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Abstract Under investigation in this paper is the
(3 + 1)-dimensional B-type Kadomtsev–Petviashvili–
Boussinesq (BKP–Boussinesq) equation, which can
display the nonlinear dynamics in fluid. By using Bell’s
polynomials, we explicitly derive a bilinear equation
for the equation via a very natural and effective way.
Then, three types of exchange identities of Hirota’s
bilinear operators are presented to derive its Bäck-
lund transformation. Based on that, we construct the
traveling wave solutions, kink solitary wave solutions,
rational breathers and rogue waves of the equation.
Finally, some properties of interaction phenomena are
also provided, which can be used to study the domain
of lump solutions. It is hoped that our results can be
used to enrich the dynamical behavior of the (3 + 1)-
dimensional nonlinear evolution equations.
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1 Introduction

In recent years, the nonlinear evolution equations
(NLEEs) have attracted an increasingly attention from
mathematics and physicists. It is well known that
the research of nonlinear physics phenomena is a
very interesting topic. NLEEs can display many inter-
esting nonlinear dynamic behaviors, such as plasma
physics, optical fibers, chaos theory, hydrodynamics
and other nonlinear fields. The properties correspond-
ing to NLEEs are flourishing, including integrabil-
ity, dispersion effects, solitary wave solutions, bilinear
expressions, periodic wave solutions. There are many
works for the NLEEs in this field [1–15].

A variety of straightforward methods can be used
to solve the NLEEs. For instance, inverse scatter-
ing transformation (IST) [16], Darboux transformation
(DT) [17], Hirota’s bilinear method (HBM) [18], Lie
group symmetry (LGS) [19,20], multiple exp-function
method [21], etc.

As we know that the most classic Kadomtsev–
Petviashvili (KP)-type equation [22] reads

(ut + 6uux + u3x )x + 3uyy = 0, (1)

which can characterize the growth of shallow water
waves in quasi one-dimension, with the weak influence
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of surface tension and viscosity. There are many KP-
type equations. For example, a (3 + 1)-dimensional
B-type KP equation (BKP) [23] is presented by

uty − uxxxy − 3(uxuy)x + 3uxz = 0. (2)

When y = z, it can be read the (2 + 1)-dimensional
BKP equation, which has a great influence in both
the phase shift and the dispersion connection of each
extended nonlinear evolution equation. There aremany
works to study the multiple wave solutions and lump
solutions, Bäcklund transformation and shock wave
type solutions for such kind of equations [24–30].

In this work, we mainly study a (3+1)-dimensional
BKP–Boussinesq equation [31] given by

uty − uxxxy − 3(uxuy)x + utt + 3uxz = 0, (3)

where u is a differential function about x, y, z and t .
It is easy to find that the (3 + 1)-dimensional BKP–
Boussinesq equation denotes the (3 + 1)-dimensional
BKP equation plus a partial derivative of u with respect
to t , i.e. utt . The equation is proposed by Wazwaz and
El-Tantawy [31]. This equation possesses the proper-
ties of both Boussinesq and BKP equations, which can
be used to depict the propagation of long waves in shal-
lowwater. It also describes otherwaves, such as nonlin-
ear lattice waves, iron sound waves in a plasma. Fur-
thermore, it has many applications in physical field,
such as the percolation of water in porous subsur-
face of a horizontal layer of material. Actually, BKP–
Boussinesq equation plays an important role in describ-
ing the processes of interaction of exponentially local-
ized structures. A bilinear representation belong to the
equation is presented. We know that the equation can
depict more interesting phenomena than other KP-type
equations.

To the best of our knowledge, the lump solutions in
NLEEs have attracted more and more attention, which
are reflected in the interaction phenomena between
lump solutions and other rational solutions, such as
[32–41]. The main goal in this paper is to derive its
traveling wave solutions by a Bäcklund transformation
method, and obtain rogue wave solutions and inter-
action phenomena between the double kink solitary
waves and lump solution by using a bilinear expres-
sion of (3).

