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Abstract A variety of closed-form solutions such
as multiple-front wave, kink wave, waves interaction,
curve-shaped multisoliton, parabolic and stationary
wave solutions have been obtained by using invariance
of the concerned potential Kadomtsev–Petviashvili
(PKP) equation under the one-parameter Lie group of
transformations. Lie symmetry transformations have
been applied to generate various forms of invariant
solutions of the PKP equation. The solutions provide
extensive rich physical structure due to the existence
of various arbitrary constants and functions. Results
have been traced in context to spatiotemporal dynam-
ics.Dynamic behavior of the results have been analyzed
in terms of various wave propagations. Numerical sim-
ulation has been performed to obtain appropriate visual
appearance of the traced solutions. The nature of solu-
tions is investigated both analytically and physically
through their evolutionary profiles by considering ade-
quate choices of arbitrary functions and constants.
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1 Introduction

1.1 Scope

Most of the phenomena in nature can be formulated
mathematically by nonlinear partial differential equa-
tions. There are numerous examples on physical mod-
eling in various fields of sciences and engineering, par-
ticularly in fluid mechanics, solid state physics, plasma
physics and chemical science. Analysis of physical
models allows us to predict and understand the pos-
sible behavior of the corresponding physical system. It
is imperative to find out the exact solutions of the rel-
evant nonlinear evolution equations to understand the
dynamics of a system. Closed-form exact solutions of
these equations are inherently complex.

The purpose of this article is to derive some closed-
form exact solutions of the PKP equation. Hence, we
consider the following form of the PKP equation

uxt + 3

2
uxuxx + 1

4
uxxxx + 3

4
uyy = 0.

On application of the above form, various solutions of
the PKP equation such as kink wave, multiple-front
wave, waves interaction, multisoliton, parabolic and
stationary wave are obtained. These solutions bear sig-
nificance in the fields of plasmaphysics, adaptive optics
and nonlinear mechanics. Kink wave is a sharp twist
or curve in something that is otherwise straight. Kink
wave or Alfvén wave is a transverse magnetohydrody-
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namics wave traveling in the direction of the magnetic
field in a magnetized plasma. They have wide applica-
tions in the field of plasma physics. These waves are
frequently observed in the solar atmosphere. Propaga-
tion of these waves may annihilate the dissipation of
energy in the solar environment.

A wavefront is an imaginary surface joining all
points in the space that are reached at the same instant
by a wave propagating through a medium. The wave-
front is described by the positions of various identical
phases and can be modified with conventional optics.
Wavefront phenomenon plays an important role in real-
life problems. This phenomenon is used to construct
wavefront sensors, which describe the instability in an
optical system.Multiplewavefront phenomena are also
used to develop the wavefront sensors and wavefront
curvature sensing. Phase imaging or curvature sens-
ing techniques are also suitable for wavefront estima-
tions.

Solitary waves emerge due to nonlinear and disper-
sive effects. While a soliton is also a solitary wave that
behaves like a group of particles. It conserves its shape,
velocity and amplitude with the collision of other soli-
tons. Solitons or solitarywaves arise inmost of the con-
tinuum systems explained by various nonlinear equa-
tions such as the KdV equation, KP equations and
Schrödinger equations. Various physical systems can
be modeled on the basis of soliton theory.

1.2 Related work

We consider a (2+1)-dimensional generalization of
KdV equation [1]

ut + 3

4
u2x + 1

4
uxxx + 3

4

∫ x

uyy dx = 0, (1)

which describes the dynamics of a wave with small
and finite amplitude in two dimensions. Equation (1)
is derived in many physical contexts with the assump-
tion that the wave is moving along the x-direction, and
all changes in the y-direction are slower than in the
direction of motion.

In the proposed research, we have considered the
following form of the PKP equation

uxt + 3

2
uxuxx + 1

4
uxxxx + 3

4
uyy = 0, (2)

which is known as potential Kadomtsev–Petviashvili
equation.

