtained.

Keywords Exponential cluster synchronization ·
Colored community network · Nodes of different
state dimensions · Adaptive aperiodically intermittent
control · Pinning scheme

1 Introduction

Currently, community networks have attracted increas-
ing attention from various research fields. In a commu-
nity network, nodes in the same community are often
densely connected, while the connections of the nodes
belonging to different communities are lower density
[1]. In fact, community structure has been revealed in
many real-world networks, such as technological net-
works, social networks, biological networks and Con-
gressional cosponsorship networks [1–4]. In general,
nodes belonging to the same community have identical
local dynamics and those in different communities have
different local dynamics [5,6]. Additionally, nodes in
the same community interact through the same type of
connection and those in different communities inter-
act through different types of connections. Meanwhile,
the interactions between the same pair of communities
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Fig. 1 Sketch map of a
colored community network
consisting of 18 nodes and 3
communities, where nodes
with different colors
represent that they have
different local dynamics and
edges with different colors
denote different interactions

are usually identical and those between different pair
of communities are different. In other words, there are
diverse types of interactions in community networks
[7,8]. In order to better describe these phenomena,
a community network model with colored nodes and
edges, which is called colored community network [7],
has been proposed. In this kind of community network,
nodes with different colors represent that they have dif-
ferent local dynamics and edges with different colors
denote different interactions. The sketch map of a col-
ored community network consisting of 18 nodes and 3
communities is indicated in Fig. 1.

It iswell known that synchronization canbeobserved
inmany application areas, including biology, sociology
and technology [9,10]. By general definition, synchro-
nization is a process wherein two (or many) dynamical
systems adjust a given property of their motion to a
common behavior by virtue of coupling or forcing [9].
In the past two decades, synchronization in complex
networks of coupled dynamical systems called com-
plex dynamical networks has been extensively studied
due to its broad potential applications [10,11]. Hith-
erto, several types of synchronization features have
been presented, such as complete synchronization [11],
phase synchronization [12], lag synchronization [13],

generalized synchronization [14], projective synchro-
nization [15] and cluster synchronization [16]. As a
particular type of synchronization pattern, cluster syn-
chronization means that the set of nodes in a complex
network split into a certain number of communities
(clusters or groups), such that the nodes belonging to
the same community are synchronized, but no synchro-
nization occurs amongdifferent communities [6]. In the
light of its significance in brain science [17], commu-
nication engineering [18] and biological science [19],
cluster synchronization has received much attention in
recent years. In [16], for connected chaotic networks,
a coupling scheme with cooperative and competitive
weight couplings was constructed to stabilize arbitrar-
ily selected cluster synchronization patterns with sev-
eral clusters. In [20], cluster synchronization in an array
of delayed neural networks with hybrid coupling was
studied. In [21], the problem of cluster synchroniza-
tion for a class of hybrid-coupled impulsive delayed
dynamical networks was considered.

In the real world, many complex networks can-
not achieve synchronization by themselves or syn-
chronize with desired orbits automatically [22]. There-
fore, several control techniques have been proposed
to drive complex networks to achieve synchronization,
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such as feedback control [13], pinning control [23–
28], adaptive control [15,29], impulsive control [30–
33] and intermittent control [34–36].Among these con-
trol strategies, pinning control is a powerful approach
because it is effective and more conveniently realized
by controlling only a small fraction of network nodes
rather than all network nodes [23–28]. In recent years,
many efforts have been devoted to the study of pin-
ning synchronization problem for complex dynamical
networks, and a lot of excellent works on cluster syn-
chronization under pinning control scheme have been
reported. For instance, Wang et al. [6] proposed an
effective pinning control scheme to realize cluster syn-
chronization of community networks with nonidentical
nodes. Wu et al. [37] explored the problem of driving
an undirected network to a selected cluster synchro-
nization pattern by introducing a single controller for
each cluster. In [38], by imposing two effective feed-
back control strategies on partial communities, cluster
synchronization of directed community networks was
considered. In [39], pinning cluster synchronization of
directed networks with nonlinearly coupled nonidenti-
cal dynamical systems was discussed. In [40], cluster
synchronizationwas concerned for undirected complex
networks by means of a decentralized adaptive pinning
strategy. In [41], by designing two effective strategies
to enhance the coupling weights, edge-based adaptive
pinning control problem for cluster synchronization
of community networks with nonidentical nodes was
investigated.

Besides, intermittent control is a discontinuous con-
trol scheme, which is activated during certain nonzero
time intervals and off during other time intervals
[35,42]. Intermittent control has been widely adopted
in engineering fields, such as transportation, manufac-
turing and communication, due to the fact that it is easy
to be implemented in engineering control [34–36,42–
44]. Obviously, by combining intermittent control and
pinning control, the amount of the transmitted infor-
mation and the control cost can be greatly reduced.
Therefore, it will be of great interest to investigate the
intermittent pinning control problem for synchroniza-
tion of complex dynamical networks. Up to now, there
are many important results available for synchroniza-
tion based on intermittent pinning control strategy; see
[34,35,44–52] and the references therein. It should be
pointed out that most of the previous studies on inter-
mittent pinning control focused on periodically inter-
mittent pinning control, which requires that the control

width and the control period both should be fixed con-
stants. Evidently, this requirement is quite restricted
and limits application scopes of the intermittent control
strategy. To dealwith this constraint, a general intermit-
tent control technique, namely aperiodically intermit-
tent control [43,48,49], has recently been proposed.
In this type of intermittent control, both control width
and control period are allowed to be variable; hence,
it is more practically applicable than the periodically
intermittent control. Recently, aperiodically intermit-
tent control has been applied successfully to study the
pinning synchronization of complex dynamical net-
works with or without time delays [48–53]. In [48],
the synchronization problem for complex dynamical
networks with nonlinear coupling function was con-
sidered via aperiodically intermittent pinning control.
In [49,50], the exponential synchronization of delayed
dynamical networks under aperiodically intermittent
pinning control was investigated. In [51,52], the prob-
lem of adaptive outer synchronization between two
general delayed dynamical networks was discussed via
aperiodically intermittent pinning control. However, to
the best of our knowledge, there are few results about
the cluster synchronization of colored community net-
works via aperiodically intermittent pinning control.
Moreover, it is well known that adaptive strategy can
effectively prevent the appearance of larger feedback
control gains than those required in practice [26,47,52].
Therefore, in this paper we will focus on the clus-
ter synchronization in colored community networks
using adaptive aperiodically intermittent pinning con-
trol strategy.

Clearly, it can be observed that the state dimensions
of nodes in complex dynamical networks discussed in
[6,8,20–27,29–41,44–52] are assumed to be identical.
For many realistic networks, however, this assumption
may be unreasonable. Actually, synchronization can
also appear in real-world interactive systems having
different state dimensions [7,54–56]. For instance, in
the cardiorespiratory system, it has been shown that
synchronization between the lung and the heart can
occur, despite the dimensions of their dynamics are dif-
ferent [54]. In view of this, a general model of colored
community network with nodes possessing different
state dimensions will be considered in this paper.

