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Abstract The nonlinear dynamical characteristics
of a doubly curved shallow microshell are investi-
gated thoroughly. A consistent nonlinear model for the
microshell is developed on the basis of the modified
couple stress theory (MCST) in an orthogonal curvilin-
ear coordinate system. In particular, based onDonnell’s
nonlinear theory, the expressions for the strain and the
symmetric rotation gradient tensors are obtained in the
framework of MCST, which are then used to derive the
potential energy of the microshell. The analytical geo-
metrically nonlinear equations of motion of the doubly
microshell are obtained for in-plane displacements as
well as the out-of-plane one. These equations of partial
differential type are reduced to a large set of ordinary
differential equationsmaking use of a two-dimensional
Galerkin scheme. Extensive numerical simulations are
conducted to obtain the nonlinear resonant response
of the system for various principal radii of curvature
and to examine the effect of modal interactions and the
length-scale parameter.
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1 Introduction

Deformable elements such asmicrobeams,microplates,
and microshells are the essential components of micro-
electromechanical systems (MEMS) [1–16]. Their
widespread applications, for instance in microactu-
ators, microswitches, microresonators, and microgy-
roscopes, have motivated a great deal of investiga-
tions [17–24]. The mechanical components of MEMS
devices, i.e. microbeams [25,26], microplates [27,28],
or microshells, usually undergo large deformations and
exhibit strongly nonlinear behaviours. Hence, it is of
significant importance to examine the nonlinear static
and dynamic characteristics of these micromechanical
elements as an initial step for developing accuratemod-
els for MEMS. Apart from their nonlinear behaviour,
microelements display size-dependent behaviour, as
reported experimentally [29–31]. Such behaviour can
only be captured through use of higher-order contin-
uum mechanics theories [18,32–38]; the present study
employs the modified couple stress theory (MCST)
[39–41] to capture the size effects.

There are not many studies in the literature on
the static and dynamic characteristics of microshells.
For instance, the size-dependent dynamical stability
of shear deformable functionally graded cylindrical
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Fig. 1 Schematic
representation of a doubly
curved microshell in an
orthogonal curvilinear
coordinate
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microshells was examined by Sahmani et al. [42]. In
another study, Lou et al. [43] investigated the buckling
behaviour of an axially and radially loaded simply sup-
ported functionally graded microshell, while account-
ing for size effects based on the MCST. Beni et al.
[44] contributed to the field by deriving the equations
of motion of a functionally graded cylindrical shell
making use of the MCST and studying the free vibra-
tional characteristics of the system of simply supported
boundary conditions. Mehralian and Beni [45] stud-
ied the torsional size-dependent buckling of cylindrical
shells made of functionally graded materials employ-
ing the MCST; in particular, they studied the torsional
buckling of clamped and simply supported cylindrical
shells utilising the generalised differential quadrature
method. Fadaee and co-investigators [46,47] obtained
the exact solution for the free vibration of moderately
thick functionally graded doubly curved shallow shell
panels.

All the aforementioned valuable studies examined
either the linear free vibration or the buckling behaviour
of cylindrical shells. The current study is the first
to perform a nonlinear forced dynamic analysis on
doubly curved microshells. More specifically, a reli-
able analytical model of the microshell is developed
while accounting for geometric nonlinearities and size
effects. The model, consisting of three coupled non-
linear partial differential equations (PDEs), is discre-
tised into a high-dimensional set of ordinary differ-
ential equations (ODEs) and solved numerically via
a continuation technique. Various bifurcation points
in the resonant response are detected, and the effects

of modal interactions and internal resonances are
highlighted.

2 Model development for doubly curved
microshells

The doubly curved microshell under consideration,
with a rectangular base, is depicted in Fig. 1. The
motion of the microshell is defined within an orthog-
onal curvilinear coordinate system of x = Rxψx ,
y = Ryψy , and z, with ψx and ψy being the angu-
lar curvilinear coordinates and Rx and Ry being the
principal curvature radii. w, u, and v denote the dis-
placements of the microshell mid-plane in the z, x , and
y directions, respectively. The microshell dimensions
are denoted by h, i.e. the thickness of the microshell in
the z direction, and a and b, i.e. the curvilinear sizes in
the x and y directions, respectively. ψa and ψb denote
the curvilinear angles and are equal to a/Rx and b/Ry ,
respectively.