The structure of this paper is as follows. In Sect. 2,
based on the Hirota’s bilinear method and Bell’s poly-
nomial theory, we compute the bilinear representation
for the (3+1)-dimensional BKP–Boussinesq equation.

Then, in Sect. 3, its Bäcklund transformation is pre-
sented by using a bilinear equation. Moreover, accord-
ing to a group ofBäcklund transformation formulas, we
also get the corresponding traveling wave solutions of
the equation. Section 4 uses an ansätz function to obtain
rogue wave solutions and rational breather waves for
the Eq. (3). In Sect. 5, we present its one-, two- and
N -kink solitary wave solutions in a very natural way.
In Sect. 6, by virtue of a special function, we find the
interaction solutions between lump and other waves.

2 Bilinear representation

Let us introduce the following potential transformation

u = cqx , (4)

where c is a constant. Taking c = 1, substituting (4)
into (3), and integrating the result with respect to x
once, then one obtains

E(q) = qty − (q3xy + 3qxxqxy) + qtt + 3qxz = σ,

(5)

where σ is an integrable constant. Based on the results
provided inRefs. [42–53], andwe obtain E(q) = Pty−
Pxxxy + Ptt + 3Pxz = σ . Supposing σ = 0, we have

E(q) = Pty − Pxxxy + Ptt + 3Pxz = 0, (6)

with the following variable transformation

q = 2 ln F ⇐⇒ u = 2[ln F]x . (7)

Then one obtains(
Dt Dy − D3

x Dy + D2
t + 3Dx Dz

)
F · F = 0, (8)

where F is a real function about x, y, z and t . Ds (s =
x, y, z, t) denote some Hirota’s bilinear operators [18].

3 Bäcklund transformation and traveling wave
solutions

3.1 Bilinear Bäcklund transformation

In order to derive the Bäcklund transformation of Eq.
(3), we assume that there exists another real function
solution in bilinear Eq. (8); then,we can obtain a similar
bilinear form as(
Dt Dy − D3

x Dy + D2
t + 3Dx Dz

)
f ′ · f ′ = 0. (9)
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By constructing a key function given by

M =
[(

Dt Dy − D3
x Dy + D2

t

+ 3Dx Dz) f ′ · f ′] f · f

−
[(

Dt Dy − D3
x Dy + D2

t

+ 3Dx Dz) f · f
]
f ′ · f ′, (10)

and supposing M = 0, we have
[(

Dt Dy − D3
x Dy + D2

t + 3Dx Dz

)
f ′ · f ′] f · f

=
[(

Dt Dy − D3
x Dy + D2

t + 3Dx Dz

)
f · f

]
f ′ · f ′.

(11)

According to above equation, we can show that f ′ can
be used to solve the Eq. (8) if and only if f ′ also denotes
a solution of Eq. (9). By exchanging the dependent
variables f and f ′, Eq. (10) satisfies M = 0. Next,
we introduce several types of exchange formulas for
bilinear operator as follows [18]

(
Di D j f

′ f ′) f f − (
Di D j f f

)
f ′ f ′ = 2Dj

(
Di f

′ f
)
f f ′,
(12)

2
(
D3
i D j f

′ f ′) f f − 2
(
D3
i D j f f

)
f ′ f ′

= Di

[(
3D2

i D j f
′ f

)
f f ′ +

(
3D2

i f ′ f
) (

Dj f f
′)

+ (
6Di D j f

′ f
) (

Di f f
′)] + Dj

[(
D3
i f ′ f

)
f f ′

+
(
3D2

i f ′ f
) (

Di f f
′)] , (13)

where i, j = x, y, z, t . It is easy to find that
(
Di D j f

′ f
)
f f ′ = (

Dj Di f
′ f

)
f f ′. (14)

Based on the exchange formulas (12)–(14) of bilinear
operators, the Bäcklund transformation related to the
Eq. (3) are given by