In the last few decades,many effectivemethods have
been used by various communities of researchers to
derive exact solutions of the PKP equation. Li et al. [2]
obtained soliton solutions of the PKP equation through
the symbolic computation method proposed by Gao
and Tian. Batiha et al. [3] obtained analytic solutions
of the PKP equation by applying the variational iter-
ation method and compared it with exact solutions.
Inan [4] et al. used improved tanh function method
and attained some exact solutions of the PKP equation.
Dai et al. [5] found exact periodic kink wave solutions,
periodic solitons and doubly periodic solutions of the
PKP equation by using a homoclinic test technique and
extended homoclinic test technique. Furthermore, they
investigated that periodic soliton is degenerated into
doubly periodic wave varying with direction of wave
propagation. Rosenhaus [6] studied local conservation
laws with non-vanishing conserved densities and cor-
responding boundary conditions for the PKP equation.
Moreover, he analyzed an infinite symmetry group and
generated a finite number of conserved densities cor-
responding to infinite symmetries through appropriate
boundary conditions. Li et al. [7] obtained exact solu-
tions containing soliton, multisoliton and rational solu-
tions of the PKP equation through generalized tanh
method. Jawad et al. [8] derived soliton solutions of
the PKP equation by using the tanh–coth and the tan–
cot methods. Pohajanpelto [9] described the variational
bicomplex forms of the PKP equation under symme-
try algebra.Moreover, he computed the cohomology of
the associated Euler–Lagrange complex. Ren et al. [10]
derived interaction and multiple-front wave solutions
of the PKP equation through truncated Painlevé analy-
sis and consistent tanh expansionmethod. Furthermore,
Wazwaz et al. studied various forms of the KP equa-
tion [11–14] and derived solutions likemultiple-soliton
solutions, multiple-front wave solutions and multiple
singular soliton solutions by using simplified Hirota’s
direct method. They investigated Painlevé integrability
of some generalized forms of the KP equation through
MAPLE.

1.3 Motivation

Nature pays much attention to the nonlinearity require-
ment of classical mathematics. Exact solutions of non-
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linear partial differential equations still pose a big chal-
lenge in the nonlinear world. Invariant results of the
PKP equation have diversified applications in various
fields of science and technology. Some direct appli-
cations can be seen in the fields of plasma physics,
adaptive optics, nonlinear mechanics, wavefront sen-
sor and phase imaging process. Various researchers
are working on exact closed-form results of the PKP
equation. Some of them have calculated numerical or
approximate results. But closed-form exact solutions
always have their own importance. Hence, to fill up
the gap of the research [1–14], a serious effort has
been made to get some new exact solutions of the
PKP equation. Lie symmetry analysis has been used
to get invariant results. Applications and theory of
the method can be seen from literature [15–30]. The
exact solutions of the equation are analyzed physi-
cally.

1.4 Outlines

The structure of the manuscript is organized in the
following manner : Introductory part of Sect. 1 com-
prises with scope, related work and motivation. Sec-
tion 2 includes a brief introduction of Lie symme-
try method. In Sect. 3, infinitesimals are calculated
via Lie symmetry analysis for the PKP equation. The
invariant solutions of the PKP equation are obtained
in Sect. 4. Analysis and discussions are covered by
Sect. 5. Finally, Sect. 6 provides the conclusion of the
manuscript.

2 Method of Lie symmetries

A brief introduction about the Lie symmetries of a sys-
tem of PDEs has been stated in this section to make the
work self-confined. Consider the following nth-order
system of differential equations in a independent and
b dependent variables as

�ν(x̂, û
(n)) = 0, ν = 1, 2, . . . l, (3)

where x̂ = (x1, x2, x3, . . . xa), û = (u1, u2, . . . , ub)
and û(n) denotes the nth-order derivative of û. One can
consider a one-parameter (ε) Lie group of infinitesimal
transformations acting on both variables of the system
to keep system invariant, as

x∗
i = xi + ε ξi (x̂, û) + O(ε2),

u∗ j = u j + ε η j (x̂, û) + O(ε2), (4)

where ε is the parameter of the transformations and ξi ,
η j are the infinitesimals of the transformations for the
independent and dependent variables, respectively.