In the following, the kinetic and potential energies
of the doubly curved microshell in are formulated util-
ising theMCST [39] and Donnell’s nonlinear shell the-
ory [48]. To this end, first the displacement field of the
shallow microshell, based on Donnell’s theory, is for-
mulated as

Ux = − z

Rx

∂w

∂ψx
+u, Uy = − z

Ry

∂w

∂ψy
+v, Uz = w.

(1)

The variation of the kinetic energy of the doubly curved
microshell, with the mass density ρ, can be formulated
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based on Donnell’s theory as

δKE =
∫ ψa

0

∫ ψb

0
ρh

[
∂w

∂t
δ

(
∂w

∂t

)
+ ∂u

∂t
δ

(
∂u

∂t

)

+ ∂v

∂t
δ

(
∂v

∂t

)]
Rx Rydψxdψy . (2)

The virtual work of the damping can be written as

δWD = −c
∫ ψa

0

∫ ψb

0

(
∂w

∂t
δw + ∂u

∂t
δu + ∂v

∂t
δv

)

Rx Rydψxdψy . (3)

The virtual work of time-dependent harmonic dis-
tributed pressure applied to the doubly curved
microshell in the positive z direction can be expressed
as

δWP =
∫ ψa

0

∫ ψb

0
(p1 cos (ωt) δw) Rx Rydψxdψy .

(4)

Based on the MCST [39], the strain energy of the sys-
tem consists of classical terms, i.e. the stress and strain
tensors denoted byσ and ε, respectively, aswell as non-
classical higher-order terms, i.e. the deviatoric part of
the symmetric couple stress tensor and the symmetric
rotation gradient tensor shown by m and χ , respec-
tively. It is worth mentioning that for the sake of con-
sistency with Donnell’s shell theory, the assumptions
(1+z/Ry) ≈ 1 and (1+z/Rx ) ≈ 1 are utilised in the
final expressions for the strain and symmetric rotation
gradient tensors.

In order to derive the components of χ in an orthog-
onal curvilinear coordinate, the transformation rules
from Cartesian coordinate to curvilinear coordinates,
as defined by Eringen [49], are utilised. Following the
steps defined by Eringen [49], one can obtain the com-
ponents of χ as

χxx = ∂2w

Rx Ry∂ψx∂ψy
− 1

2Rx

∂u

Ry∂ψy

+ 1

2

(
1

Rx
− 1

Ry

)
∂v

Rx∂ψx
,

χyy = − ∂2w

Rx Ry∂ψx∂ψy
+ 1

2Ry

∂v

Rx∂ψx

+ 1

2

(
1

Rx
− 1

Ry

)
∂u

Ry∂ψy
,

χzz = 1

2Ry

∂u

Ry∂ψy
− 1

2Rx

∂v

Rx∂ψx
,

χxy = 1

2

(
1

2Rx

∂u

Rx∂ψx
− ∂2w

R2
x∂ψ2

x

)

− 1

2

(
1

2Ry

∂v

Ry∂ψy
− ∂2w

R2
y∂ψ2

y

)
,

χxz = −1

4

(
∂2u

Rx Ry∂ψx∂ψy
− ∂2v

R2
x∂ψ2

x

)

+ 1

4

(
1

Rx
+ 1

Ry

)
v

Ry
− 1

2Rx

∂w

Ry∂ψy
,

χyz = −1

4

(
∂2u

R2
y∂ψ2

y
− ∂2v

Rx Ry∂ψx∂ψy

)

− 1

4

(
1

Rx
+ 1

Ry

)
u

Rx
+ 1

2Ry

∂w

Rx∂ψx
, (5)

in which the assumptions (1 + z/Ry) ≈ 1 and (1 +
z/Rx ) ≈ 1 are made in the final expressions.

Having obtained the components of χ , those of m
can be derived as

[
mxx ,myy,mzz,mxy,mxz,myz

] = El2

1 + ν[
χxx , χyy, χzz, χxy, χxz, χyz

]
, (6)

in which l is the material length-scale parameter, E is
the Young’s modulus, and ν is the Poisson’s ratio.