Based on the above analysis, this paper is con-
cerned with the cluster synchronization problem for
colored community networks with nodes of different
state dimensions via adaptive aperiodically intermittent
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pinning control. By constructing a novel piecewise aux-
iliary function, some globally exponential cluster syn-
chronization criteria are established according to Lya-
punov stability theory andpiecewise analysis approach.
A numerical example is finally given to show the valid-
ity of the derived theoretical results. The main contri-
butions of this paper can be stated as follows: (1) a gen-
eral community network model is proposed, where the
isolated nodes can interact through different kinds of
connections in different communities and the interac-
tions between different pair of communities can also be
different, and moreover, the nodes in different commu-
nities can have different state dimensions; (2) the adap-
tive intermittent pinning control is aperiodic, in which
both control width and control period are allowed to be
variable; (3) a novel piecewise continuous Lyapunov
candidate function is established and then based on
which some sufficient conditions to guarantee globally
exponential cluster synchronization are presented; (4)
a guideline is provided to illustrate which nodes in each
community should be preferentially pinned.
Notations The following notations and definitions will
be used throughout this paper. Let R = (−∞,+∞)

be the set of real numbers, N+ = {1, 2, . . .} be the set
of positive integer numbers, and R = {

1, 2, . . . , m
}
.

R
n andRn×n represent, respectively, the n-dimensional

Euclidean space and the set of n × n real matrices.
The superscript � denotes the transpose of a vector
or a matrix. || · || stands for the standard Euclidean
norm in R

n . In ∈ R
n×n is an n-dimensional identity

matrix, 0n ∈ R
n is an n-dimensional vector of zeros,

diag(γ1, γ2, . . . , γn) ∈ R
n×n is the diagonal matrix

with diagonal entries γi (1 ≤ i ≤ n). For a square
matrix A ∈ R

n×n , λmin(A) and λmax(A) represent its
minimum and maximum eigenvalue, respectively. For
a real symmetricmatrix M ∈ R

n×n , write M < 0(M ≤
0) if M is negative (semi-negative) definite. The Kro-
necker product of an M1× N1 matrix A = (ai j ) and an
M2× N2 matrix B is the M1M2× N1N2 matrix A⊗ B,
defined as

A ⊗ B =
⎛

⎝
a11B ··· a1N1 B

...
. . .

...
aM11B ··· aM1N1 B

⎞

⎠

and theKronecker product has the followingproperties:

(A ⊗ B)� = A� ⊗ B� and

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D).

2 Model description and preliminaries

In this paper, we consider a colored community net-
work consisting of N nodes and m communities with
2 ≤ m < N , where each node in the kth commu-
nity (k ∈ R) is an nk-dimensional dynamical system.
The state equations of the while network are described
by:

ẋi (t)= fk
(
t, xi (t)

)+ck

∑

j ∈Ck , j �=i

bi j Γkk
(
x j (t)−xi (t)

)

+
m∑

p=1,p �=k

εkp

∑

j ∈Cp

bi j
(
Γkpx j (t) − Γ

p
kk xi (t)

)
,

i ∈ Ck and k ∈ R (1)

where xi (t) = (xi1(t), xi2(t), . . . , xink (t))
� ∈ R

nk is
the nk-dimensional state variable of node i in the kth
community, fk : [0,+∞) × R

nk → R
nk is a con-

tinuous vector-valued function representing the local
dynamics of each individual node in the kth commu-
nity, ck > 0 is the inner coupling strength of the kth
community, εkp > 0 is the external coupling strength
between the kth and pth communities, and Ck denotes
the set of all nodes belonging to the kth community.
Γkk = diag

(
γ

(1)
kk , γ

(2)
kk , . . . , γ

(nk )
kk

)
> 0 is the inner

coupling matrix in the community Ck , which is defined
as follows: If the r th component of node i (i ∈ Ck) is
affected by that of node j ( j ∈ Ck), then γ

(r)
kk �= 0;

otherwise, γ
(r)
kk = 0. Γkp = (

γ
(rs)
kp

) ∈ R
nk×n p and

Γ
p

kk = diag
(
γ

p(1)
kk , γ

p(2)
kk , . . . , γ

p(nk )
kk

)
are the inner

coupling matrix between the kth and pth communities,
which are defined as follows: If the r th component of
node i (i ∈ Ck) is affected by the sth component of
node j ( j ∈ Cp), then γ

(rs)
kp �= 0 and γ

p(r)
kk �= 0; oth-

erwise, γ
(rs)
kp = 0 and γ

p(r)
kk = 0. This indicates that

the interactions between different pair of communities
can be nonidentical. B = (bi j )N×N is the outer cou-
pling matrix denoting the network topology, in which
bi j is defined as follows: If there is a connection from
node j to node i (i �= j), then bi j �= 0; otherwise,
bi j = 0. This means that the network can be directed
and the outer coupling matrix can be asymmetrical.
Additionally, the diagonal entries of matrix B are given
by bii = − ∑N

j=1, j �=i bi j , and thus,
∑N

j=1 bi j = 0,
i = 1, 2, . . . , N .

Remark 1 In network model (1), the individual nodes
can interact through different kinds of connections in
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different communities and the interactions between dif-
ferent pair of communities can also be different; in
addition, the nodes in different communities can have
different state dimensions. Furthermore, the outer cou-
pling matrix B is not restricted to be symmetric or irre-
ducible. Obviously, network model (1) is a generaliza-
tion of that considered in [6–8,38,41] and can describe
many real-world networks better.

Without loss of generality, the sets of subscripts of
m communities in network (1) are assumed to be C1 =
{1, 2, . . . , r1}, C2 = {r1 + 1, r1 + 2, . . . , r1 + r2}, . . . ,
Cm = {r1+r2 +· · ·+rm−1+1, r1+r2 +· · ·+rm−1+
2, . . . , r1 + r2 +· · ·+ rm−1 + rm}, where 1 < rk < N ,
k ∈ R and

∑m
k=1 rk = N . Then, we can describe the

outer couplingmatrix B using the following block form

B =
⎛

⎝
B11 B12 ··· B1m
B21 B22 ··· B2m

.

.

.
.
.
.

. . .
.
.
.

Bm1 Bm2 ··· Bmm

⎞

⎠ (2)

where each diagonal block Buu ∈ R
ru× ru (u ∈ R)

denotes the internal connections in the uth commu-
nity, and each nondiagonal block Buυ ∈ R

ru× rυ (u, υ ∈
R, u �= υ) denotes the external connections between
the uth and υth communities.

In this paper, we focus on driving colored commu-
nity network (1) to achieve globally exponential clus-
ter synchronization by introducing some effective con-
trollers. For this purpose, a mathematical definition of
globally exponential cluster synchronization is given
first.

Definition 1 Colored community network (1) is said to
be globally exponentially cluster synchronized if there
exist positive constants M0 > 0 and λ > 0, such that
for any initial condition

||xi (t) − sk(t)|| ≤ M0 e−λt , i ∈ Ck and k ∈ R,

where sk(t) ∈ R
nk is a trajectory defined by ṡk(t) =

fk
(
t, sk(t)

)
.