The infinitesimal generator v associated with the
above Lie group of transformations can be explored
as

v =
a∑

i=1

ξi (x̂, û
(n))

∂

∂xi
+

b∑
α=1

η j (x̂, û(n))
∂

∂uα
. (5)

A symmetry of a differential equation is a transforma-
tion which keeps the solution invariant in the trans-
formed space. The system of PDEs leads to the follow-
ing invariance condition under the infinitesimal trans-
formations

Pr (n)v[�ν(x̂, û
(n))] = 0, ν = 1, 2, . . . l

alongwith �(x̂, û(n)) = 0. (6)

In the above condition, Pr (n) is termed as nth-order
prolongation [16] of the infinitesimal generator vwhich
is given by

Pr (n)v = v +
b∑

α=1

∑
J

ηJ
α (x̂, û(n))

∂

∂uα
J
, (7)

the second summation being over all (unordered)multi-
indices J = j1, j2, j3, . . . , jk , with 1 ≤ jk ≤ a, 1 ≤
k ≤ n. The coefficient functions ηJ

α of Pr (n)v are given
by the following expression

ηJ
α (x̂, û(n)) = DJ

(
ηα −

a∑
i=1

ξi u
α
i

)
+

a∑
i=1

ξi u
α
J,i , (8)

where uα
i = ∂uα

∂xi
, uα

J,i = ∂uα
J

∂xi
and DJ denotes total

derivative.

3 Lie symmetry analysis for the PKP equation

Authors considered the following one-parameter Lie
group of infinitesimals transformations for x1 = x ,

123



784 M. Kumar, A. K. Tiwari

x2 = y, x3 = t ; ξ1 = ξ (1), ξ2 = ξ (2), ξ3 = τ ; u1 = u
as

x∗ = x + ε ξ (1)(x, y, t, u) + O(ε2),

y∗ = y + ε ξ (2)(x, y, t, u) + O(ε2),

t∗ = t + ετ(x, y, t, u) + O(ε2),

u∗ = u + ε η(x, y, t, u) + O(ε2), (9)

where ε is a small parameter and ξ (1), ξ (2), τ and η are
infinitesimals for the variable x, y, t and u, respectively.

The associated vector field takes the form :

v = ξ (1)(x, y, t; u)
∂

∂x
+ ξ (2)(x, y, t; u)

∂

∂y

+τ(x, y, t; u)
∂

∂t
+ η(x, y, t; u)

∂

∂u
.

Using the invariance condition Pr (4)v(�) = 0; when-
ever � = 0 and Pr (4)v is fourth prolongation of v.
Applying the fourth prolongation of v to Eq. (2), we
derive following system of equations:

ξ (1)
xx = 0, ξ (1)

u = 0, ξ (2)
x = 0, ξ (2)

u = 0, ξ (2)
yy = 0, τx = 0,

τy = 0, τu = 0, ηux = 0, ηuy = 0, ηuu = 0, ηxxx = 0,

3 ξ (1)
x − τt = 0, ξ (1)

x − 1

2
ξ (2)
y = 0,

3

2
ξ (1)
y + ξ

(2)
t = 0,

3

2
ηx − ξ

(1)
t ,

3

4
ηyy + ηxt , ηut − 3

4
ξ (1)
yy = 0,

ηu + ξ (1)
x = 0,

3

2
ηxx + ηut − ξ

(1)
xt − 3

4
ξ (1)
yy = 0.

(10)

Solving the above system of equations, we get follow-
ing infinitesimals

ξ (1) = x

2
f̄1(t) − y2

3
¯̄f1(t) − 2y

3
f̄2(t) + f3(t),

ξ (2) = y f̄1(t) + f2(t), τ = 3

2
f1(t) + 1,

η =
[

− u

2
f̄1(t) + x2

6
¯̄f1(t) + 2

81
y4

¯̄̄̄
f1(t)

+ 8

81
y3

¯̄̄
f2(t) − 4

9
y2 ¯̄f3(t) + y f4(t) + f5(t)

− 2

9

{
y2

¯̄̄
f1(t) + 2y ¯̄f2(t) − 3 f̄3(t)

}
x

]
, (11)

where f ′
i s (1 ≤ i ≤ 5) are arbitrary functions of time t

and bar is used for the derivatives throughout the arti-
cle. The choices of f ′

i s may provide the rich physical
structure to the solutions of (2).