On the basis of Donnell’s nonlinear theory of shal-
low shells, the strain tensor components are given by

εxx = w
Rx

+ ∂u
Rx∂ψx

+ 1
2

(
∂w

Rx∂ψx

)2 − z ∂2w
R2
x∂ψ2

x
,

εyy = w
Ry

+ ∂v
Ry∂ψy

+ 1
2

(
∂w

Ry∂ψy

)2 − z ∂2w
R2
y∂ψ2

y
,

εxy = 1
2

(
∂v

Rx∂ψx
+ ∂u

Ry∂ψy

)
+ 1

2

(
∂w

Ry∂ψy

∂w
Rx∂ψx

)

− z ∂2w
Rx Ry∂ψx∂ψy

.

(7)

The corresponding stress tensor components can be
obtained as

[
σxx , σyy, σxy

] = E

1 − ν2

[(
εxx + νεyy

)
,

(
εyy + νεxx

)
, (1 − ν) εxy

]
, (8)

in which the plane stress condition is assumed.
Having obtained the components of σ , ε, m, and

χ , the strain energy of the microshell can be con-
structed employing theMCST [39]. In particular, based
on Donnell’s shallow shell theory [48] and assuming
(1 + z/Ry) and (1 + z/Rx ) ≈ 1, the strain energy
can be formulated as
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δΠE =
∫ ψa

0

∫ ψb

0

∫ h/2

−h/2

[
mxxδχxx + myyδχyy

+mzzδχzz + 2mxyδχxy + 2mxzδχxz

+ 2myzδχyz + σxxδεxx + σyyδεyy

+ 2σxyδεxy
]
Rx Rydψxdψydz. (9)

Employing generalised Hamilton’s principle, and util-
ising the following stress resultants

[
Nx , Ny, Nxy

] =
h
2∫

− h
2

[
σxx , σyy, σxy

]
dz,

[
Mx , My, Mxy

] =
h
2∫

− h
2

[
σxx , σyy, σxy

]
zdz,

[
Yx ,Yy,Yz,Yxy,Yxz,Yyz

]

=
h
2∫

− h
2

[
mxx ,myy,mzz,mxy,mxz,myz

]
dz,

(10)

the doubly curved microshell equations of motion are
derived as

ρh
∂2u

∂t2
+ c

∂u

∂t
− ∂Nx

Rx∂ψx
− ∂Nxy

Ry∂ψy

+ 1

2Rx

(
∂Yx

Ry∂ψy
− ∂Yxy

Rx∂ψx

)
− 1

2

(
1

Rx
− 1

Ry

)

× ∂Yy
Ry∂ψy

− 1

2Ry

∂Yz
Ry∂ψy

− 1

2Rx

(
1

Rx
+ 1

Ry

)
Yyz

−1

2

∂

Ry∂ψy

(
∂Yxz
Rx∂ψx

+ ∂Yyz
Ry∂ψy

)
= 0, (11)

ρh
∂2v

∂t2
+ c

∂v

∂t
− ∂Nxy

Rx∂ψx
− ∂Ny

Ry∂ψy

− 1

2Ry

(
∂Yy

Rx∂ψx
− ∂Yxy

Ry∂ψy

)
− 1

2

(
1

Rx
− 1

Ry

)

× ∂Yx
Rx∂ψx

+ 1

2Rx

∂Yz
Rx∂ψx

+ 1

2Ry

(
1

Rx
+ 1

Ry

)
Yxz

+1

2

∂

Rx∂ψx

(
∂Yxz
Rx∂ψx

+ ∂Yyz
Ry∂ψy

)
= 0, (12)

ρh
∂2w

∂t2
+ c

∂w

∂t
+ Nx

Rx
+ Ny

Ry

−
(

∂2Mx

R2
x∂ψ2

x
+ 2

∂2Mxy

Rx Ry∂ψx∂ψy
+ ∂2My

R2
y∂ψ2

y

)

− p1 cos (ωt) − ∂

Rx∂ψx

(
Nxy

∂w

Ry∂ψy
+ Nx

∂w

Rx∂ψx

)

