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Abstract In this paper dynamics of a non-ideal
mechanical system which contains a motor, which is
a non-ideal source, and an oscillator with slow time
variable mass is investigated. Due to the insufficient
energy of the energy source the one degree-of-freedom
oscillator has an influence on the motion of the motor.
The system is modeled with two coupled second order
equations with time variable parameters where the
motor torque is assumed as a linear function of angu-
lar velocity. The equations are transformed into four
first order differential equations. An analytical proce-
dure for obtaining the approximate averaging equations
is developed. Based on these equations the amplitude-
frequency relations are determined. In the paper the
equations of motion of the non-ideal mass variable
oscillatory system are solved numerically, too. The
approximate analytical solutions are compared with
numerically obtained ones. The difference is negligi-
ble. In the paper the qualitative analysis of the model
is done. It is shown that due to mass variation the num-
ber and the position of the ‘almost’ steady-state posi-
tions are varying. By increasing or decreasing of mass
the number of almost steady-state positions is varying.
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Based on the obtained results it is suggested to develop
the control method for motion in the non-ideal mass
variable oscillatory system.
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1 Introduction

There is a significant number of equipment and
machines which can be modeled as one degree-of-
freedom oscillators with time variable mass (see [1,2]).
The model corresponds for the leaky tap [3], to the
micro-cantilever-based resonators inMEMS,where the
mass disturbance is induced by adsorption and des-
orption of surrounded molecules [4], for damped mass
variable oscillatory systems [5,6] etc. Themodel is suit-
able to explain some phenomena in physics [7], chem-
istry [8], biology [9,10] and mechanical engineering
considering centrifuges, sieves, pumps, compressors,
transportation devices, etc. In the system mass is vary-
ing slowly during time. The device is usually driven
with a motor. The excitation force is supposed to be
a periodic time function usually a harmonic one. For
the most device motor system the excitation force of
the motor has an influence on the working device, but
the influence of the device on the motion of the motor
is neglected [11,12]. For that case it is said that the
energy source and the system are ideal. However, in the
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real systems there is an interaction between the driving
source and the working machine. The driving source
has an influence on the device, but the device affects
the motion of the motor. This source and the system
are called non-ideal ones [13] This type of interaction
is widely investigated (see for example [14–16] and
the references in them).Unfortunately,mass variable—
motor non-ideal systems are not considered, yet, in
spite of the fact that the problem of insufficient driv-
ing energy in the mass variable system also exists. Our
interest is to analyze the influence of the mass variation
on the properties of the non-ideal system.

The aim of the paper is to determine the effect of
mass variation in the non-ideal mass variable machine-
motor system. Due to the non-ideal source the mathe-
matical model of the system contains beside equations
whose number corresponds to degrees-of-freedom, an
additional differential equationwhich defines themotor
motion due to interaction of the driving torque and
oscillator. In this paper the one degree-of-freedom
oscillator and the motor with linear torque are consid-
ered. The model has two coupled second order differ-
ential equations. In the paper the equations are quali-
tatively and quantitatively analyzed, and the influence
of the mass variation parameters is investigated. Based
on the obtained results the prediction of motion of the
system is possible.

The paper is divided in five sections. In the Sect. 2,
the model of the oscillator - motor system is formed.
Twocoupled secondorder equations.with timevariable
parameters describe themotion of the system.The reac-
tive force, which is the product of the mass time deriva-
tive and of the velocity of mass variation, is also taken
into account. Vibrations close to the resonant regime
are considered. The problem is not easy to be solved
analytically.Anapproximate analytical solvingmethod
is developed based on thewell-known averaging proce-
dure. The obtained averaged equations are applied for
analyzing of the continuous slow variable mass non-
ideal systems. In Sect. 3 the qualitative analysis of the
non-ideal system with oscillator with variable mass is
introduced. The continual mass variation is substituted
with the discontinualmass variation in small time inter-
vals. Then the motion of the system is investigated as a
succession series of steady-state dynamics of the non-
ideal system with the oscillator with constant mass. In
Sect. 4 the analytically obtained results in Sect. 2 are
compared with numerical ones for the cases discussed
in Sect. 3. The peaks in amplitude-frequency and torque

Fig. 1 Model of the non-ideal mass variable system

diagrams are obtained. Based on the obtained results
the quantitative description of the phenomena is given.
The influence of the system parameters on the oscilla-
tion properties of the system is discussed. The paper
ends with conclusion.