The symmetry of Eq. (2) can be written as [30],

V = V1( f1)+V2( f2)+V3( f3)+V4( f4)+V5( f5)+V6,

(12)

where

V1( f1) = { x
2
f̄1 − y2

3
¯̄f1} ∂

∂x
+ y f̄1

∂

∂y
+ 3

2
f1

∂

∂t

+{ x
2

6
¯̄f1 − u

2
f̄1 − 2

9
xy2

¯̄̄
f1 + 2

81
y4

¯̄̄̄
f1} ∂

∂u
,

V2( f2) = −2y

3
f̄2

∂

∂x
+ f2

∂

∂y
+ { 8

81
y3

¯̄̄
f2 − 4

9
xy ¯̄f2}

× ∂

∂u
,

V3( f3) = f3
∂

∂x
+ {2

3
x f̄3 − 4

9
y2 ¯̄f3 ∂

∂u
},

V4( f4) = y f4
∂

∂u
, V5( f5) = f5

∂

∂u
, V6 = ∂

∂t
.

The associated Lie algebra between these vector fields
becomes:

[Vi,Vi] = 0, i = 1, 2, 3, 4, 5, 6

[V1( f1),V2( f2)] = V2(
3

2
f1 f̄2 − f2 f̄1),

[V1( f1),V3( f3)] = V3(
3

2
f1 f̄3 − 1

2
f3 f̄1),

[V1( f1),V4( f4)] = V4(
3

2
f1 f̄4 + 3

2
f4 f̄1),

[V1( f1),V5( f5)] = V5(
3

2
f1 f̄5 + 1

2
f5 f̄1),

[V1( f1),V6] = V1(− f̄1),

[V2( f2),V3( f3)] = V4(
4

9
f3

¯̄f2 − 4

9
f̄2 f̄3 − 8

9
f2

¯̄f3),
[V2( f2),V4( f4)] = V5( f2 f4),

[V2( f2),V5( f5)] = 0,

[V2( f2),V6] = V2(− f̄2),

[V3( f3),V4( f4)] = 0,

[V3( f3),V5( f5)] = 0,

[V3( f3),V6] = V3(− f̄3),

[V4( f4),V5( f5)] = 0,

[V4( f4),V6] = V4(− f̄4),

[V5( f5),V6] = V5(− f̄5)

[V1(g1),V1(h1)] = V1(
3

2
g1 h̄1 − 3

2
h1 ḡ1),
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[V2(g2),V2(h2)] = V3(
2

3
h2 ḡ2 − 2

3
g2 h̄2),

[V3(g3),V3(h3)] = V5(
2

3
g3 h̄3 − 2

3
h3 ḡ3),

[V4(g4),V4(h4)] = 0,

[V5(g5),V5(h5)] = 0.

4 Invariant solutions of the PKP equation

Further, we took the choice of arbitrary functions

f2(t) = a0 f̄1(t), f3(t) = − a20
3

¯̄f1(t), f4(t) =
8
81a

3
0

¯̄̄̄
f1(t) and f5(t) = 2

81a
4
0

¯̄̄̄
f1(t), where a0 is an arbi-

trary constant.
Thus, to get invariant solutions of Eq. (2), the cor-

responding Lagrange system is

dx

ξ (1)(x, y, t, u)
= dy

ξ (2)(x, y, t, u)
= dt

τ(x, y, t, u)

= du

η(x, y, t, u)
. (13)

From Eqs. (11) and (13) we obtain

dx
x
2 f̄1(t) − y2

3
¯̄f1(t) − 2y

3 f̄2(t) + f3(t)
= dy

y f̄1(t) + f2(t)

= dt
3
2 f1(t) + 1

= du[
− u

2 f̄1(t) + x2
6

¯̄f1(t) − 2
9 {y2 ¯̄̄

f1(t) + 2y ¯̄f2(t) − 3 f̄3(t)}x
+ 2

81 y
4

¯̄̄̄
f1(t) + 8

81 y
3 ¯̄̄
f2(t) − 4

9 y
2 ¯̄f3(t) + y f4(t) + f5(t)

]
.

(14)

The similarity form of the solution of Eq. (2) can be
written as

u(x, y, t) = 40(y + a0)4 f̄1
3

2187( f1 + 2
3 )

3
+ 8x(y + a0)2 f̄1

2

81( f1 + 2
3 )

2

+ x2 f̄1
9( f1 + 2

3 )
+ 4(y + a0)4

¯̄̄
f1

243( f1 + 2
3 )

− 4x(y + a0)2
¯̄f1

27( f1 + 2
3 )

− 8(y + a0)4 f̄1
¯̄f1

243( f1 + 2
3 )

2

+ U (X,Y )

( f1 + 2
3 )

1
3

, (15)

where U (X,Y ) is a similarity function of similarity
variables X and Y , which can be expressed as

X = x

( f1 + 2
3 )

1
3

+ 2(y + a0)2 f̄1

9( f1 + 2
3 )

4
3

and Y = (y + a0)

( f1 + 2
3 )

2
3

.