− ∂

Ry∂ψy

(
Ny

∂w

Ry∂ψy
+ Nxy

∂w

Rx∂ψx

)

− ∂

Rx∂ψx

(
∂Yxy
Rx∂ψx

+ ∂Yy
Ry∂ψy

)

+ ∂

Ry∂ψy

(
∂Yxy
Ry∂ψy

+ ∂Yx
Rx∂ψx

)

+ 1

Rx

∂Yxz
Ry∂ψy

− 1

Ry

∂Yyz
Rx∂ψx

= 0. (13)

Writing the stress resultants in Eqs. (11)–(13) in terms
of the middle surface displacements, and utilising the
notation x = Rxψx , y = Ryψy for brevity, the
expanded form of the equations of motion of the
microshell is obtained as

ρh
∂2u

∂t2
+ c

∂u

∂t
− Eh

1 − ν2

(
∂2u

∂x2
+ 1

Rx

∂w

∂x
+ ∂2w

∂x2
∂w

∂x

+ ν
∂2v

∂x∂y
+ ν

Ry

∂w

∂x
+ ν

∂2w

∂x∂y

∂w

∂y

)
− 1

2

Eh

1 + ν

×
(

∂2u

∂y2
+ ∂2v

∂x∂y
+ ∂2w

∂y2
∂w

∂x
+ ∂2w

∂x∂y

∂w

∂y

)

+ 1

8

Ehl2

1 + ν

[(
∂4u

∂x2∂y2
+ ∂4u

∂y4
− ∂4v

∂x3∂y
− ∂4v

∂x∂y3

)

− 1

R2
x

∂2u

∂x2
+

(
1

R2
x

− 3

Rx Ry
+ 1

R2
y

)
∂2v

∂x∂y

−
(

2

R2
x

− 6

Rx Ry
+ 4

R2
y

)
∂2u

∂y2
+

(
1

R2
x

+ 2

Rx Ry
+ 1

R2
y

)

× u

R2
x

]
− 1

4

Ehl2

1 + ν

[
1

Rx Ry

(
1

Rx
+ 1

Ry

)
∂w

∂x

− 1

Rx

∂3w

∂x3
−

(
4

Rx
− 3

Ry

)
∂3w

∂x∂y2

]
= 0, (14)

ρh
∂2v

∂t2
+ c

∂v

∂t
− Eh

1 − ν2

(
∂2v

∂y2
+ 1

Ry

∂w

∂y
+ ∂2w

∂y2
∂w

∂y

+ ν
∂2u

∂x∂y
+ ν

Rx

∂w

∂y
+ ν

∂2w

∂x∂y

∂w

∂x

)
− 1

2

Eh

1 + ν

×
(

∂2v

∂x2
+ ∂2u

∂x∂y
+ ∂2w

∂x∂y

∂w

∂x
+ ∂2w

∂x2
∂w

∂y

)

+ 1

8

Ehl2

1 + ν

[(
∂4v

∂x4
+ ∂4v

∂x2∂y2
− ∂4u

∂x3∂y
− ∂4u

∂x∂y3

)

− 1

R2
y

∂2v

∂y2
+

(
1

R2
x

− 3

Rx Ry
+ 1

R2
y

)
∂2u

∂x∂y

−
(

4

R2
x

− 6

Rx Ry
+ 2

R2
y

)
∂2v

∂x2
+

(
1

R2
x

+ 2

Rx Ry
+ 1

R2
y

)

× v

R2
y

]
− 1

4

Ehl2

1 + ν

[
1

Rx Ry

(
1

Rx
+ 1

Ry

)
∂w

∂y

− 1

Ry

∂3w

∂y3
−

(
4

Ry
− 3

Rx

)
∂3w

∂x2∂y

]
= 0 (15)

ρh
∂2w

∂t2
+ c

∂w

∂t
− p1 cos (ωt) +

(
1

12

Eh3

1 − ν2
+ 1

2

Ehl2

1 + ν

)
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×
(

∂4w

∂x4
+ 2

∂4w

∂x2∂ y2
+ ∂4w

∂ y4

)