B1 f
′ f = −

(
3D2

x Dy + ε1Dy + ε2

+ 4ε8Dt + 12Dz) f ′ f = 0,

B2 f
′ f = −

(
3D2

x + ε3Dy + ε4

)
f ′ f = 0,

B3 f
′ f = − 6

(
Dx Dy + ε5Dx

)
f ′ f = 0,

B4 f
′ f =

(
4Dt − D3

x + ε1Dx − ε6 − 4ε9Dt

)
f ′ f = 0,

B5 f
′ f = −

(
3D2

x + ε7Dx − ε4

)
f ′ f = 0,

B6 f
′ f = 4

(
Dt + ε8Dx + ε9Dy

)
f ′ f = 0.

(15)

We provide the detailed calculation as follows

2M = 2
[(
Dt Dy f

′ f ′) f f − (
Dt Dy f f

)
f ′ f ′]

− 2
[(

D3
x Dy f

′ f ′) f f −
(
D3
x Dy f f

)
f ′ f ′]

+ 2
[(

D2
t f

′ f ′) f f −
(
D2
t f f

)
f ′ f ′]

+ 6
[(
Dx Dz f

′ f ′) f f − (Dx Dz f f ) f ′ f ′]

= 4Dy
(
Dt f

′ f
)
f f ′ − Dx

[(
3D2

x Dy f
′ f

)
f f ′

+
(
3D2

x f
′ f

) (
Dy f f

′)

+ (
6Dx Dy f

′ f
) (

Dx f f
′)]

− Dy

[(
D3
x f

′ f
)
f f ′

+
(
3D2

x f
′ f

) (
Dx f f

′)]

+ 4Dt
(
Dt f

′ f
)
f f ′ + 12Dz

(
Dx f

′ f
)
f f ′

= 4Dy
(
Dt f

′ f
)
f f ′ − Dx

[(
3D2

x Dy f
′ f

+ε1Dy f
′ f + ε2 f

′ f
)
f f ′

+
(
3D2

x f
′ f + ε3Dy f

′ f

+ε4 f
′ f

) (
Dy f f

′) + (
6Dx Dy f

′ f
+6ε5Dx f

′ f
) (

Dx f f
′)]

− Dy

[(
D3
x f

′ f − ε1Dx f
′ f

+ε6 f
′ f

)
f f ′ +

(
3D2

x f
′ f + ε7Dx f

′ f

−ε4 f
′ f

) (
Dx f f

′)] + 4Dt
(
Dt f

′ f + ε8Dx f
′ f

+ε9Dy f
′ f

)
f f ′ − 4Dx

(
ε8Dt f

′ f
)
f f ′

− 4Dy
(
ε9Dt f

′ f
)
f f ′ + 12Dx

(
Dz f

′ f
)
f f ′

= Dx
(
B1 f

′ f
)
f f ′ + Dx

(
B2 f

′ f
) (

Dy f f
′)

+ Dx
(
B3 f

′ f
) (

Dx f f
′)

+ Dy
(
B4 f

′ f
)
f f ′ + Dy

(
B5 f

′ f
) (

Dx f f
′)

+ Dt
(
B6 f

′ f
)
f f ′. (16)

For the above reduction and Di f f = 0, the parameters
εi , (i = 2, 3, 5, 6, 7)will be equal to zero. Based on the
expression (14), we can obtain ε j = 0, ( j = 1, 4, 8, 9).

3.2 Traveling wave solutions

Let us substitute a solution f = 1 into the (3 +
1)-dimensional BKP–Boussinesq Eq. (3), which is
reduced to the initial variable u with u = 2(ln f )x = 0.
One has

Dn
s g f = Dn

s g = ∂n

∂sn
g, n ≥ 1. (17)
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Fig. 1 (Color online)Rational solution (23) for Eq. (3) by choos-
ing suitable parameters: â1 = 1, â2 = 1.2, â3 = 0.9, â4 =
2.1, z = 0, t = 3. a Perspective view of the real part of the

wave. b The overhead view of the wave. c The wave propagation
pattern of the wave along the x axis