2 Oscillator with time variable mass driven by a
non-ideal source

In Fig. 1 the model of an oscillator with time variable
mass m1 connected with a motor which is a non-ideal
energy source is plotted. The motor is settled on a cart
whose mass m1 is varying in time due to leaking of the
contain with velocity u. It is supposed that the mass
variation is slow in time. The connection of the oscil-
lating cart to the fixed element has the rigidity k and
damping c.

The motor has the moment of inertia J , unbalance
m2 and eccentricity d. The excitation torque of the
motor,M (ϕ̇), is the function of the angular velocity ϕ̇

M (ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (1a)

where �0 is the steady-state angular velocity. This
mathematical model corresponds to asynchronous AC
motor [17].

To describe the motion of the system, let us assume
the two generalized coordinates: the displacement of
the oscillator x and the rotation angle of the motor ϕ.
Variation of the mass of the oscillator is assumed to be
slow and to be the function of the slow time τ = εt ,
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where ε << 1 is a small constant parameter. Equations
of motion of the system with time variable mass are in
general [2]

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
= Qx + QR,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
= Qϕ, (2)

where T is the kinetic energy,U is the potential energy,
Qx and Qϕ are generalized forces and QR is the gen-
eralized reactive force caused by mass variation. If the
mass is added or separated with the absolute velocity
u in x direction, the generalized reactive force is the
product of the velocity u and mass variation dm1/dt ,
i.e.,

QR = dm1

dt
u. (3)

The non-conservative force in x direction is the damp-
ing force Qx = − cẋ with the damping coefficient
c, while the generalized force Qϕ corresponds to the
torque M(ϕ̇) applied to motor. The kinetic energy of
the system is

T = 1

2
[m1(τ ) + m2]ẋ2 + 1

2
(J + m2d

2)ϕ̇2

−m2dẋ ϕ̇ sin ϕ. (4)

and the potential energy of the system is

U = kx2

2
. (5)

Using (4) and (5) and also (3) equations of motion are
due to (2)

[m1(τ ) + m2]ẍ + cẋ + kx

= dm1(τ )

dt
(u − ẋ)

+m2d
(
ϕ̈ sin ϕ + ϕ̇2 cosϕ

)
, (6)(

J + m2d
2
)

ϕ̈ = m2dẍ sin ϕ + M (ϕ̇) . (7)

Assuming that the velocity u is sufficiently small,
Eqs. (6) and (7) transform into

[m1(τ ) + m2]ẍ + cẋ + kx

= −dm1(τ )

dt
ẋ + m2d

(
ϕ̈ sin ϕ + ϕ̇2 cosϕ

)
, (8)(

J + m2d
2
)

ϕ̈ = m2dẍ sin ϕ + M (ϕ̇) . (9)

Let us rewrite (8) and (9) into

ẍ + ω2(τ )x = − εζ(τ )ẋ − ε

m1(τ ) + m2

dm1(τ )

dτ
ẋ

(10)

+ εμ(τ)
(
ϕ̈ sin ϕ + ϕ̇2 cosϕ

)
,

ϕ̈ = εηẍ sin ϕ + εγM (ϕ̇) , (11)

where

ω2(τ ) = k

m1(τ ) + m2
, εζ(τ ) = c

m1(τ ) + m2
, εγ

= 1

J + m2d2

εμ(τ) = m2d

m1(τ ) + m2
, εη = m2d

J + m2d2
. (12)

In Eqs. (10) and (11) the right-hand side terms are of the
order of small parameter ε. Analyzing the dimension-
less parameters (12) it is obvious that the dimensionless
frequency ω, damping ζ and excitation γ are functions
of slow time. Namely, the mass variation affects these
values. To give the correct analyzes of the problem it
is necessary to solve Eqs. (10) and ( 11).