+ Eh

1 − ν2

[(
1

R2
x

+ 2ν

Rx Ry
+ 1

R2
y

)
w

+
(

1

Rx
+ ν

Ry

)
∂u

∂x
+

(
1

Ry
+ ν

Rx

)
∂v

∂y

− 1

2

(
1

Rx
+ ν

Ry

)(
∂w

∂x

)2

− 1

2

(
ν

Rx
+ 1

Ry

) (
∂w

∂y

)2
]

− Eh

1 − ν2

[
∂2w

∂x2
∂u

∂x
+ ν

∂2w

∂x2
∂v

∂y
+ ∂w

∂x

∂2u

∂x2
+ ν

∂w

∂x

∂2v

∂x∂y

+ ∂2w

∂ y2
∂v

∂y
+ ν

∂2w

∂ y2
∂u

∂x
+ ∂w

∂y

∂2v

∂ y2
+ ν

∂w

∂y

∂2u

∂x∂y

+ w
∂2w

∂x2

(
1

Rx
+ ν

Ry

)
+ w

∂2w

∂ y2

(
ν

Rx
+ 1

Ry

)

+ 3

2

∂2w

∂x2

(
∂w

∂x

)2

+ 3

2

∂2w

∂ y2

(
∂w

∂y

)2

+ ν

2

∂2w

∂x2

(
∂w

∂y

)2

+ ν

2

∂2w

∂ y2

(
∂w

∂x

)2

+ 2ν
∂w

∂x

∂2w

∂x∂y

∂w

∂y

]

− Eh

1 + ν

[
∂u

∂y

∂2w

∂x∂y
+ 1

2

∂w

∂x

∂2u

∂ y2
+ 1

2

∂2u

∂x∂y

∂w

∂y

+ 1

2

∂2v

∂x∂y

∂w

∂x
+ ∂v

∂x

∂2w

∂x∂y
+ 1

2

∂2v

∂x2
∂w

∂y

+1

2

∂2w

∂x2

(
∂w

∂y

)2

+ 1

2

∂2w

∂ y2

(
∂w

∂x

)2

+ 2
∂2w

∂x∂y

∂w

∂x

∂w

∂y

]

− Ehl2

1 + ν

[(
1

Rx
− 3

4Ry

)
∂3u

∂x∂ y2
−

(
3

4Rx
− 1

Ry

)
∂3v

∂x2∂y

+ 1

4

(
1

Rx

∂3u

∂x3
+ 1

Ry

∂3v

∂ y3

)
+ 1

2

(
1

R2
x

∂2w

∂ y2
+ 1

R2
y

∂2w

∂x2

)

− 1

4Rx Ry

(
1

Rx
+ 1

Ry

) (
∂u

∂x
+ ∂v

∂y

)]
= 0. (16)

In order to be able to solve these highly nonlinear
PDEs, they need to be discretised into a set of nonlin-
ear ODEs via a Galerkin method [50,51]. To this end,
the middle surface displacements of the microshell are
written as series expansions, consisting of spatial func-
tions and time-dependent ones. In particular, for the
microshell under consideration in the present study,
i.e. a fully clamped one with immovable edges, the
displacements are defined as

u(x, y, t) =
Su∑
i=1

Tu∑
j=1

φi
( x
a

)
φ j

( y
b

)
ui, j (t),

v(x, y, t) =
Sv∑
i=1

Tv∑
j=1

φi
( x
a

)
φ j

( y
b

)
vi, j (t),

w(x, y, t) =
Sw∑
i=1

Tw∑
j=1

i
( x
a

)
 j

( y
b

)
wi, j (t),

(17)

in which ui, j (t), vi, j (t), andwi, j (t) are unknown time-
dependent generalised coordinates ϕi and i are given
by

φi

( x
a

)
= sin

(
iπx

a

)
, (18)

i

( x
a

)
= cosh

(
θi x

a

)
− cos

(
θi x

a

)

−αi

[
sinh

(
θi x

a

)
− sin

(
θi
x

a

)]
, (19)

in which αi = (cos θi − cosh θi )/(sin θi − sinh θi ) and
θi denotes the i th root of the frequency equation for
a clamped-clamped beam; φ j (y/b) and  j (y/b) can
be formulated in a similar fashion. The assumed spa-
tial trial functions are consistent with the following
boundary conditions of a fully clampedmicroshell with
immovable edges

u = v = w = 0 at x = 0, a and y = 0, b
∂w/∂x = 0, at x = 0, a, ∂w/∂y = 0, at y = 0, b.