For achieving the globally exponential cluster syn-
chronization of colored community network (1), appro-
priate controllers are needed. Here, the aim is realized
bymeans of adaptive aperiodically intermittent pinning
control scheme. For simplicity, suppose that the first
lk (lk < rk) nodes in the community Ck are selected to
be pinned, then we can obtain the following controlled
colored community network:

Fig. 2 Schematic diagram of the aperiodically intermittent con-
trol strategy

ẋi (t)= fk
(
t, xi (t)

)+ck

∑

j ∈Ck , j �=i

bi j Γkk
(
x j (t)−xi (t)

)

+
m∑

p=1,p �=k

εkp

∑

j ∈Cp

bi j
(
Γkpx j (t) − Γ

p
kk xi (t)

)

+ ui (t), i ∈ Ck and k ∈ R (3)

where ui (t) is an adaptive aperiodical intermittent con-
troller given by

ui (t) = di (t)Γkk
(
sk(t) − xi (t)

)
,

Lk−1 + 1 ≤ i ≤ Lk−1 + lk, lk < rk, (4)

where Lk−1 = ∑k−1
j=0 r j with r0 = 0 and di (t) is the

adaptive intermittent feedback control gain designed
as:

di (t) =
⎧
⎨

⎩

di (0), t = 0,
di

(
tω + δω

)
, t = tω+1,

0, tω + δω < t < tω+1,

(5)

with the updating law

ḋi (t) = hi
(
xi (t) − sk(t)

)�
Γkk

(
xi (t) − sk(t)

)
,

tω ≤ t ≤ tω + δω, (6)

where ω ∈ N
+, hi > 0 and di (0) > 0 for Lk−1 + 1 ≤

i ≤ Lk−1+lk . The time sequence {tω}+∞
ω=1 satisfies 0 =

t1 < t2 < · · · < tω < · · · and limω→+∞ tω = +∞.
For the ωth time span [tω, tω+1), ω ∈ N

+, [tω, tω + δω]
is the ωth work time span and δω is called the ωth
control width, while

(
tω + δω, tω+1

)
is the ωth rest

time span and (tω+1 − tω) − δω is called the ωth rest
width; in addition, (tω+1 − tω) is called the ωth control
period. Figure 2 shows the schematic diagram of the
aperiodically intermittent control strategy. Obviously,
this control is more general than the periodically inter-
mittent one, because its control periods as well as its
control widths can be nonidentical. In particular, when
tω+1− tω ≡ T and δω ≡ δ, ω ∈ N

+, where T and δ are
two positive constants; then, the intermittent control
type turns into the periodic one.
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In order to prove the main results, the following
assumptions and lemmas are required.

Assumption 1 [38,46] There exists a constant βk for
each k ∈ R such that the vector-valued function
fk

(
t, x(t)

)
satisfies

(
x(t) − y(t)

)�(
fk(t, x(t)) − fk(t, y(t))

)

≤ βk
(
x(t) − y(t)

)�
Γkk

(
x(t) − y(t)

)
.

for any x(t), y(t) ∈ R
nk .

Assumption 2 [44,46] Each block matrix Buυ(u, υ ∈
R) in (2) is a zero-row-sum matrix, i.e.,

∑
j ∈Cυ

bi j =
0 for any i ∈ Cu and u, υ ∈ R, and each diagonal
block Buu in (2) satisfies bi j ≥ 0(i �= j) and gii =
−∑

j∈Cu
bi j , i, j ∈ Cu and u ∈ R.

Remark 2 It has been verified in [6,7,24,26,29,37]
that many well-known chaotic (hyperchaotic) systems,
such as chaotic (hyperchaotic) Lorenz system, chaotic
(hyperchaotic) Chen system, Rössler system, Lü sys-
tem,Chua’s circuit and cellular neural networks, satisfy
Assumption 1. In general, bi j > 0 (or < 0), i �= j can
be viewed as the cooperative (or competitive) relation-
ship between the node i and the node j ,whichwill facil-
itate (or impede) synchronization between the nodes
i and j [37,40,44,46]. Hence, Assumption 2 implies
that nodes belonging to the same community only
have cooperative relationships, while nodes in different
communities can have both competitive and coopera-
tive relationships. Indeed, complex networks with both
cooperative and competitive couplings are ubiquitous
in reality, such as biological networks, social networks
and technological networks [40].

Lemma 1 (Schur complement [34])The following lin-
ear matrix inequality:
(

S11 S12
S�
12 S22

)
< 0

where S11 = S�
11, S22 = S�

22, and S12 is a matrix with
suitable dimensions, is equivalent to the following con-
dition:

S22 < 0, S11 − S12S−1
22 S�

12 < 0.

Lemma 2 [26] Assume that Ω1 and Ω2 are two real
symmetric matrices in R

N×N . Let α1 ≥ α2 ≥ · · · ≥
αN , γ1 ≥ γ2 ≥ · · · ≥ γN and λ1 ≥ λ2 ≥ · · · ≥
λN be eigenvalues of matrices Ω1, Ω2 and Ω1 + Ω2,
respectively. Then, one has αi + γN ≤ λi ≤ αi + γ1,
i = 1, 2, . . . , N.

3 Main results

In this section, some sufficient conditions will be estab-
lished such that globally exponential cluster synchro-
nization of the controlled colored community net-
work (3) with the adaptive aperiodical intermittent con-
trollers (4)–(6) can be achieved.

For convenience, let Tω = tω+1 − tω and θω =
δω/Tω, ω ∈ N

+, where θω is called the control rate of
the ωth control period. Denote B s

kk = 1
2

(
Bkk + B�

kk

)
,

Γ̃kp = εkpΓkp, k, p ∈ R and k �= p, and

G =
⎛

⎜
⎝

G11 G12 ... G1m
G21 G22 ... G2m

.

.

.
.
.
.

...
.
.
.

Gm1 Gm2 ... Gmm

⎞

⎟
⎠

=

⎛

⎜⎜
⎝

(c1 B11+β1 Ir1 )⊗Γ11 B12⊗Γ̃12 ... B1m⊗Γ̃1m

B21⊗Γ̃21 (c2 B22+β2 Ir2 )⊗Γ22 ... B2m⊗Γ̃2m

.

.

.
.
.
.

...
.
.
.

Bm1⊗Γ̃m1 Bm2⊗Γ̃m2 ... (cm Bmm+βm Irm )⊗Γmm

⎞

⎟⎟
⎠ .

Theorem 1 Suppose that Assumptions 1 and 2 hold
and infω∈Z+{θω} = θinf > 0, by the adaptive aperiod-
ical intermittent controllers (4)–(6), the globally expo-
nential cluster synchronization of the controlled col-
ored community network (3) can be achieved if there
exist some positive constants ξk , k ∈ R and ρ0 such
that

(i) ck
(
Bs

kk

)
lk

+ (
βk + ξk

)
Irk−lk < 0,

(ii) a1θinf − a+
2 (1 − θinf) > 0,

where π0 = (m − 1)
(
ρ0 max

1≤k, j≤m, k �= j

(
λmax(Bkj B�

k j )

λmax(Γ̃k j Γ̃
�

k j )
)+1/ρ0

)
, a1 = 2 min

1≤k≤m

(
ξkλmin(Γkk)

)−
π0, a+

2 = max{0, a2} with a2 = λmax
(
G + G�)

, and(
Bs

kk

)
lk

is the minor matrix of Bs
kk by removing all the

i th
(
Lk−1 + 1 ≤ i ≤ Lk−1 + lk

)
row–column pairs of

Bs
kk .

Proof For k ∈ R, let the synchronous errors of
the community Ck be zi (t) = xi (t) − sk(t), i ∈
Ck , Zk(t) = (

z�
Lk−1+1(t), . . . , z�

Lk
(t)

)�, F(Zk(t)) =
((

fk
(
t, xLk−1+1(t)

)−fk
(
t, sk(t)

))�
, . . . ,

(
fk

(
t, xLk (t)

)

− fk
(
t, sk(t)

))�)�
, and Z(t) = (

Z�
1 (t), . . . , Z�

m (t)
)�.