2.1 First order differential equations

Let us transform the second order differential Eqs. (10)
and (11) into a system of first order ones by introduc-
ing the new variables a(t), ϕ(t), ψ(t) and �(t) which
satisfy the relations

x = a(t) cos(ϕ(t) + ψ(t)), (13)

ẋ = − a(t)ω(τ) sin(ϕ(t) + ψ(t)), (14)

and

ϕ̇(t) = �(t). (15)

Using the time derivative of (13)

ẋ = ȧ(t) cos(ϕ(t) + ψ(t)) − a(t)(ϕ̇(t)

+ ψ̇(t)) sin(ϕ(t) + ψ(t)). (16)

and comparing (16) with (14) the following constraint
is obtained

0 = ȧ cos(ϕ + ψ) − a(� + ψ̇) sin(ϕ + ψ), (17)

where we have the simplified notation a = a(t), ψ =
ψ(t), ϕ = ϕ(t), � = �(t). Substituting (13), (14) and
the time derivative of (14)
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ẍ = − (ȧω+aω̇) sin(ϕ+ψ)−aω(ϕ̇+ψ̇) cos(ϕ + ψ),

into (10) and (11), we have

− (ȧω + aω̇) sin(ϕ + ψ) − aω(� + ψ̇) cos(ϕ + ψ)

= εζaω sin(ϕ + ψ)

+ ε

m1(τ ) + m2

dm1(τ )

dτ
aω sin(ϕ + ψ)

+ εμω2 cosϕ + ε2 . . . (18)

�̇ = − εη[ȧ sin(ϕ + ψ)

+ a(ω + ψ̇) cos(ϕ + ψ)]ω sin ϕ

+ εγM (ϕ̇) + ε2 . . . (19)

Equations (15), (17), (18) and (19) represent the first
order differential equations of motion which are the
transformed version of (10) and (11) in new variables.
After some modification we have (15) and

ȧ = −
(

εζa + ε

m1(τ ) + m2

dm1(τ )

dτ
a

+ εa

ω

dω

dτ

)
sin2(ϕ + ψ)

− εμ
�2

ω
sin(ϕ + β) cos ϕ, (20)

ψ̇ = (ω − �) − εμ
�2

aω
cosϕ cos(ϕ + ψ)

− sin 2(ϕ + ψ)

2aω

(
εa

dω

dτ
+ εζaω

+ εaω

m1(τ ) + m2

dm1(τ )

dτ

)
, (21)

�̇ = −ε
dω

dτ
+ εγM (ϕ̇)

− εηaω2 cos(ϕ + ψ) sin ϕ. (22)

Equations (15) and (20)–(22) are coupled strong non-
linear equations.

2.2 Averaging procedure

For simplicity let us introduce the averaging over the
period of the trigonometric function ϕ. The averaged
Eqs. (20)–(22) are

ȧ = −1

2

(
εζa + εa

m1(τ ) + m2

dm1(τ )

dτ
+ εa

ω

dω

dτ

)

− 1

2
εμ

�2

ω
sinψ, (23)

ψ̇ = (ω − �) − εμ�2

2aω
cosψ, (24)

�̇ = − ε
dω

dτ
+ εγM (ϕ̇) + 1

2
εηaω2 sinψ. (25)

Using the relation

2

ω(τ)

dω(τ)

dτ
= − 1

m1(τ ) + m2

dm1(τ )

dτ
, (26)

the Eq. (23) reads

ȧ = −1

2

(
εζa − εa

ω

dω

dτ
+ εμ

�2

ω
sinψ

)
. (27)

In (24), (25) and (27) the frequency ω is the function
of the ‘slow time’ τ .