(20)

Inserting the assumed displacements in Eq. (17) into
the nonlinear equations of motion, i.e. Eqs. (14)–(16),
and applying the two-dimensional Galerkin technique
results in a set of nonlinear ODEs. This set of ODEs is
solved utilising a continuation technique [52–55].

3 Nonlinear resonant response

A nonlinear forced dynamic analysis is conducted in
this section so as to construct the resonant frequency–
amplitude diagrams of the system and to investigate
the existence of any modal interactions. In order to
ensure reliable results, a 38-degree-of-freedom (DOF)
discretised model is examined by retaining 10 sym-
metric modes for the out-of-plane motion, i.e. w1,1,
w3,1, w1,3, w5,1, w1,5, w3,3,w7,1, w1,7, w5,3, andw3,5,
and 14 modes for each of the in-plane motions, i.e.
u2,1,u2,3,u4,1, u2,5, u4,3, u6,1,u2,7, u4,5,u6,3, u8,1,
u4,7,u6,5,u8,3, andu10,1 for themotion in the x direction
and v1,2,v3,2, v1,4,v5,2, v3,4,v1,6, v7,2 v5,4, v3,6, v1,8,
v7,4, v5,6, v3,8, and v1,10 for the motion in the y direc-
tion. As we shall see in the numerical results, due to
presence of strong modal interactions, it is essential to
retain such a large number of modes in order to ensure
reliable numerical results. Furthermore, the reason for
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Fig. 2 Nonlinear frequency–amplitude diagrams of the doubly curved microshell: the maximum amplitude of the generalised coordi-
nates a w1,1, b w3,1, c w3,3, and d w5,1. Rx/a = 25.0 and P1 = 30.0

retaining only the symmetric modes is the symmetric
configuration of themicroshell aswell as the symmetric
external out-of-plane harmonic pressurisation. This 38-
DOF discretised model is solved numerically through
use of a well-optimised continuation technique. Addi-
tionally, an eigenvalue analysis is performed in order
to extract the natural frequencies of the doubly curved
microshell and to determine the primary and secondary
resonant regions.

For the cases examined in this study, the microshell
is assumed to be made of aluminium of mechani-

cal properties: E = 71GPa, ν = 0.33, and ρ =
2770 kg/m3. In this study, a spherical microshell is con-
sidered, i.e. of equal principal radii of curvature, and
the microshell is assumed to have a square base, i.e.
of equal curvilinear lengths in the x and y directions.
The dimensions of the microshell are considered to be
a = b = 500µm and h = 3µm. According to the
available experimental data for aluminium length-scale
parameter [31], and the analytical formula in Ref. [56],
the length scale of the aluminium, for the thickness of
3µm, can be calculated as 1.0µm. For ease of compu-
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Fig. 3 Nonlinear frequency–amplitude diagrams of the doubly curved microshell: the maximum amplitude of the generalised coordi-
nates a w1,1, b w3,1, c w3,3, and d w5,1. Rx/a = 10.0 and P1 = 55.0

tation, the following dimensionless quantities are used
in the numerical simulations

t∗ = t

a2
√

ρh/D
, (21)

� = ωa2
√

ρh/D, (22)

P1 = p1a4

Dh
, (23)

cd = ca2√
ρhD

, (24)

ω1,1 = ω̂1,1a
2
√

ρh/D, (25)

in which D is the microshell flexural rigidity, i.e.
Eh3/12(1 − ν2), and ω̂1,1 is the dimensional out-of-
plane (1,1) natural frequency of the microshell. Addi-
tionally, in the numerical calculations, cd is replaced by
2ζω1,1, with ζ and ω1,1 being themodal damping ratio
and the dimensionless (1,1) natural frequency. ζ is set
to 0.005 for all the cases investigated in this study. Fur-
thermore, for all the cases examined Rx = Ry since the
system under consideration is a spherical microshell.