Under Assumption 2, one has
∑

j ∈Cp
bi j Γ̃kpsp(t) =

∑
j ∈Cp

bi jεkpΓ
p

kk xi (t) = 0nk , i ∈ Ck and k, p ∈
R(p �= k). Then, according to Eqs. (3)–(6), we can
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derive the following error system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Żk(t) = F(Zk(t)) + ck
(
Bkk ⊗ Γkk

)
Zk (t)

+∑m
j=1, j �=k

(
Bkj ⊗ Γ̃k j

)
Z j (t)

−(
Dk(t) ⊗ Γkk

)
Zk(t),

tω ≤ t ≤ tω + δω, Lk−1

+1 ≤ i ≤ Lk−1 + lk,
Żk(t) = F(Zk(t)) + ck

(
Bkk ⊗ Γkk

)
Zk (t)

+∑m
j=1, j �=k

(
Bkj ⊗ Γ̃k j

)
Z j (t),

tω + δω < t < tω+1, Lk−1

+lk + 1 ≤ i ≤ Lk,

(7)

where ω ∈ N
+, Dk(t) = diag

(
dLk−1+1(t), . . . ,

dLk−1+lk (t), 0, . . . , 0
) ∈ R

rk× rk , and k ∈ R.
Constructing a piecewise Lyapunov candidate func-

tion as follows

V (t) = V1(t) + V2(t), (8)

where

V1(t) = 1

2

m∑

k=1

Z�
k (t)(Irk ⊗ Ink )Zk(t)

= 1

2

m∑

k=1

∑

i∈Ck

z�
i (t)zi (t) (9)

and V2(t) = 1

2
e−a1tΦ(t) with

Φ(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m∑

k=1

Lk−1+lk∑

i=Lk−1+1

1

hi

(
di (t) − d∗

i ea1(tω+δω)
)2

, tω ≤ t ≤ tω + δω,

m∑

k=1

Lk−1+lk∑

i=Lk−1+1

1

hi

(
di

(
tω + δω

) − d∗
i ea1(tω+δω)

)2
, tω + δω < t < tω+1,

(10)

where ω ∈ N
+ and each d∗

i is a positive constant to
be determined later. Evidently, V1(t) is continuous for
all t ≥ 0. In addition, it follows from (5) that V2(t)
is also continuous for all t ≥ 0. Hence, the piecewise
Lyapunov function V (t) is continuous for all t ≥ 0.

Since 0 < θinf < 1, condition (ii) implies that a1 >

0. Consequently, for tω ≤ t ≤ tω + δω, ω ∈ N
+, by

Assumption 1, we can calculate the derivative of V (t)
with respect to time t along the trajectories of (7) as
follows

V̇ (t) =
m∑

k=1

Z�
k (t)(Irk ⊗ Ink )Żk(t)

−a1
2

e−a1tΦ(t) + 1

2
e−a1t Φ̇(t)

=
m∑

k=1

Z�
k (t)(Irk ⊗ Ink )

(
F(Zk(t)) + ck

(
Bkk ⊗ Γkk

)
Zk (t)

+
m∑

j=1, j �=k

(
Bkj ⊗ Γ̃k j

)
Z j (t)

−(
Dk(t) ⊗ Γkk

)
Zk(t)

)
− a1

2
e−a1tΦ(t)

+ e−a1t
m∑

k=1

Lk−1+lk∑

i=Lk−1+1
(

di (t) − d∗
i ea1(tω+δω)

)
z�

i (t)Γkk zi (t)

=
m∑

k=1

Lk−1+rk∑

i=Lk−1+1

z�
i (t)

(
fk

(
t, xi (t)

)− fk
(
t, sk(t)

))

+
m∑

k=1

ck Z�
k (t)

(
Bkk ⊗ Γkk

)
Zk (t)

+
m∑

k=1

m∑

j=1, j �=k

Z�
k (t)

(
Bkj ⊗ Γ̃k j

)
Z j (t)

−
m∑

k=1

Lk−1+lk∑

i=Lk−1+1

di (t)z
�
i (t)Γkk zi (t)

+ e−a1t
m∑

k=1

Lk−1+lk∑

i=Lk−1+1

di (t)z
�
i (t)Γkk zi (t)

−a1
2

e−a1tΦ(t)

−
m∑

k=1

Lk−1+lk∑

i=Lk−1+1

d∗
i ea1(tω+δω−t)z�

i (t)Γkk zi (t)

≤
m∑

k=1

Lk−1+rk∑

i=Lk−1+1

βk z�
i (t)Γkk zi (t)

+
m∑

k=1

ck Z�
k (t)

(
Bkk ⊗ Γkk

)
Zk (t)
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+
m∑

k=1

m∑

j=1, j �=k

Z�
k (t)

(
Bkj ⊗ Γ̃k j

)
Z j (t)

−
m∑

k=1

Lk−1+lk∑

i=Lk−1+1

d∗
i z�

i (t)Γkk zi (t) − a1V2(t)

=
m∑

k=1

Z�
k (t)

((
ck B s

kk + βk Irk − D∗
k

) ⊗ Γkk

)

×Zk(t) − a1V2(t)

+
m∑

k=1

m∑

j=1, j �=k

Z�
k (t)

(
Bkj ⊗ Γ̃k j

)
Z j (t) (11)

where D∗
k = diag

{
d∗

Lk−1+1, d∗
Lk−1+2, . . . , d∗

Lk−1+lk
,

0, . . . , 0
}

∈ R
rk× rk , m ∈ R.

On the other hand, using the properties of the Kro-
necker product of the matrices [35], we can derive the
following inequality:

m∑

k=1

m∑

j=1, j �=k

Z�
k (t)

(
Bkj ⊗ Γ̃k j

)
Z j (t)

≤ 1

2

m∑

k=1

m∑

j=1, j �=k

×
[
ρ0Z�

k (t)
(

Bkj B�
k j ⊗ Γ̃k j Γ̃

�
k j

)
Zk(t)

+ 1

ρ0
Z�

j (t)
(
Ir j ⊗ In j

)
Z j (t)

]

≤ 1

2

(
ρ0 max

1≤k, j≤m, k �= j
(
λmax

(
Bkj B�

k j

)
λmax

(
Γ̃k j Γ̃

�
k j

)) + 1

ρ0

)

×
m∑

k=1

m∑

j=1, j �=k

Z�
k (t)

(
Irk ⊗ Ink

)
Zk (t)

= (m − 1)

(
ρ0 max

1≤k, j≤m, k �= j
(
λmax

(
Bkj B�

k j

)
λmax

(
Γ̃k j Γ̃

�
k j

)) + 1

ρ0

)

V1(t) = π0V1(t). (12)

Substituting (12) into (11) gives

V̇ (t) ≤
m∑

k=1

Z�
k (t)

((
ck B s

kk + βk Irk − D∗
k

) ⊗ Γkk

)

×Zk(t) + π0V1(t) − a1V2(t)

=
m∑

k=1

Z�
k (t)

((
ck B s

kk + (βk + ξk)Irk − D∗
k

) ⊗ Γkk

)

×Zk(t) −
m∑

k=1

Z�
k (t)

(
ξk Irk ⊗ Γkk

)
Zk(t)

+ π0V1(t) − a1V2(t). (13)

For k ∈ R, let Qk = ck Bs
kk + (

βk + ξk
)
Irk

and Qk − D∗
k =

(
Ek − D̃∗

k Sk

S�
k Qlk

)
, where D̃∗

k =
diag

{
d∗

Lk−1+1, d∗
Lk−1+2, . . . , d∗

Lk−1+lk

}
and Qlk is the

minormatrix of Qk by removing all the i th (Lk−1+1 ≤
i ≤ Lk−1 + lk) row–column pairs of Qk . Obviously,
Qlk = ck