3 Influence of mass variation on the dynamics of
the system

Let us consider the system with constant mass when
m1 = const. Then the dimensionless values ω, ζ and
γ in (12) are also constant. Assuming that the mass
of the system is constant and omitting the terms with
the second and higher order of the small parameter ε,
relations (10) and (11) simplify into

ẍ + ω2x = −εζ ẋ + εμϕ̇2 cosϕ, (28)

ϕ̈ = εηẍ sin ϕ + εγM (ϕ̇) . (29)

According to (20)–(22) and to transformations (13)
–(15), Eqs. (28) and (29) are rewritten in new variables
a, ψ and �

ȧ = −εζa sin2(ϕ + ψ)

− εμ
�2

ω
sin(ϕ + ψ) cosϕ, (30)

ψ̇ = (ω − �) − εμ
�2

aω
cos(ϕ + ψ) cosϕ

− εζ
sin 2(ϕ + ψ)

2
, (31)

�̇ = εγM (�) − εηaω2 cos(ϕ + ψ) sin ϕ. (32)

Equations (30)–(32) are coupled and strong nonlinear.

3.1 Averaging procedure. Steady-state motion

After averaging over the period of the trigonometric
function ϕ the averaged equations follow as
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Oscillator with variable mass excited 677

Fig. 2 a Intersection of the
amplitude-frequency
diagram and various values
of motor torque; b
intersection of the motor
torque and
amplitude-frequency
diagrams for various values
of mass

ȧ = −1

2
εζa − 1

2
εμ

�2

ω
sinψ, (33)

ψ̇ = (ω − �) − εμ�2

2aω
cosψ, (34)

�̇ = εγM (ϕ̇) + 1

2
εηaω2 sinψ, (35)

which correspond to (24), (25) and (27)where dm1(τ )
dτ =

0, i.e., dω
dτ = 0.

Let us consider the case when discontinual mass
variation occurs. The transient motion is eliminated,
and the steady-state motion, when ȧ = 0, ψ̇ = 0 and
�̇ = 0, is analyzed. Equations (33)–( 35) transform
into

εμ�2

2ω
sinψ = −1

2
εζa, (36)

εμ�2

2ω
cosψ = (ω − �)a, (37)

1

2
εηaω2 sinψ = −εγM (ϕ̇) . (38)

Using relations (36) and (37) the amplitude -frequency
relation is obtained

a = εμ�2

ω
√

(εζ )2 + 4(ω − �)2
. (39)

Eliminating ψ in the Eqs. (36) and (38), we have

(εη)(εζ )ω3

2εμ�2 a2 = εγM (ϕ̇) ≡ εγ M0

(
1 − �

�0

)
.

(40)

Based on (39) and (40) the influence of the mass vari-
ation for the small amount is analyzed.

3.2 Qualitative analysis

Let us compare the properties of the systems with var-
ious values of mass. The characteristic points, which
represent the intersection of curves (39) and (40), will
be analyzed. In Fig. 2 the points of intersection of
amplitude-frequency and characteristic curve are pre-
sented: in Fig. 2a the intersection of an amplitude-
frequency curve and various characteristic curves and
in Fig. 2 b for one characteristic curve and amplitude-
frequency curves for various values ofmass are plotted.

InFig. 2a the intersectionof the amplitude-frequency
diagram for m1 = m10 and various values of motor
torque are plotted. It can be seen that there may be one,
two (for boundary cas) or three points of intersection
(two of them are stable and one is unstable). In Fig. 2b
only one motor characteristic for m1 = m10 is plotted.
It is worth to say that the influence of the small mass
variation on the motor characteristic is negligible.

The intersection of this motor characteristic and
of amplitude-frequency diagrams obtained for various
values of mass m1 is plotted in Fig. 2b. It is seen that
for m1 = m10 there are three intersection points. If
the mass is higher than m10, i.e., m1 = 1.1m10, the
amplitude-frequency diagram is moving to left and the
number of intersections decreases from three to only
one. If the mass is smaller thanm10, i.e.,m1 = 0.9m10,
the amplitude-frequencydiagram ismoving to right and
the number of intersection points decreases from three
to one.

It can be concluded that the value of mass has an
influence on the number and position of characteristic
points.