The nonlinear frequency–amplitude diagrams of the
doubly curved microshell are plotted in Fig. 2 when

123



810 M. H. Ghayesh, H. Farokhi

(a)

(b)

Ω/ω1,1

w 1
, 1
/h

0.8 1 1.2 1.4 1.6

0

0.05

0.1

0.15

0.2

SD1

Ω/ω1,1

w 3
,1
/h

0.8 1 1.2 1.4 1.6

0

0.05

0.1

0.15

0.2

SD4

SD3

TR1SD2

PD1

PD2

PD3

PD4

TR2

(c)

(d)
Ω/ω1,1

w 3
,3
/h

0.8 1 1.2 1.4 1.6

0

0.005

0.01

0.015

0.02

Ω/ω1,1

w 5
,1
/h

0.8 1 1.2 1.4 1.6

0

0.003

0.006

0.009

Fig. 4 Nonlinear frequency–amplitude diagrams of the doubly curved microshell: the maximum amplitude of the generalised coordi-
nates a w1,1, b w3,1, c w3,3, and d w5,1. Rx/a = 5.725 and P1 = 80.0

Rx/a = 25.0 and P1 = 30.0. For this case, the funda-
mental natural frequency is equal to 53.19. As seen
in sub-figure (a), the microshell exhibits a complex
resonant response consisting of softening and harden-
ing regions. In particular, the microshell displays four
saddle-node (SD) bifurcations in the primary resonant
region, while each of these bifurcations causes a jump
to either a smaller-amplitude or larger-amplitude sta-
ble limit cycle. Comparison of sub-figure (a) and (b)
shows that modal interactions occur between the (1,1)
and (3,1) modes which causes an energy transfer in the
vicinity of �/ω1,1 = 1.02 from the (1,1) mode to the

(3,1) mode. This causes an extra peak in the response
amplitude of the w3,1. Furthermore, a comparison of
sub-figures (a) and (b) shows that the maximum ampli-
tude of the w3,1 is almost 10% of that of w1,1.

The next figure, i.e. Fig. 3, shows the resonant
frequency–amplitude response of the doubly curved
microshell when Rx/a = 10.0 and P1 = 55.0. For this
case, ω1,1 = 87.81. Compared to the case of Fig. 2,
here the principal radii of curvature are reduced and
the time-dependent pressure amplitude is increased.
First, it is visible that the resonant response of the
microshell becomes more complicated as the princi-
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pal radii of curvature are reduced, resulting in six
bifurcation points in the resonant region. As seen, the
microshell initially displays a strong softening-type
nonlinear behaviour with two saddle-node bifurcations
at points SD1 and SD2. By further increasing the exci-
tation frequency ratio, a torus (TR) bifurcation occurs
at point TR1 (�/ω1,1 = 0.9708) which causes the
microsystem to lose stability. The stability is regained
when a secondary torus bifurcation occurs at point TR2

(�/ω1,1 = 0.9835). It is interesting to note that after
the initial strong softening behaviour, another soften-
ing resonant region of smaller amplitude appears in the
vicinity of�/ω1,1 = 1.0. A comparison of sub-figures
(a) and (b) reveals that the maximum response ampli-
tude of the w3,1 is around 25% of that of w1,1. This
shows that the due to decreased principal radii of cur-
vature, the contribution of higher modes of oscillation
becomes more significant.

Figure 4 shows the frequency–amplitude plots of
the microshell of Rx/a = 5.725 when P1 = 80.0. ω1,1

for this case is calculated as 136.30. Compared to the
previous cases, the new behaviour appearing here is
the emergence of two new solution branches (showed
by red in the magnified part) as a result of occurrence
four period-doubling (PD) bifurcations. As seen, each
of these solution branches bifurcate from the original
solution branch at the point a period-doubling bifurca-
tion until they reach another period-doubling bifurca-
tion point on the original solution branch. Furthermore,
each of these new branches loses stability via a torus
bifurcation.Additionally, it is seen that a secondary res-
onant region appears in the vicinity of �/ω1,1 = 1.45,
which is in fact the resonant region for mode (3,1). A
comparison of primary resonant regions in sub-figures
(a) and (b) shows that the maximum amplitude of the
w3,1 is almost 40%of that ofw1,1. This ismore than the
previous cases, which shows again that as the principal
radii of curvature is reduced, the amplitudes of higher
modes of vibration increase substantially. This proves
the significance of employing a large number of modes
in the discretisedmodel when examining the behaviour
of such systems.