(
Bs

kk

)
lk
+(

βk+ξk
)
Irk−lk , k ∈ R.Hence, based

on condition (i) and Lemma 1, it can be concluded that
when d∗

i > 0, Lk−1+1 ≤ i ≤ Lk−1+lk , k ∈ R are suf-
ficiently large such that d∗

i > λmax(Ek − Sk Q−1
lk

S�
k ),

Lk−1 +1 ≤ i ≤ Lk−1 + lk , k ∈ R, then Qk − D∗
k < 0,

k ∈ R. This combines with (13), and we obtain

V̇ (t) ≤ −2 min
1≤k≤m

(
ξkλmin(Γkk)

)
V1(t)

+π0V1(t) − a1V2(t)

= −
(
2 min
1≤k≤m

(
ξkλmin(Γkk)

) − π0

)

V1(t) − a1V2(t)

= −a1V1(t) − a1V2(t) = −a1V (t),

tω ≤ t ≤ tω + δω, ω ∈ N
+, (14)

therefore,

V (t) ≤ V (tω)e−a1(t−tω),

tω ≤ t ≤ tω + δω, ω ∈ N
+. (15)

By the similar analysis, for tω + δω < t < tω+1,
ω ∈ N

+, we get

V̇ (t) =
m∑

k=1

Z�
k (t)(Irk ⊗ Ink )Żk(t) − a1

2
e−a1tΦ(t)

≤
m∑

k=1

Z�
k (t)

((
ck Bkk + βk Irk

) ⊗ Γkk

)
Zk(t)

+
m∑

k=1

m∑

j=1, j �=k

Z�
k (t)

(
Bkj ⊗ Γ̃k j

)
Z j (t)

= Z�(t)G Z(t) = 1

2
Z�(t)

(
G + G�)

Z(t)

≤ λmax
(
G + G�)

V1(t) = a2V1(t) ≤ a+
2 V (t),

(16)
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therefore,

V (t) ≤ V (tω + δω)ea+
2 (t−tω−δω),

tω + δω < t < tω+1, ω ∈ N
+. (17)

Let T0 = 0 and θ0 = 0. Combining with (15) and
(17), by mathematical induction, one has

V (tω+1) ≤ V (tω + δω)ea+
2 (tω+1−tω−δω)

≤ V (tω)ea+
2 (tω+1−tω−δω)−a1δω

= V (tω)e[a+
2 (1−θω)−a1θω]Tω

≤ · · · ≤ V (0)e
∑ω

j=0[a+
2 (1−θ j )−a1θ j ]Tj , ω ∈ N

+.

(18)

Since for any t ≥ 0, there exists a positive integer
i such that ti ≤ t < ti+1. Consequently, by (15), (17),
(18) and condition (ii), the following estimation of V (t)
can be derived for any t ≥ 0.

For ti ≤ t ≤ ti + δi , i ∈ N
+,

V (t) ≤ V (ti )e
−a1(t−ti )

≤ V (0)e
∑i−1

j=0[a+
2 (1−θ j )−a1θ j ]Tj e−a1(t−ti )

≤ V (0)e[a+
2 (1−θinf )−a1θinf ]∑i−1

j=0 Tj ea1ti e−a1t

= V (0)e(a+
2 +a1)(1−θinf )ti e−a1t

≤ V (0)e−[a1θinf−a+
2 (1−θinf )]t . (19)

And for ti + δi < t < ti+1, i ∈ N
+,

V (t) ≤ V (ti + δi )e
a+
2 (t−ti −δi )

≤ V (ti )e
−a1δi ea+

2 (ti+1−ti −δi )

≤ V (0)e[a+
2 (1−θinf )−a1θinf ]∑i

j=0 Tj

≤ V (0)e−[a1θinf−a+
2 (1−θinf )]t . (20)

Combining (19) and (20) yields

V (t) ≤ V (0)e−[a1θinf−a+
2 (1−θinf )]t , t ≥ 0. (21)

This means that the cluster synchronization can be
globally exponentially achieved. The proof is thus com-
pleted. �

For k ∈ R, let ηk = βk + ξk . By virtue of
Lemma 2,we can get thatλmax

(
ck(Bs

kk)lk +ηk Irk−lk

) ≤
ckλmax

(
(Bs

kk)lk

) + ηk , k ∈ R. Then, from Theorem 1,
the following result can obtained.

Corollary 1 Suppose that Assumptions 1 and 2 hold
and infω∈Z+{θω} = θinf > 0, by the adaptive aperiod-
ical intermittent controllers (4)–(6), the globally expo-
nential cluster synchronization of the controlled col-
ored community network (3) can be achieved if there

exist some positive constants ξk , k ∈ R and ρ0 such
that

(i) λmax
(
(Bs

kk)lk

)
< −ηk

ck
,

(ii)
a+
2

a1 + a+
2

< θinf < 1,

where ηk = βk +ξk , and π0, a1, a+
2 , (Bs

kk)lk are defined
in Theorem 1.

In the case that tω+1 − tω ≡ T and δω ≡ δ for all
ω ∈ N

+, where T and δ are both positive constants,
the control turns to adaptive periodically intermittent
pinning one. Denote θ = δ/T , according to Corollary
1, we can get the following result.

Corollary 2 Under Assumptions 1 and 2, the con-
trolled colored community network (3) is globally expo-
nentially cluster synchronized under the adaptive peri-
odically intermittent pinning control if there exist some
positive constants ξk , k ∈ R and ρ0 such that

(i) λmax
(
(Bs

kk)lk

)
< −ηk

ck
,

(ii)
a+
2

a1 + a+
2

< θ < 1,

where ηk = βk +ξk , and π0, a1, a+
2 , (Bs

kk)lk are defined
in Theorem 1.

Remark 3 In [7], by means of periodically intermit-
tent control scheme, cluster synchronization in colored
community network with different order node dynam-
ics was discussed. Unfortunately, it can be seen in [7]
that the periodical intermittent controllers are required
to be added to all network nodes. Since real-world com-
plex networks usually contain a large set of nodes, it
is practically impossible to apply control actions to
all network nodes. In this paper, the intermittent con-
trollers just apply on partial nodes in each community,
and moreover, the intermittent control is aperiodic [see
Eqs. (4)–(6)]. The results derived here are thus more
practically applicable than those in [7].

Remark 4 In [45,46], by constructing a piecewise
auxiliary function and utilizing the theory of series
with nonnegative terms, pinning synchronization for
directed dynamical networks with node balance and
pinning cluster synchronization for directed heteroge-
neous dynamical networks were investigated via adap-
tive periodically intermittent control, respectively. It
should be noted that the piecewise auxiliary function
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914 P. Zhou et al.

given in [45,46] is discontinuous at t = tω+1, ω ∈ N
+;

therefore, only asymptotical synchronization criteria
were established in [45,46]. In this paper, a novel piece-
wise auxiliary function (V2(t)) is introduced [see Eq.
(10)], which is continuous for all t ≥ 0, and then, based
on which and Lyapunov stability theory, we derive
some globally exponential cluster synchronization cri-
teria for a general colored community network with
nodes of different state dimensions under adaptive ape-
riodically intermittent pinning control. Therefore, the
approach developed in this work differs from that in
[45,46] and the theoretical results obtained generalize
those in [45,46].

Remark 5 It can be observed that our cluster synchro-
nization criteria are dependent on the quantity θinf , but
not the control widths δw(w ∈ N

+) or the control peri-
ods Tw(w ∈ N

+). This means that, for achieving the
globally exponential cluster synchronization, each con-
trol period Tw can be arbitrarily selected. For practi-
cal problems, we can choose the control periods Tω,
ω ∈ N

+ according to the actual requirement.