Besides, it is concluded that the mass variation has
an influence on the amplitude of vibration, i.e., on
the position of the intersection points. The intersec-
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Fig. 3 The motion of the lower Intersection point for increasing mass: a m1 = m10, b m1 = 1.03m10 and c m1 = 1.06m10

Fig. 4 The motion of the upper Intersection point for increasing mass: a m1 = m10, b m1 = 1.03m10 and c m1 = 1.06m10

tion points correspond to the so-called almost steady-
state positions. In Fig. 3a–c the influence of mass
increase on the position of the characteristic point with
small amplitude and high frequency (lower steady-state
position) is plotted. The amplitude of the steady-state
position decreases from 1 to 3, while the frequency
increases. The second characteristic point, the so-called
upper steady-state position, also moves due to mass
increase (see Fig. 4a–c). First the intersection point
moves toward higher amplitude and smaller frequency
(point 2) and then jumps to the position 3 with small
amplitude and high frequency.

4 Comparison of the analytical and numerical
solution

Let us compare the previously obtained results with the
numerical solution of the equations of motion (10) and
(11). We assume the mass-time variation diagram (see
Fig. 5). For t ∈ [0, 200] the mass is constant, while for
t > 200 mass is increasing for ε > 0 and decreasing
for ε < 0.

Fig. 5 Mass–time diagrams

The parameters of the system are: J = 1, m10 = 1,
m2 = 0.1, k = 1.1, c = 0.1, M0 = 0.1 and d = 0.5.
The solution of (10) and (11) is obtained using the
Runge-Kutta procedure. Three problems are consid-
ered: one, the mass is constant for the time interval
t ∈ [0, 200), second when the mass of the oscillator
is slowly increasing (ε > 0) for t � 200, and third,
when the mass is slowly decreasing (ε < 0) in time
fort � 200
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Fig. 6 a Frequency-time
diagram for upper
steady-state position, b
displacement-time diagram
for upper steady-state
position, c frequency-time
diagram for lower
steady-state position and d
displacement-time diagram
for lower steady-state
position. Mass is constant
(gray line) and mass is
increasing (black mass)

In Fig. 6 the displacement and frequency time his-
tory diagrams are plotted for the case when mass
increases in time and ε = 0.001 > 0. For the diagrams
in Fig. 6a, b the initial conditions are x(0) = 0, ẋ(0) =
0, ϕ(0) = 0.001 and ϕ̇(0) = 0,while for Fig. 6c, d
the initial conditions are x(0) = 0, ẋ(0) = 0, ϕ(0) =
0.001 and ϕ̇(0) = 1.09. The first group of initial values
correspond to the so-called upper steady-state position,
while the second to the ‘lower’ steady-state position.

It is worth to say that dependently on the initial
conditions there are two steady-state frequency - time
diagrams. This conclusion was already obtained in the
previous section by applying the qualitative analysis. In
this section both steady-state positions are investigated.
In Fig. 6a the frequency-time diagram for upper steady-
state position is plotted. For the constant mass, after
the transient motion, the frequency is constant while
for the mass increase the frequency increases, too. In
Fig. 6b the corresponding displacement-time diagram
for the upper steady-state position is shown. For the
constant mass (gray line) the displacement has the con-
stant value. For the case when the mass is increasing
the amplitude decreases (black line). The same ten-
dency of motion is evident for the lower steady-state
position (Fig. 6c, d).

In Fig. 7 the case when the mass is decreasing with
parameter ε = − 0.001 < 0 is plotted. Two groups
of initial values are considered: in Fig. 7a, b it is

x(0) = 0, ẋ(0) = 0, ϕ(0) = 0.001 and ϕ̇(0) = 0 and
in Fig. 7c, d it is x(0) = 0, ẋ(0) = 0, ϕ(0) = 0.001
and ϕ̇(0) = 1.09.

Analyzing Fig. 7a, c it can be seen that if the mass
is constant, the frequency-time diagram is constant,
too, while if the mass decreases the frequency tends
to decrease in time. Motion around two steady-state
positions exists. The upper steady-state position (gray
line; Fig. 7b) is constant for constant mass, but the
mass decrease causing the value of displacement to
decrease in time (gray line). For the lower steady-state
position which corresponds to the constant mass the
displacement-time (gray line) is constant. However,
due to mass decrease the displacement increases from
that steady-state position up to the upper steady-state
one and then decreases in time (black line) (Fig. 7d).