The Bäcklund transformation (15) related to f = 1
will be a group of linear equations given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 f ′
xxy + ε1 f

′
y + ε2 f

′ + 4ε8 f
′
t + 12 f ′

z = 0,

3 f ′
xx + ε3 f

′
y + ε4 f

′ = 0,

f ′
xy + ε5 f

′
x = 0,

4 f ′
t − f ′

xxx + ε1 f
′
x − ε6 f

′ − 4ε9 f
′
t = 0,

3 f ′
xx + ε7 f

′
x − ε4 f

′ = 0,

f ′
t + ε8 f

′
x + ε9 f

′
y = 0.

(18)

We introduce a function given by

f ′ = 1 + μ exp
(
â1x + â2y + â3z − â4t

)
, â1 �= 0,

(19)

where â1, â2, â3, â4 are some constants. Taking ε2, ε4,

ε6 = 0 to the above equations (18), then one has

ε1 = â31 + 4â4 − 4ε9â4
â1

,

ε3 = −3â21
â2

, ε5 = −â2, ε7 = − 3â1,

â3 = ε8â1â4 − â31 â2 + â2â4 + ε9â2â4
3â1

,

â4 = ε8â1 + ε9â2.

(20)

So, we obtain the following exponential wave solution

u = 2
[
ln f ′]

x , (21)

where f ′ = 1 + μ exp

[
â1x + â2y+

ε8â1â4−â31 â2+â2â4+ε9â2â4
3â1

z − (ε8â1 + ε9â2)t

]
. Then

above u solves the BKP–Boussinesq Eq. (3).

Next, we use a first-order function as follows

f ′ = â1x + â2y + â3z − â4t, (22)

by substituting (22) into a class of equations (18), and
taking εi = 0, (2 ≤ i ≤ 7). The Eq. (18) are limited by
(â4 − â2)â4 − 3â1â3 = 0, which satisfies the existence
of ε1, ε8 and ε9. We can obtain the following rational
solution of the BKP–Boussinesq equation

u = 2â1
â1x + â2y + â3z − â4t

. (23)

The graphic of the rational solution (23) for Eq. (3)
is plotted in Fig. 1 by choosing suitable parameters.

4 Rogue wave solutions

In order to seek the rogue wave solutions for the BKP–
Boussinesq equation, we assume that

F = 1 + (m1x + m2y + m3z + m4t)
2 + m5x

2

+m6 (y + z)2 + m7t
2, (m1 �= 0) , (24)

where mi (i = 1, 2, 3, 4, 5, 6, 7) are free constants.
Substituting the ansätz (24) into the bilinear Eq. (8),
with the aid of mathematica, one can obtain the fol-
lowing results

m2 = − m7

3m3
1

, m3 = m7
(
36m6

1 + m7
)

108m7
1

,

m4 = m7

6m3
1

, m5 = 0, m6 = 0. (25)
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Fig. 2 (Color online) Rational breather wave solution (26) for
Eq. (3) by choosing suitable parameters: m1 = 1.35,m7 =
1, y = 0, z = 0. a Perspective view of the real part of the wave. b

The overhead view of the wave. c The wave propagation pattern
of the wave along the x axis

Then, substituting (24) and (25) into u = [ln F]x yields
the following solutions

u =
4

[
m2

1x − m7
3m2

1
y + m7

(
36m6

1+m7
)

108m6
1

z + m7
6m2

1
t

]

1 +
(
m1x − m7

3m3
1
y + m7

(
36m6

1+m7
)

108m7
1

z + m7
6m3

1
t

)2

+ m7t2
.

(26)

For the solution (26), we call it as the new-type ratio-
nal breather wave solution [27]. By choosing appropri-
ate parameters, its graph is plotted in Fig. 2. We can
show that Fig. 2a exists a pair of peaks in the opposite
direction. Furthermore, it is also called as the bright and
dark soliton waves. We can see that its one down wave
locates below the plane wave. Then, it can be said that
the rational breather wave is not a kinky wave. Actu-
ally, the wave is a local form in the (x, t) plane. There
exist two similar wave shapes of the rogue wave. So it
can also be called as the two-dimensional rogue wave
for Eq. (3).