(16)

Inserting the value of u from Eq. (15) into Eq. (2), we
get the following partial differential equation

UXXXX + 6UXUXX + 3UYY = 0. (17)

Since the PDE (17) is nonlinear and it has two inde-
pendent variables and one dependent variable, apply-
ing STM on Eq. (17) as in Eq. (2) again will provide
the following infinitesimals

ξ̄ (1) = a1 + a5
2
X, ξ̄ (2) = a2 + a5Y

η̄ = a3 + a4Y − a5
2
U, (18)

where a1, a2, a3, a4 and a5 are arbitrary constants.

Case(I): If a5 �= 0 in Eq. (18), then corresponding
Lagrange system for Eq. (17) is read as

dX

A1 + 1
2 X

= dY

A2 + Y
= dU

A3 + A4Y − 1
2U

, (19)

where A1 = a1
a5

, A2 = a2
a5

, A3 = a3
a5

and A4 = a4
a5
.

Therefore, similarity transformations predict the fol-
lowing form of unknown functionU for the partial dif-
ferential equation(17)

U = A5 + 2

3
A4(A2 + Y ) + U1(X1)

(A2 + Y )
1
2

, (20)

where X1 = (2A1+X)

(A2+Y )
1
2
and A5 = 2(A3 − A2A4). From

Eqs. (17) and (20), we obtain an ODE given by

¯̄̄̄
U1 + 6Ū1

¯̄U1 + 3X2
1

4
¯̄U1 + 15X1

4
Ū1 + 9

4
U1 = 0, (21)

where bar denotes the derivative of U1 with respect to
X1.

Integrating Eq. (21), we have

¯̄̄
U1 + 3Ū1

2 + 3X2
1

4
Ū1 + 9X1

4
U1 = c1, (22)

c1 is a constant of integration.
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Equation (22) is a nonlinear differential equation.
The authors could not find its general solution.

However, some particular solutions of Eq. (22) can
be obtained as

Case I(a): The particular solution of Eq. (22) is given
by

U1 = − X3
1

6
+ c2 X1, (c1 = 3 c22 − 1). (23)

Ultimately, from Eqs. (15), (20) and (23), one can fur-
nish the solution of potential Kadomtsev–Petviashvili
in explicit form as

u(x, y, t) = 40(y + a0)4 f̄1
3

2187( f1 + 2
3 )3

+ 8x(y + a0)2 f̄1
2

81( f1 + 2
3 )2

+
A5 + 2

3 A4(A2 + Y ) − (2A1+X)3

6(A2+Y )2
+ c2 (2A1+X)

(A2+Y )

( f1 + 2
3 )

1
3

+ x2 f̄1
9( f1 + 2

3 )
+ 4(y + a0)4

¯̄̄
f1

243( f1 + 2
3 )

−4x(y + a0)2
¯̄f1

27( f1 + 2
3 )

− 8(y + a0)4 f̄1
¯̄f1

243( f1 + 2
3 )2

, (24)

where X and Y are given by Eq. (16).

Case I(b): By setting c1 = 3 in Eq. (22), another par-
ticular solution of the PKP equation can be expressed
as

U1 = 2

X1
. (25)

Thus, from Eqs. (15), (20) and (25), we have explicit
solution of the PKP equation as

u(x, y, t) = 40(y + a0)4 f̄1
3

2187( f1 + 2
3 )

3
+ 8x(y + a0)2 f̄1

2

81( f1 + 2
3 )

2

+ x2 f̄1
9( f1 + 2

3 )
+ 4(y + a0)4

¯̄̄
f1

243( f1 + 2
3 )

−4x(y + a0)2
¯̄f1

27( f1 + 2
3 )

− 8(y + a0)4 f̄1
¯̄f1

243( f1 + 2
3 )

2

+ A5 + 2
3 A4(A2 + Y ) + 2

(2A1+X)

( f1 + 2
3 )

1
3

, (26)

where X and Y can be taken from Eq. (16).