It is of interest to compare the analytical solutions
of the averaged Eqs. (15), (24), (25) and (27) with
numerical solution of (10) and (11). In Fig. 8 the
displacement-time diagrams for the increasing mass
around the both steady-state positions are plotted. The
analytically obtained result (full black line) is on the top
of the numerical solution (gray line). The agreement is
excellent.

In Fig. 9 the displacement-time diagrams obtained
analytically (black line) and numerically (gray line) for
the case when the mass is decreasing are plotted. The
both almost steady-state positions are considered. For
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Fig. 7 a Frequency-time
diagram for upper
steady-state position, b
displacement-time diagram
for upper steady-state
position, c frequency-time
diagram for lower
steady-state position and d
displacement-time diagram
for lower steady-state
position. Mass is constant
(black line) and mass is
decreasing (gray mass)

Fig. 8 x − t diagrams
obtained analytically (black
line) and numerically (gray
line) for increasing mass
and initial conditions
x(0) = 0, ẋ(0) = 0,
ϕ(0) = 0.001: a ϕ̇(0) = 0
and b ϕ̇(0) = 1.09

Fig. 9 x − t diagrams
obtained analytically (black
line) and numerically (gray
line) for decreasing mass
and initial conditions
x(0) = 0, ẋ(0) = 0,
ϕ(0) = 0.001: a ϕ̇(0) = 0
and b ϕ̇(0) = 1.09

the upper steady-state solution the agreement between
analytical averaged solution and of the numerical solu-
tion is better than for the lower steady-state position.
However, for higher time values the analytical solution
is the envelope of the oscillatory numerical result. The
tendency of amplitude is to increase with decrease in
mass in time.

In Fig. 6b, d the transition phenomena from one
steady-state motion to another due to mass increase
is evident. The transient from the steady-state of the
system with constant mass to the upper steady-state
is jump-like (see Fig. 6b), while to the lower steady-
state is monotone (see Fig. 6d). The same conclusion is
obtained analytically by analyzing the amplitude vari-
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ation shown in Fig. 8a, b. It is worth to say that the
transient from one to another steady states in the sys-
tems where mass is decreasing is different. The tran-
sition from the steady-state which corresponds to con-
stant mass to the steady states of decreasing mass is
much more gradual (see Fig. 7b, d). The same result is
obtained analytically and presented in Fig. 9.

5 Conclusion

It can be concluded:

1. There is an interaction between the amplitude-
frequency property of the non-ideal mass vari-
able system and the driving torque. Mass variation
causes variation of extreme values of the ampli-
tude of vibration in time. Besides, in contrary to the
ideal systems, mass variation causes the change in
number of the ‘almost’ steady-state motions of the
system. The change is connected with jump in the
amplitude-frequency property of the system. The
phenomenon is usually called Sommerfeld effect.
It is concluded that it is detected in the investigated
non-ideal system with time variable mass, too.

2. The intersection between the amplitude-frequency
diagram and the motor torque characteristics rep-
resents the ‘almost’ steady-state position. Number
of these intersections varies with mass variation in
time and may be one or three: two of them are sta-
ble and one is unstable. This number is varying
in time with mass variation. Namely, if the mass
is increasing the amplitude-frequency diagram is
moving to left and the number of intersections with
the torque characteristics may decrease from three
to only one. In opposite, if the mass is decreas-
ing, the amplitude-frequency diagram is moving to
right.

3. The ‘almost’ steady-state vibration is with time
variable amplitude. If the mass is increasing, the
amplitude of vibration is decreasing. Otherwise, if
the mass is decreasing the amplitude is increasing.

4. The influence of the slow variable mass in time on
the motor characteristics is negligible.

5. The qualitative analysis of the non-ideal system
with mass variable oscillator is suitable to be done
by analyzing the series of equations of motion with
constant mass but successively assumed increasing
or decreasing mass values.

6. The solution of the averaged equations of motion
for the non-ideal system with time variable mass is
on the top of the exact numerical solution. The dif-
ference between analytical and numerical solution
is negligible.

7. Finally,we concluded that themass variation is suit-
able to be applied as a method for control of motion
in non-ideal systems.
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