Remark 6 From Eqs. (5) and (6), it is obvious that
the adaptive intermittent feedback control gains di (t),
Lk−1+1 ≤ i ≤ Lk−1+lk, k ∈ R are increasing during
the work time span but identically equal to zeros during
the rest time span. When the cluster synchronization is
achieved, they tend to some positive constants during
each work time span. This point will be verified via the
numerical simulations in the next section.

Remark 7 Clearly, to make condition (i) in Corollary
1 be satisfied, at least we need to pick lk pinned can-
didates in the community Ck for each k ∈ R such that
λmax

(
(Bs

kk)lk

)
< 0. Let Intra-DegIn(i, k) be the intra-

indegree of a node i in the community Ck , i.e., the sum
of theweights of directed edges e(i, j)with j ∈ Ck into
i ∈ Ck , and Intra-DegOut(i, k) be the intra-outdegree
of a node i in the community Ck , i.e., the sum of the
weights of directed edges e( j, i) with j ∈ Ck ema-
nating from i ∈ Ck [38,47]. According to the defini-
tion of the outer coupling matrix B in (1) and notic-
ing that the matrices Bkk satisfy bi j ≥ 0(i �= j) and
gii = − ∑

j∈Ck
bi j , i, j ∈ Ck and k ∈ R, it is easy to

obtain that for any i ∈ Ck and k ∈ R

Intra-DegIn(i, k) =
∑

j ∈Ck , j �=i

bi j and

Intra-DegOut(i, k) =
∑

j ∈Ck , j �=i

b j i .

For k ∈ R, define a intra-degree-difference vector for
the community Ck :

Intra-DegDif(i, k) = Intra-DegOut(i, k)

−Intra-DegIn(i, k), i ∈ Ck .

Then, similar to the discussion in [26], it can be con-
cluded that the nodes in the community Ck whose intra-
outdegrees are bigger than their intra-indegrees should
be chosen as pinned candidates, which can lead to
λmax

(
(Bs

kk)lk

) ≤ 0. Inspired by this fact, for the kth
community Ck in the controlled colored community
network (3), we first apply adaptive aperiodical inter-
mittent control to the nodes with zero intra-indegrees
since their states are not influenced by others in the
community Ck . Then, we continue to select other nodes
in descending order according to their intra-degree-
difference as defined above (for those with the same
intra-degree-difference, in ascending order according
to their intra-outdegrees) until condition (i) in Corol-
lary 1 is satisfied. Additionally, it can be deduced from
condition (i) of Corollary 1 that, for each k ∈ R, the
least number of pinned nodes lk for the community Ck

should satisfy

λmax
(
(Bs

kk)lk−1
) ≥ −ηk

ck
and λmax

(
(Bs

kk)lk

)
< −ηk

ck
.

Remark 8 It should be pointed out that, if we have
picked lk pinned nodes in the community Ck for each
k ∈ R to satisfy condition (i) of Corollary 1. Then,
the inner coupling strength ck for each k ∈ R is
required to satisfy ck > −(

ηk/λmax
(
(Bs

kk)lk

))
. Usu-

ally, the theoretical value of ck is much larger than
the needed values in reality [24,26]. When ck is small,
selecting a small fraction of network nodes in the com-
munity Ck such that condition (i) of Corollary 1 holds
may be infeasible. To realize the cluster synchroniza-
tion, one can use centralized or decentralized adap-
tive approaches to tune the inner coupling strengths
automatically [24,26,40,44,48,49,58]. In this paper,
we focus on the pinning cluster synchronization of a
general colored community network with fixed inner
and external coupling strengths via adaptive intermit-
tent control.

Remark 9 By Corollary 1, one can estimate the value
range of the quantity θinf in a simple way; therefore,
the adaptive aperiodical intermittent controllers can be
designed conveniently. To shed light on how to design
suitable adaptive aperiodical intermittent controllers in
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Adaptive exponential cluster synchronization in colored community networks 915

practical application for realizing cluster synchroniza-
tion, the following steps are given:

Step 1 Given positive constants ξk , k ∈ R and ρ0, pick
lk pinned candidates in the community Ck for each k ∈
R by means of Remark 6, such that condition (i) of
Corollary 1 is satisfied.

Step 2 For the given ξk , k ∈ R and ρ0, compute the
value of a+

2 /(a1 + a+
2 ), and then, optionally select the

control rates θω,ω ∈ N
+, only if condition (ii) ofCorol-

lary 1 is satisfied.

Step 3 Choose the control periods Tω, ω ∈ N
+ accord-

ing to the practical requirement.

Step 4 For k ∈ R, based on the above chosen lk pinned
nodes, θω and Tω, ω ∈ N

+, design the adaptive aperi-
odical intermittent controllers (4)–(6).

4 Numerical examples

In order to illustrate the effectiveness of our theoretical
results, in this section we consider the colored commu-
nity network shown in Fig. 1 as an example. Choose the
node dynamics of the first community as the following
Chua’s circuit [26]:
⎧
⎨

⎩

ẋi1 = 10
(
xi2 − xi1 − ϕ(xi1)

)

ẋi2 = xi1 − xi2 + xi3

ẋi3 = −14.87xi2

(22)

with ϕ(xi1) = − 0.68xi1 −0.295(|xi1 +1|− |xi1 −1|)
and i = 1, . . . , 5, the node dynamics of the second
community as cellular neural networks [44]:

⎧
⎨

⎩

ẋi1 = − xi1 + 1.25ψ(xi1) − 3.2ψ(xi2) − 3.2ψ(xi3)

ẋi2 = − xi2 − 3.2ψ(xi1) + 1.1ψ(xi2) − 4.4ψ(xi3)

ẋi3 = − xi3 − 3.2ψ(xi1) + 4.4ψ(xi2) + 1ψ(xi3)

(23)

withψ(s) = 0.5(|s+1|−|s−1|) and i = 6, . . . , 11, the
node dynamics of the third community as hyperchaotic
Chen system [57]:
⎧
⎪⎪⎨

⎪⎪⎩

ẋi1 = 35(xi2 − xi1) + xi4

ẋi2 = 7xi1 + 12xi2 − xi1xi3

ẋi3 = −3xi3 + xi1xi2

ẋi4 = 0.25xi4 + xi2xi3

(24)

with i = 12, . . . , 18. For simplicity, the inner and outer
coupling matrices are given as follows:

1© For the inner coupling matrices in each commu-
nity

Γ11 = Γ22 = I3, Γ33 = I4.

2© For the inner coupling matrices between differ-
ent communities

Γ12 =
(
1 0 0
0 0 0
0 1 0

)
, Γ13 =

(
0 0 0 0
0 1 0 0
0 0 1 0

)
,

Γ 2
11 =

(
1 0 0
0 0 0
0 0 1

)
, Γ 3

11 =
(
0 0 0
0 1 0
0 0 1

)
,

Γ21 = Γ �
12, Γ23 =

(
0 1 0 0
0 0 0 0
0 0 0 1

)
,

Γ 1
22 =

(
1 0 0
0 1 0
0 0 0

)
, Γ 3

22 =
(
1 0 0
0 0 1
0 0 0

)
,

Γ31 = Γ �
13, Γ32 = Γ �

23, Γ 1
33 =

(
0 1 0 0
0 0 1 0
0 0 0 0
1 0 0 0

)
,

Γ 2
33 =

(
0 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

)
.