Case I(c): Moreover, one more solution of Eq. (22) can
be obtained by assuming c1 = 8, as follows

U1 = 2

X1
− X3

1

6
. (27)

Therefore, Eqs. (15), (20) and (27) may provide a new
explicit solution of the PKP equation as

u(x, y, t) = 40(y + a0)4 f̄1
3

2187( f1 + 2
3 )3

+ 8x(y + a0)2 f̄1
2

81( f1 + 2
3 )2

+
A5 + 2

3 A4(A2 + Y ) + 2
(2A1+X)

− (2A1+X)3

6(A2+Y )2

( f1 + 2
3 )

1
3

+ x2 f̄1
9( f1 + 2

3 )
+ 4(y + a0)4

¯̄̄
f1

243( f1 + 2
3 )

−4x(y + a0)2
¯̄f1

27( f1 + 2
3 )

− 8(y + a0)4 f̄1
¯̄f1

243( f1 + 2
3 )2

, (28)

where X and Y can be viewed from Eq. (16).

Case(II): If a5 = 0 and a2 �= 0 in Eq. (18), the corre-
sponding Lagrange system for Eq. (17) can be written
as

dX

A6
= dY

1
= dU

A7 + A8Y
, (29)

where A6 = a1
a2

, A7 = a3
a2
and A8 = a4

a2
are newly

introduced arbitrary constants .
Therefore, for the similarity transformations for

Eq. (17) predicts the following form of unknown func-
tion U

U = A7Y + A8Y 2

2
+U2(X2), (30)

with similarity variable X2 = (X − A6Y ). From Eqs.
(17) and (30), we obtain an ODE

¯̄̄̄
U2 + 6Ū2

¯̄U2 + 3(A8 + A2
6

¯̄U2) = 0. (31)

Primitive of Eq. (31) is

¯̄̄
U2 + 3Ū2

2 + 3(A8X2 + A2
6Ū2) = c3. (32)

The general solution of Eq. (32) is quite complex due
to its nonlinearity. However, the equation can be inte-
grated once more by taking A8 = 0 as
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¯̄U2
2 + 2Ū2

3 + 3A2
6Ū2

2 − 2c3Ū2 − c4 = 0, (33)

where c3, c4 are constants of integration. Equation (33)
is still nonlinear and cannot be solve easily. By the way
some particular results of the equation can be read as

Case II(a) : If c3 = 0 and c4 = 0, then the solution of
Eq. (33) proceeds as

U2 = ± √
3A6 tan(c5 ∓

√
3A6

2
X2) + c6. (34)

Here c5 and c6 are constants of integration. Thus, from
Eqs. (15), (30) and (34), the explicit solution of the PKP
equation can be expressed as

u(x, y, t) = 40(y + a0)4 f̄1
3

2187( f1 + 2
3 )3

+ x2 f̄1
9( f1 + 2

3 )

+ A7Y ± √
3A6 tan(c5 ∓

√
3A6
2 (X − A6Y )) + c6

( f1 + 2
3 )

1
3

+8x(y + a0)2 f̄1
2

81( f1 + 2
3 )2

+ 4(y + a0)4
¯̄̄
f1

243( f1 + 2
3 )

−4x(y + a0)2
¯̄f1

27( f1 + 2
3 )

− 8(y + a0)4 f̄1
¯̄f1

243( f1 + 2
3 )2

. (35)

Case II(b): On choosing c4 = 0 and c3 = − 9A4
6

16 , then
another solution of Eq. (33) reads as

U2 = ±
√
3A6√
2

tanh(c7 ±
√
3A6

2
√
2

X2) − 3A2
6

4
X2 + c8,

(36)

where c7 and c8 are constants of integration. Thus, from
Eqs. (15), (30) and (36), the solution of the PKP equa-
tion can be given as

u(x, y, t) = 40(y + a0)4 f̄1
3

2187( f1 + 2
3 )3

+ x2 f̄1
9( f1 + 2

3 )
+ A7Y

( f1 + 2
3 )

1
3

+ c8 − 2k21 (X − A6Y ) ± 2k1 tanh(c7 ± k1(X − A6Y ))

( f1 + 2
3 )

1
3

+8x(y + a0)2 f̄1
2

81( f1 + 2
3 )2

+ 4(y + a0)4
¯̄̄
f1

243( f1 + 2
3 )

−4x(y + a0)2
¯̄f1

27( f1 + 2
3 )

− 8(y + a0)4 f̄1
¯̄f1

243( f1 + 2
3 )2

, (37)

where k1 =
√
3A6

2
√
2
.