We consider

ũ = ux =
4

[
−

(
m2

1x − m7
3m2

1
y + m7

(
36m6

1+m7
)

108m6
1

z + m7
6m2

1
t

)2

+ m2
1m7t2 + m2

1

]

[
1 +

(
m1x − m7

3m3
1
y + m7

(
36m6

1+m7
)

108m7
1

z + m7
6m3

1
t

)2

+ m7t2

]2 . (27)

It is not hard to find that ũ is also a solution of Eq. (3).
By choosing proper parameters, we provide one group
of graphs related to the solution (27) shown in Fig. 3.
It is a rogue wave form. We can find that upper dom-
inant peak and two holes exist in Fig. 3a. Its velocity,
amplitude and width keep unchanged, in the process of
propagation. We also find that the symmetry of rogue
wave will be influenced by some parameters. More-
over, it is the highest wave in these waves, and forming
in a very short time. Figure 3b shows its density. Then,
Fig. 3c depicts the corresponding amplitude of ũ in
different time.

5 Multi kink solitary wave solutions

In this part,we consider the kink solitarywave solutions
for Eq. (3) by expanding F about the small parameter
ε given by

F = 1 + εF (1) + ε(2)F2 + ε3F (3) + · · · . (28)

Substituting (28) into (8) and equating the coefficients
of all powers of εn to zero, one has
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Fig. 3 (Color online) Rogue wave solution (27) for Eq. (3) by
choosing suitable parameters: m1 = 1.35,m7 = 1, y = 0, z =
0. a Perspective view of the real part of the wave. b The overhead

view of the wave. c The wave propagation pattern of the wave
along the x axis

F (1)
t y − F (1)

3xy + F (1)
2t + 3F (1)

xz = 0, (29)

2
(
F (2)
t y − F (2)

3xy + F (2)
2t + 3F (2)

xz

)

= −
(
Dt Dy − D3

x Dy + D2
t + 3Dx Dz

)
F (1) · F (1),

(30)(
F (2)
t y − F (2)

3xy + F (2)
2t + 3F (2)

xz

)

= −
(
Dt Dy − D3

x Dy + D2
t + 3Dx Dz

)
F (1) · F (2).

(31)

From the formula (29), we can obtain a solution of F
given by

F = 1 + exp(ξ1), (32)

in which ξ1 = k1x + l1y + α1z + ω1t + δ1. Sub-
stituting F into bilinear form (8), we get ω1 =
−l1±

√
l21+4k21 l1−12k1α1

2 , (� = l21 + 4k21l1 − 12k1α1 ≥ 0).
Taking F (2) = F (3) = · · · = 0, then one kink soliton
solution is given by

u1 = 2
[
ln (1 + exp(ξ1))

]
x . (33)

According to the above way, one can find the double
kink soliton solutions of (3) as follows

u2 = 2
[
ln (1 + exp (ξ1)

+ exp (ξ2) + exp (ξ1 + ξ2 + C12))
]
x , (34)

ξi = ki x + li y + αi z + ωi t + δi ,

ωi =
−li ±

√
l2i + 4k2i li − 12kiαi

2
, (35)

C12 = (ω1 − ω2) (l1 − l2) − (k1 − k2)3 (l1 − l2) + (ω1 − ω2)
2 + 3 (k1 − k2) (α1 − α2)

(ω1 + ω2) (l1 + l2) − (k1 + k2)3 (l1 + l2) + (ω1 + ω2)
2 + 3 (k1 + k2) (α1 + α2)

, (36)

where ki , li , αi , δi are some constants (i = 1, 2).
Similarly, the N -kink solitary wave solutions are

derived by

uN = 2[ln F]x , (37)