3© For the outer coupling matrices in each commu-
nity

B11 =
⎛

⎝
− 4 1 1 1 1
1 − 3 1 1 0
1 1 − 4 1 1
1 1 1 − 3 0
1 0 1 0 − 2

⎞

⎠ ,

B22 =
⎛

⎜
⎝

− 4 1 1 1 0 1
1 − 2 0 1 0 0
1 0 − 3 0 1 1
1 1 0 − 4 1 1
0 0 1 1 − 3 1
1 0 1 1 1 − 4

⎞

⎟
⎠ ,

B33 =

⎛

⎜⎜
⎝

− 3 1 0 1 1 0 0
1 − 2 1 0 0 0 0
0 1 − 4 1 0 1 1
1 0 1 − 3 1 0 0
1 0 0 1 − 2 0 0
0 0 1 0 0 − 2 1
0 0 1 0 0 1 − 2

⎞

⎟⎟
⎠ .

4© For the outer coupling matrices between differ-
ent communities

B12 = B�
21 =

( 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0− 1 1 0 0 0 0
1 − 1 0 0 0 0

)

,

B13 = B�
31 =

( 0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 − 1

− 1 0 0 0 0 0 1
0 0 0 0 0 0 0

)

,

B23 = B�
32 =

⎛

⎝
0 0 0 0 0 0 0
0 0 0 0 0 − 1 1
0 0 0 0 0 1 − 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎠ .

For detailing the interactions between different com-
munities, the nodes 4, 7 and 18 are chosen as the repre-
sentative nodes in the three communities, and the inter-
actions between these nodes are shown in Fig. 3. It can
be seen that, for nodes in the first community having
connections with nodes in the second community, their

123
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Fig. 3 Interactions between the nodes 4, 7 and 18, where the
green, blue, red and yellow points represent the first, second,
third and fourth components of each isolated node, respectively.
(Color figure online)

first component is affected only by the first component
of those nodes in the second community, and their third
component is affected only by the second component of
those nodes in the second community; in addition, for
nodes in the first community having connections with
nodes in the third community, their second component
are affected only by the second component of those
nodes in the third community. By the method of anal-
ogy, other interactions between the three communities
can be similarly analyzed.

For the first community, it is easy to verify that [46]
(
xi (t) − s1(t)

)�(
f1(t, xi (t)) − f1(t, s1(t))

)

= e�
i (t)

(
10

(
ei2(t) − ei1(t) − (ϕ(xi1(t))

−ϕ(s11(t)))
)
, ei1(t) − ei2(t) + ei3(t),

− 14.87ei2(t)
)�

≤ 2.7e2i1(t) − e2i2(t) + 11ei1(t)ei2(t)

−13.87ei2(t)ei3(t)

≤ 9.062e�
i (t)ei (t) (25)

where i = 1, 2, . . . , 5. Hence, Assumption 1 is satis-
fied if we choose β1 = 9.062. Similarly, for the second
community, one has
(
xi (t) − s2(t)

)�(
f2(t, xi (t)) − f2(t, s2(t))

)

= − e2i1(t) − e2i2(t) − e2i3(t)

+ 1.25ei1(t)
(
ψ(xi1(t)) − ψ(s21(t))

)

− 3.2ei1(t)
(
ψ(xi2(t)) − ψ(s22(t))

)

− 3.2ei1(t)
(
ψ(xi3(t)) − ψ(s23(t))

)

− 3.2ei2(t)
(
ψ(xi1(t)) − ψ(s21(t))

)

+ 1.1ei2(t)
(
ψ(xi2(t)) − ψ(s22(t))

)

−4.4ei2(t)
(
ψ(xi3(t)) − ψ(s23(t))

)

− 3.2ei3(t)
(
ψ(xi1(t)) − ψ(s21(t))

)

+ 4.4ei3(t)
(
ψ(xi2(t)) − ψ(s22(t))

)

+ ei3(t)
(
ψ(xi3(t)) − ψ(s23(t))

)

≤ 0.25e2i1(t) + 0.1e2i2(t) + 6.4|ei1(t)||ei2(t)|
+ 6.4|ei1(t)||ei3(t)| + 8.8|ei2(t)||ei3(t)|

≤ 7.339e�
i (t)ei (t) (26)

where i = 6, 7, . . . , 11. Therefore, if we choose β2 =
7.339, then Assumption 1 holds.

It has been shown in [57] that the attractor of hyper-
chaoticChen system is bounded.Here it is assumed that
all nodes are running in the given bounded region. By
computer simulations, we find that there are some con-
stants M1 = 20, M2 = 22, M3 = 36 and M4 = 110,
such that |xi j |, |s3 j (t)| ≤ M j for 12 ≤ i ≤ 18 and
1 ≤ j ≤ 4. Then, for the third community, we have [7]
(
xi (t) − s3(t)

)�(
f3(t, xi (t)) − f3(t, s3(t))

)

≤ ei1(t)
( − 35ei1(t) + 35ei2(t) + ei4(t)

)

+ei2(t)
(
7ei1(t) + 12ei2(t) − s33(t)ei1(t)

− s31(t)ei3(t) − ei1(t)ei3(t)
)

+ei3(t)
( − 3ei3(t) + s32(t)ei1(t)

+ s31(t)ei2(t) + ei1(t)ei2(t)
)

+ei4(t)
(
0.25ei4(t) + xi3(t)ei2(t) + s32(t)ei3(t)

)

≤ −35e2i1(t) + 12e2i2(t) − 3e2i3(t) + 0.25e2i4(t)

+ (42 + M3)|ei1(t)||ei2(t)|
+ M2|ei1(t)||ei3(t)| + |ei1(t)||ei4(t)|
+ M3|ei2(t)||ei4(t)| + M2|ei3(t)||ei4(t)|

≤
(

− 34.5 + (42 + M3)κ1

2
+ M2κ2

2

)
e2i1(t)

+
(
12 + (42 + M3)

2κ1
+ M3κ3

2

)
e2i2(t)

+
(

− 3 + M2

2κ2
+ M2κ4

2

)
e2i3(t)

+
(
0.75 + M3

2κ3
+ M2

2κ4

)
e2i4(t) (27)

where i = 12, 13, . . . , 18 and κ j > 0, 1 ≤ j ≤ 4 are
arbitrary positive constants. Letting κ1 = 1.75, κ2 =
0.75, κ3 = 0.475 and κ4 = 2.75, then one can choose
β3 = 42.84 to satisfy Assumption 1.

For brevity, we select all the external coupling
strengths ε12 = ε13 = ε21 = ε23 = ε31 = ε32 = 0.25,
the inner coupling strengths c1 = c2 = 12, c3 = 35
and ρ0 = 2. By simple computation, we obtain π0 = 2
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and a+
2 = 85.68. Choose ξ1 = ξ2 = ξ3 = 15; then,

we can get a1 = 28, η1 = 24.062, η2 = 22.339 and
η3 = 57.84. Consequently, it can be obtained from
conditions (i) and (ii) of Corollary 1 that

λmax
(
(Bs

11)l1

)
< − 2.005,

λmax
(
(Bs

22)l2

)
< − 1.862

λmax
(
(Bs

33)l3

)
< − 1.653, (28)

and

0.7537 < θinf < 1. (29)

According to Remark 7, we rearrange nodes of each
community and then calculate λmax

(
(Bs

kk)lk

)
for 1 ≤

lk < rk and k = 1, 2, 3 using MATLAB software,
where r1 = 5, r2 = 6 and r3 = 7. The computing
results show

λmax
(
(Bs

11)2
) = − 1.585 and λmax

(
(Bs

11)3
) = − 3,

λmax
(
(Bs

22)2
) = − 1.186 and λmax

(
(Bs

22)3
) = − 2.0,

λmax
(
(Bs

33)3
) = − 1.382 and λmax

(
(Bs

33)4
) = − 1.753.