The effect of the principal radii of curvature on
the nonlinear frequency–amplitude diagrams of the
microshell is illustrated in Fig. 5. As seen, due to
decreased radius of curvature, the response of the sys-
tem becomes of softening type. Furthermore, it is visi-
ble that the ratio max(w3,1)/max(w1,1) increases as the
radius of curvature decreases.
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Fig. 5 Effect of principal radius of curvature on the frequency–
amplitude diagrams of the doubly curved microshell: the maxi-
mum amplitude of the generalised coordinates aw1,1 and bw3,1.
P1 = 30.0

As mentioned at the beginning of this section, the
length-scale parameter for the system under consider-
ation is obtained as 1.0 μm. In order to examine the
effect of this parameter, a comparison is made between
the frequency–amplitude diagrams of the system when
this length scale is set to zero. It is worth mention-
ing that when the length-scale parameter is set to zero,
the MCST becomes equivalent to the classical the-
ory. Figure 6 illustrates the comparison of the resonant
responses of the microshell (Rx/a = 25.0 and P1 =
30.0) obtained via the MCST (i.e. when l = 1.0µm)
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Fig. 6 Comparison between the resonant responses of the
microshell predicted by the modified couple stress and classical
theories: the maximum amplitude of the generalised coordinates
(a) w1,1 and (b) w3,1. Rx/a = 25.0 and P1 = 30.0

to that obtained based on the classical theory (i.e. when
l = 0). The MCST predicts ω1,1 = 53.19, while the
classical theory predicts ω1,1 = 47.42, i.e. with 11%
difference. As a result, the classical theory predicts
the resonant region at smaller excitation frequencies.
Furthermore, it is seen that the classical theory pre-
dicts a much larger amplitude forw3,1 compared to the
MCST. The comparison between the two theories for
another case, i.e. when Rx/a = 10.0 and P1 = 55.0,
is depicted in Fig. 7. For this case, ω1,1 predicted by
MCST is 87.81, while that obtained by classical the-
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Fig. 7 Comparison between the resonant responses of the
microshell predicted by the modified couple stress and classical
theories: the maximum amplitude of the generalised coordinates
a w1,1 and b w3,1. Rx/a = 10.0 and P1 = 55.0

ory is 84.01, i.e. with 4% difference. Hence, this shows
that due to decreased radius of curvature, the differ-
ence between the natural frequencies predicted by the
two theories decreases. The comparison of frequency–
amplitude curves shows that the classical theory pre-
dicts the resonant region at a slightly smaller excitation
frequency. Furthermore, it is seen that the amplitude of
the oscillation predicted by theMCST is more than that
obtained via the classical theory.

123



Nonlinear dynamics of microshells 813

4 Conclusions

This study examined the nonlinear size-dependent
dynamical characteristics of doubly curvedmicroshells
in the resonant region. The nonlinear equations of
motion of themicroshell nonlinear are developed in the
framework of the MCST and on the basis of Donnell’s
nonlinear shell theory. A high-dimensional Galerkin
truncation scheme is utilised obtain the discretised form
of the equations. Numerical simulations are conducted
in order to obtain the nonlinear frequency–amplitude
plots for various cases and to extract bifurcation points
and the stability of the solution branches.

The nonlinear investigations showed that depending
on the value of the principal radius of curvature, the
nonlinear resonant behaviour changes significantly. In
general, the following conclusions are drawn: (i) Due
to decreased principal radii of curvature, the nonlin-
ear response of the system becomes of softening type
in the primary resonant region. (ii) As the principal
radii of curvature are decreased, the contribution of
higher modes of oscillation becomes more, and hence,
the importance of employing a large-DOF discretised
model becomes more significant. (iii) At smaller radii
of curvature, the difference between MCST and classi-
cal theory in predicting the natural frequency becomes
less significant. (iv) For the cases examined in this
study, the MCST predicts larger oscillation amplitude
compared to the classical theory.
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