Case II(c) : On setting A6 = √
2k2, c3 = −3k22 and

c4 = −2k3, with k2 > 0, the solution of Eq. (33) can
be furnished as

U2 = −k2X2 ± 2

(c9 ± X2)
+ c10. (38)

Here c9 and c10 are constants of integration. Conse-
quently the solution of Eq. (2) can be furnished as

u(x, y, t) = 40(y + a0)4 f̄1
3

2187( f1 + 2
3 )3

+ 8x(y + a0)2 f̄1
2

81( f1 + 2
3 )2

+ A7Y − k2(X − A6Y ) ± 2
(c9±(X−A6Y ))

+ c10

( f1 + 2
3 )

1
3

−8(y + a0)4 f̄1
¯̄f1

243( f1 + 2
3 )2

+ 4(y + a0)4
¯̄̄
f1

243( f1 + 2
3 )

+ x2 f̄1
9( f1 + 2

3 )
− 4x(y + a0)2

¯̄f1
27( f1 + 2

3 )
,

(39)

where X and Y can be read from Eq. (16).

5 Analysis and discussion

In this manuscript six invariant solutions of the PKP
equation have been presented via Eqs. (24), (26), (28),
(35), (37) and (39). Numerical simulations have been
performed to obtain the best viewof graphical represen-
tations of the results. A diversified nature of the explicit
results like doubly solitons, curve-shaped multisoliton,
parabolic, waves interaction, multiple-front wave, kink
wave and stationary wave can be seen via Figs. 1, 2,
3, 4, 5 and 6. Each derived result shows singularity at
f1(t) = − 2

3 , while other singular points of the results
and their nature have been discussed under the head-
ing through Figs. 1, 2, 3, 4, 5 and 6. The results are
useful in the various fields of science and technology.
Solitons play a prevalent role in propagation of light
in fibers, surface waves in nonlinear dielectrics, optical
bistability, optical switching in slab wave guides, and
many other phenomena in plasma and fluid dynamics
[31]. Propagations of kink waves may annihilate the
dissipation of energy in the solar environment. Wave-
front phenomena have been used to design wavefront
sensor which may deal with the variation in a coher-
ent signal to describe the optical quality in an opti-
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Fig. 1 Annihilation of
doubly soliton profile of
Eq. (24) with function
f1(t) = a6 exp(a7 t + a8)
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Fig. 2 Annihilation of
curve-shaped multisoliton
profiles for Eq. (26) after
t = 6.12
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Fig. 3 Waves interaction
profiles of Eq. (28)
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cal system. Wavefronts can also provide a variety of
applications in adaptive optics, optical metrology and
disorder in the retina of the eye. The results of the
PKP equations presented in the manuscript have richer
physical structure than results available in the litera-
ture [1–10]. The reported results are significant in the
context of nonlinear dynamics. The results can illus-

trate various dynamic phenomena due to the existence
of arbitrary functions of spatiotemporal variables. The
dynamic behavior of the results are analyzed in the fol-
lowing manner:

Figure 1 This figure shows annihilation of doubly
solitons profile of Eq. (24) with the variation of time.
The graphical representation of Fig. 1. shows two soli-
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Fig. 4 Multiple-front wave
profiles of Eq. (35) with
variation of time
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tons in opposite directions and consequently annihilate
into single soliton.We have the taken arbitrary function
f1(t) = a6 exp(a7 t+a8) to plot theses profiles.While
value of constants are taken fromMATLAB simulation
as

a0 = 0.3899, a1 = 0.5909, a2 = 0.4594, a3 =
0.0503, a4 = 0.2287, a5 = 0.8342, a6 = 0.0156, a7 =
0.8637, a8 = 0.0781, A1 = 0.7083, A2 = 0.5507,
A3 = 0.0603, A4 = 0.2742, A5 = −0.1812 and c2 =
0.7060.

Figure 2 Annihilation of curve-shaped multisoliton
can be viewed after t = 6.12 corresponding to Eq. (26).
Profiles are traced for the function f1 = (a9 t + a10)2.
The singular points can be found by taking the roots
of the polynomials (a9 t + a10)2 + 2

3 = 0. For numer-
ical simulation, values of constants are taken as a9 =
0.2287, a10 = 0.8342 and remaining constants are
same as in Fig. 1.