Therefore, based on Corollary 1, we only need to pick
the first l1 = 3 rearranged nodes of the first community
(i.e., the nodes 5, 2 and 4), the first l2 = 3 rearranged
nodes of the second community (i.e., the nodes 7, 8 and
10), and the first l3 = 4 rearranged nodes of the third
community (i.e., the nodes 13, 16, 17 and 18) as pinned
nodes; then, the globally exponentially cluster synchro-
nization can be realized under the adaptive aperiodical
intermittent controllers (4)–(6) with the control rates
θk > 0.7537 (k ∈ N

+).
In numerical simulations, taking θω = 0.80 and

Tω = tω+1 − tω = 0.3ω, ω ∈ N
+, Figs. 4 and 5

show, respectively, the time evolutions of the synchro-
nization errors ei (t)(1 ≤ i ≤ 18) and the adap-
tive intermittent feedback control gains di (t) (i =
2, 4, 5, 7, 8, 10, 13, 16, 17, 18) under the adaptive ape-
riodically intermittent pinning control, where the initial
conditions of the numerical simulations are xi (0) =
(− 3 + 0.5i,− 2 + 0.3i, 1 + 0.2i)� for 1 ≤ i ≤ 11,
xi (0) = (2 + 0.3i,− 3 + 0.4i,− 1 + 0.6i, 1 + 0.2i)�
for 12 ≤ i ≤ 18, s1(0) = (1, 2, 3)�, s2(0) =
(− 3,− 1, 2)�, s3(0) = (1.5, 2, 2.5, 3)�, and d j (0) =
0.1, h j = 0.1, where j = 2, 4, 5, 7, 8, 10, 13, 16,
17, 18. It can be observed that the exponential cluster
synchronization is realized and the adaptive intermit-
tent feedback control gains di (t)(i = 2, 4, 5, 7, 8, 10,
13, 16, 17, 18) approach to some positive constants
intermittently. After the cluster synchronization is
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Fig. 4 Time evolutions of the synchronization errors under the
adaptive aperiodically intermittent pinning control with θω =
0.80 and Tω = 0.3ω, ω ∈ N

+. a ei1(t), ei2(t), ei3(t)(1 ≤ i ≤ 5)
of the first community. b ei1(t), ei2(t), ei3(t)(6 ≤ i ≤ 11) of the
second community. c ei1(t), ei2(t), ei3(t), ei4(t)(12 ≤ i ≤ 18)
of the third community
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Fig. 5 Time evolutions of the adaptive intermittent feedback
control gainsdi (t) (i =2,4,5,7,8,10,13,16,17,18) under the adap-
tive aperiodically intermittent pinning control with θω = 0.80
and Tω = 0.3ω, ω ∈ N
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Fig. 6 Time evolutions of the community errors E1(t), E2(t)
and E3(t) under the adaptive aperiodically intermittent pinning
control with θω = 0.80 and Tω = 0.3ω, ω ∈ N

+

completed, the values of the adaptive intermittent
feedback control gains satisfy di (t) ≤ 10.5 (i =
2,4,5,7,8,10,13,16,17,18), which illustrates the adap-
tive intermittent pinning control approach can obtain
feasible feedback control gains. Additionally, we can
increase the number of pinned nodes in each
community to avoid the appearance of high feed-
back control gains. Figure 6 depicts the commu-

nity errors E1(t) =
√∑5

i=1

∣∣∣∣xi (t) − s1(t)
∣∣∣∣2, E2(t)

=
√∑11

i=6

∣∣∣∣xi (t) − s2(t)
∣∣∣∣2 and E3(t) =
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Fig. 7 Time evolutions of the community errors E1(t), E2(t)
and E3(t) under the adaptive aperiodically intermittent pinning
control with θω = 0.80, ω ∈ N

+ and the sequence of control
periods given by (30)

√∑18
i=12

∣∣∣∣xi (t) − s3(t)
∣∣∣∣2 in the three communities.

Figure 6 shows that the community errors approach to
zero, which indicates clearly that the cluster synchro-
nization is realized.

In order to illustrate that, for achieving the clus-
ter synchronization, control periods can be arbitrarily
selected,we choose each control periodTω = tω+1−tω,
ω ∈ N

+ randomly from the interval [0.25, 6.25] (from
anyother interval canbe analyzed similarly), andobtain
the following sequence of control periods:
{
Tω

}+∞
ω=1 = {

0.6, 4.34, 0.5, 0.68, 3.38, 0.83, 5.16,

5.15, 4.58, 1.15, 4.2, 3.36, 6.09, . . .
}
.

(30)

Taking θω = 0.80, ω ∈ N
+, Figs. 7 and 8 depict,

respectively, the time evolutions of the community
errors Ei (t)(1 ≤ i ≤ 3) and the adaptive intermittent
feedback control gains di (t) (i = 2, 4, 5, 7, 8, 10, 13,
16, 17, 18) under the adaptive aperiodically intermit-
tent pinning control, where the initial conditions of this
numerical simulations are xi (0) = (1 + 0.2i,− 3 +
0.4i, 2 + 0.6i)� for 1 ≤ i ≤ 11, xi (0) = (2 +
0.1i,− 2+0.3i,− 5+0.4i, 1+0.7i)� for 12 ≤ i ≤ 18,
s1(0) = (1, 2, 3)�, s2(0) = (− 3,− 1, 2)�, s3(0) =
(1.5, 2, 2.5, 3)�, and d j (0) = 0.1, h j = 0.01, where
j = 2, 4, 5, 7, 8, 10, 13, 16, 17, 18. Obviously, these
two figures show that the cluster synchronization can
be achieved, which verifies the correctness of the the-
oretical results.
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Fig. 8 Time evolutions of the adaptive intermittent feedback
control gainsdi (t) (i =2,4,5,7,8,10,13,16,17,18) under the adap-
tive aperiodically intermittent pinning control with θω = 0.80,
ω ∈ N

+ and the sequence of control periods given by (30)

5 Conclusions

This paper discussed the cluster synchronization prob-
lem for a general colored community network with
nodes of different state dimensions. An effective adap-
tive aperiodically intermittent pinning control scheme
was developed to drive such colored community net-
work to realize cluster synchronization. Based on a
novel piecewise continuous Lyapunov candidate func-
tion, some sufficient conditions to guarantee globally
exponential cluster synchronization were derived by
means of the stability analysis method. According to
the derived theoretical results, it was found that the
nodes in each community whose intra-outdegrees are
bigger than their intra-indegrees should be preferen-
tially chosen as pinned nodes. It is noted that the adap-
tive intermittent pinning control is aperiodic, in which
control periods as well as control widths are allowed
to be different. Finally, the effectiveness of the pro-
posed cluster synchronization criteriawas illustrated by
some numerical simulations. Our next goal is to extend
the approach presented in this paper to the investiga-
tion of exponential cluster synchronization problem for
more general colored community networks with time-
varying delays or stochastic perturbation.

As we all know, convergence time is a key indicator
for assessing the performance of the controller. In this
paper, the proposed adaptive intermittent controllers for
colored community networks can only make the net-

works be exponentially synchronized, which implies
that the time required for realizing the cluster synchro-
nization is infinite. In real-world applications, however,
it is highly desirable that the networks can achieve syn-
chronization in a finite time [36]. Therefore, it would be
interesting to investigate the problemoffinite time clus-
ter synchronization for colored community networks
by means of adaptive intermittent control technique.
This important problemwill be focused on in the future.

Acknowledgements The authors thank the editor and anony-
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