F =
∑

ρ=0,1

exp

⎛
⎝

N∑
j=1

ρiξi +
∑

1≤i< j≤N

ρiρ jCi j

⎞
⎠ ,

(38)
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Fig. 4 (Color online) One kink soliton solution (33) for Eq.
(3) by choosing suitable parameters: k1 = 1.2, l1 = 1.2, δ1 =
0, α1 = 0.02. a Perspective view of the real part of the wave. b

The overhead view of the wave. c The wave propagation pattern
of the wave along the x axis

Fig. 5 (Color online) Double kink soliton solution (34) for Eq.
(3) by choosing suitable parameters: k1 = − 1.1, k2 = 1, l1 =
1, l2 = 2, α1 = 2, ξ2 = − 1.1, α2 = 2, ω1 = 1, ω2 = − 2, δ1 =

− 1.2, δ2 = − 1. a Perspective view of the real part of the wave.
bThe overhead view of thewave. cThewave propagation pattern
of the wave along the x axis

Ci j =
(
ωi − ω j

) (
li − l j

) − (
ki − k j

)3 (
li − l j

) + (
ωi − ω j

)2 + 3
(
ki − k j

) (
αi − α j

)
(
ωi + ω j

) (
li + l j

) − (
ki + k j

)3 (
li + l j

) + (
ωi + ω j

)2 + 3
(
ki + k j

) (
αi + α j

) , (39)

The graphics of one kink soliton solution (33) and
double kink soliton solutions (34) for Eq. (3) are plotted
in Figs. 4 and 5 by choosing suitable parameters.

6 Interaction phenomena

In this section, by considering the characteristics of
interaction between lump and kink wave solutions, we
discuss their corresponding phenomena. By introduc-
ing a dependent transformation u = 2(ln f )x , and
based on the Bell’s polynomial theory [42,46,47], we

can also obtain the same bilinear form of (3 + 1)-
dimensional BKP–Boussinesq equation

(
Dt Dy − D3

x Dy + D2
t + 3Dx Dz

)
f · f

= 2 fty f − 2 ft fy − 2 f3xy f + 6 fxxy fx

− 6 fxy fxx + 2 f3x fy + 2 ft t f

− 2 f 2t + 6 fxz f − 6 fx fz = 0. (40)

In order to construct the interaction solutions, based on
the results in [33,39], we take following form
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f = g2 + h2 + k cosh(m) + a11, (41)

where g, h and m are, respectively, expressed by

g = a1x + a2y + a3z + a4t + a5, (42)

h = a6x + a7y + a8z + a9t + a10, (43)

m = k1x + k2y + k3z + k4t, (44)

and ai , (i = 1, 2, . . . , 11), k, k1, k2, k3, k4 are all the
real parameters. Substituting Eqs. (42)–(44) into the
bilinear Eq. (40), then we obtain a polynomial equa-
tion about x , y, z and t . Collecting the coefficients of
the terms, such as x, y, z, t, cosh(m) and sinh(m), and
taking them to be zero, we get a class of algebraic equa-
tions. Solving them, two cases about these parameters

are derived. Substituting the limitations in Cases 1 and
2 into the Eq. (41) and u = 2(ln f )x , we can obtain
these interaction solutions between lumpandkinkwave
solutions for the BKP–Boussinesq equation.

Case 1. The limitations are provided by

a1 = a5 = a10 = a11 = 0, a j = a j ,

( j = 2, 3, 4, 6, 7, 8, 9)

k = k, ki = ki , (i = 1, 3, 4), k2

= −3a6a7k21 + a2a4 + a24 + 3a6a8 + a7a9 + a29
3a26k1

.

(45)

Then, we get the interaction solution as follows

u =
2a6 (a6x + a7y + a8z + a9t) + kk1 sinh

(
k1x + −3a6a7k21+a2a4+a24+3a6a8+a7a9+a29

3a26k1
y + k3z + k4t

)

(a2y + a3z + a4t)2 + (a6x + a7y + a8z + a9t)2 + k cosh

(
k1x + −3a6a7k21+a2a4+a24+3a6a8+a7a9+a29

3a26k1
y + k3z + k4t

) .