Figure 3 The solution given by Eq. (28) is specified
graphically in this figure. We have recorded the physi-
cal nature with variation of time. Initially, velocity pro-
file shows interaction of waves and after sometime, it
turns into single soliton nature. The profiles are traced
for function f1 = (a9 t+a10)2 and constants kept same
as in previous figures.

Figure 4 A graphical representation of Eq. (35) cor-
responding to case II(a) shows curve-shaped multiple-
frontwave naturewith the variation of time. TheNature
of the result has been investigated on the basis of vari-
ous singular points of the tangent function correspond-
ing to this case. Figures are traced by selecting the val-
ues of arbitrary constants as a9 = 0.2287,

a10 = 0.8342 , c5 = 0.3909, c6 = 0.4168,
A6 = 1.2862, A7 = 0.1094, and remaining are same
as in Fig. 1. Furthermore, arbitrary function f1(t) is
also same as in Fig. 2.

Figure 5a The profile of wave propagation initially
rise asymptotically and then turns into stationary nature
corresponding to Eq. (37). The phenomenon describes
kinkwave andultimately annihilates into parabolic pro-
file with the variation of time. The values of arbitrary
constants to trace the profiles are taken from the numer-
ical simulation as a7 = 0.8637,

a8 = 0.0781, c7 = 0.7210, c8 = 0.5225, A6 =
1.2862, A7 = 0.1094, and remaining constants are
same as in previous profiles. While arbitrary function
f1(t) is considered equal to a6 exp(a7 t + a8).
Figure 5b Corresponding to case II(b), Fig. 5b

for Eq. (37) traced between the spatiotemporal (x-t)
axes shows multiple-front wave with function f1(t) =
a6 tan(a7 t + a8). Initially, wave profile shows curve-
frontwave and then converts into plane-frontwavewith
the increase in value of y. The values of constants are
same as in previous figures.

Figure 5c This figure traced for Eq. (37) between
the spatiotemporal (x-t) axes corresponding to case
II(b). A graphical representation has been described for
multiple-frontwavewith function f1(t) = a6 sin(a7 t+
a8). Initially, wave profile shows stationary wave and
then converts into plane-front wave with the increase
in value of y. The values of constants are same as in
previous figures.

Figure 6 A graphical representation of Eq. (39)
reveals annihilation of curve-shaped multisoliton after
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Fig. 5 Evolution profiles of
Eq. (37). a Kink wave
profiles of Eq. (37) with the
variation of time and
f1(t) = a6 exp(a7 t + a8)
and b multiple-front wave
profiles of Eq. (37) with the
function
f1(t) = a6 tan(a7 t + a8).
(c) Periodic solitons profiles
of Eq. (37) with the function
f1(t) = a6 sin(a7 t + a8)
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t = 55. These profiles are traced for f1 = (a7 t + a8).
The suitable values of constants are recorded to trace
physically meaningful profiles from MATLAB simu-
lation as a7 = 0.8637, a8 = 0.0781, c9 = 0.0012,
c10 = 0.4624, A6 = 1.2862 and A7 = 0.1094. Other
constants are same as in previous figures.

6 Conclusion

Invariant solutions of potentialKadomtsev–Petviashvili
(PKP) equation have been obtained by using Lie sym-
metry analysis. The solutions derived through Eqs.
(24), (26), (28), (35), (37) and (39) are obtained explic-
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Fig. 6 Annihilation of
curve-shaped multisoliton
profile for Eq. (39) begin
from t = 55
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itly and represent doubly solitons, curve-shaped mul-
tisoliton, parabolic, waves interaction, multiple-front
wave, kink wave and stationary wave profiles. The
reported results have richer physical structure as com-
pared to previously reported results available in the
literature [1–10]. The results have direct relevance in
various branches of science, such as adaptive optics,
metrology and sensor technology. All the solutions are
analyzed graphically through Figs. 1, 2, 3, 4, 5 and
6. Ultimately, Lie symmetry provides the exact solu-
tions of the PKP equation in explicit form. The results
of this investigation may provide a better platform for
researchers working in the field of numerical tech-
niques. These results can also be of use to validate
newly developed numerical techniques alongwith their
convergence.
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