(46)

The graphic of the interaction solution (46) for Eq.
(3) is plotted in Fig. 6 by choosing suitable parameters.

Case 2. The limitations are provided by

a1 = a4 = a10 = 0, a j = a j , ( j = 2, 5, 6, 7) ,

a3 = a2
(
k31 − k4

)

3k1
,

a8 = −
(
a6k31 − a6k4 − a7k1

) (
k31 − k4

)

3k21
,

a9 = −a6
(
k31 − k4

)

k1
, a11 = −a25 , k = k, ki = ki ,

(i = 1, 3, 4) , k2 = −a7k1
a6

.

(47)

Then, we get the corresponding interaction solution as
follows

u =
2a6 (a6x + a7y + a8z + a9t) + kk1 sinh

(
k1x − a7k1

a6 y + k3z + k4t
)
]2

(
a2y + a2

(
k31−k4

)
3k1

z + a5

)2

+
(
a6x + a7y −

(
a6k31−a6k4−a7k1

)(
k31−k4

)
3k21

z − a6
(
k31−k4

)
k1

t

)2

+ k cosh
(
k1x − a7k1

a6 y + k3z + k4t
)

− a25

.

(48)

The graphic of the interaction solution (48) for Eq.
(3) is plotted in Fig. 7 by choosing suitable parameters.

As shown in Figs. 6 and 7, in a certain period of
time, we can see that the kink waves exist in (x, y)
plane. Then, the lump appears from them, and contin-
uously removes in the double kink waves. In reality,
the oscillation amplitude of lump starts to increase at a
moment, and detaches from one of the kink waves. It
is a gradual process, which can be reflected in Fig. 7.
From Figs. 6a2–b2, 7a2–b2, when t = 0, the level of
separation reaches to a peak. Besides, lump locates in
the center of double kink waves. Then, we find that the
lump slowly closes to the another kink wave. Its oscil-
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Fig. 6 (Color online) Interaction solution (46) for Eq. (3) by
choosing suitable parameters: a2 = 7200

1357 , a3 = 1, a4 = 3, a6 =
12, a7 = − 1

68 , a8 = 1, a9 = 1, k = 2, k1 = 5
6 , k3 = 2, k4 =

2, (c1) t = − 3, (c2) t = 0, (c3) t = 3. a Perspective view of
the real part of the wave. b Contour plot. c The wave propagation
pattern of the wave along the x axis

lation amplitude gradually reduces with the distance of
the lump and the kinkwave getting smaller and smaller.
Finally, the kink wave swallows the lump. The double
kink waves will revert to the initial state. We can see
that the velocity of final lumpwill become smaller than
its initial state. Maybe it is affected by the kink solitary
waves.

7 Conclusions and discussion

In this work, we have systematically investigated the
(3 + 1)-dimensional BKP–Boussinesq equation. By
using the Hirota’s bilinear method, we have derived the
bilinear expression and Bäcklund transformation of the
equation. Based on that, we have obtained its traveling
wave solutions, including rational solutions and expo-
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Fig. 7 (Color online) Interaction solution (48) for Eq. (3) by
choosing suitable parameters: a2 = 7, a5 = 1, a6 = 12, a7 =
1, k = 2, k1 = 5

6 , k3 = 2
3 , k4 = 1, (c4) t = − 8, (c5) t =

0, (c6) t = 8. a Perspective view of the real part of the wave. b
Contour plot. c The wave propagation pattern of the wave along
the x axis

nential wave solutions. Furthermore, an effective way
is proposed to get its kink solitarywave solutions, ratio-
nal breather solution and rogue wave solution. Finally,
we have shown that a special function can be provided
to get the interaction solutions between the lump and
double kink waves.

From our results obtained in this paper, the method
presented here has been proved to be a very effective

method for finding analytical solutions of NLEEs. It is
hoped that our results can enrich the theories for the
associated NLEEs in mathematical physics.
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