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Abstract In this study, boundary control is consid-
ered for an Euler–Bernoulli beam subject to bounded
input, bounded output, and external disturbances.
Throughutilizing thebackstepping technology, a bound-
ary control scheme is designed based on the original
partial differential equations to regulate the vibration
of the beam. An auxiliary system based on a smooth
hyperbolic function is designed to handle the impact of
the restricted input. And a barrier Lyapunov function
is adopted to eliminate the impact of output restriction.
It is proved that the input and output restrictions are
circumvented simultaneously. Simulations are demon-
strated for illustration.

Keywords Euler–Bernoulli beam · Input and output
restrictions · Distributed parameter system · Boundary
control

1 Introduction

The Euler–Bernoulli beam (EB) [1,2] is actually a infi-
nite dimensional system. It can be applied to delineate
a lot of flexible mechanical systems such as robotic
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manipulators [3,4]; moving strips [5]; flexible marine
risers [6]; and flexible wings [7]. For the past few
years, the dynamics and the control method design for
flexible systems built on the PDEs have been exten-
sively studied [8–13]. The asymptotic stability anal-
ysis of a coupled PDEs and ODEs is presented in
[12]. A boundary control scheme is designed for a
two-dimensional variable-length crane system under
the external disturbances and constraints to reduce the
coupled vibrations in [14]. An active control scheme
is proposed in [15] to suppress a flexible string, in
which a novel ‘disturbance-like’ term is designed to
deal with the input backlash. It can be proved that
the proposed control can prevent the constraint vio-
lation. In [1], a boundary controller is proposed for an
EB beam with external disturbance when the dynam-
ics are represented by PDEs. An integral BLF is used
in [16] to design cooperative control laws for a gantry
crane system that are descried by a hybrid PDE-ODE
system, and the tension is restricted. Although great
strides in the control for flexible mechanical systems
has been made, studies about how to resolve the prob-
lem of the input and output restrictions for PDEs are
rare. In practice, input and output restrictions are ubiq-
uitous in physical system when hardware constraints,
performance, and safety specifications are considered.
To deal with this problem, we will propose a boundary
control scheme for an EB beam under input and output
restrictions.

As we know, input restrictions, which is in the shape
of dead-zone, input restriction, and hysteresis, are usu-
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ally considered in some physics systems and studied
by many researchers [17–24]. And input restriction is
a main form. Previous studies have involved in con-
trol design in the presences of input saturation [25,26],
where nested saturated input functions are used to limit
inputs. For linear system, some researchers use linear
matrix inequalities (LMI) to design anti-windup con-
trollers [27,28]. To analyze and design control lawwith
input constraints for a parabolic PDEs systems, a gen-
eral framework based on Galerkin’s method and Lya-
punov techniques is developed in [29]. To deal with
the problem of trajectory tracking subject to restricted
input, a novel control law based on smooth hyperbolic
function is designed in [30]. However, the output con-
straint is not taken into account in the above litera-
ture when the input saturation is considered. In safety-
critical mechanical systems, exceeding the restrictions
will cause serious harm. For purpose of dealingwith the
problems of the bounded output, the BLF is an effective
method [31–34]. Moreover, in [35], adaptive boundary
control strategy is presented through using an auxiliary
system and a BLF to resolve the problem of input and
output constraints for a flexible string. In that paper, a
sign function is used to restrict the input signal, which
may cause more chattering. And when the states of the
auxiliary system is small, there is no proving the sta-
bility of the system. Some research works have been
carried out to study the problems of both input and out-
put constraints; however, the settlement of this problem
is still limited. Therefore, eliminating the impacts of
input and output constraints simultaneously for DPS is
still a challenge.

In this work, we investigate the vibration suppres-
sion problem for a flexible beam subject to input restric-
tion, output constraint, boundary disturbances, and dis-
tributed disturbance. The flexible beam is described by
PDEs. Based on the backstepping method, a BLF is
utilized to prevent the output constraint violation, and
a smooth hyperbolic function and an auxiliary system
with a Nussbaum function are designed to make up
for the nonlinear term caused by the input restriction.
Then the system stability is testified on the basis of
the Lyapunov’s direct method. And we can conclude
that the deflection eventually converges to an arbitrar-
ily small neighborhood around the origin with the pro-
posed control scheme. The main contributions in the
present paper are summarized.

(i) Boundary control with a smooth hyperbolic func-
tion and an auxiliary system is designed to stabilize an

Fig. 1 A typical flexible beam

EB beam based on the original PDEs under the condi-
tion of input restriction, output constraint, and external
disturbances;

(ii) Utilizing a barrier Lyapunov function, the sys-
tem is shown to be uniform bounded and the constraint
violation is prevented.

(iii) The system stability analysis which is on the
basis of Lyapunov approach need not simplify or dis-
cretize the PDEs.

Notations For clarity, we introduce the following nota-
tions as: (∗)x = ∂(∗)

∂x , (∗)xx = ∂2(∗)

∂x2
, (∗)xxx = ∂3(∗)

∂x3
,

(∗)xxxx = ∂4(∗)

∂x4
, (∗)t = ∂(∗)

∂t , (∗)t t = ∂2(∗)

∂t2
.

2 Problem formulation and preliminaries

A typical beam-based structure is shown in Fig. 1. The
left boundary of the flexible beam is assumed to be
fixed at origin. The control input u(t) is imposed on the
tip payload. And the flexible beam system is regarded
as the EB beam structure with flexible and damping
properties.

We first give the kinetic energy Ek(t) of the flexible
beam as

Ek = 1

2
ρ

∫ L

0
w2

t (x, t)dx + 1

2
mw2

t (L , t) , (1)

where m is mass of the tip payload,w(x, t) is displace-
ment of the flexible beam at time t and position x , L
and ρ are, respectively, length and mass per unit length
of the beam.

Then we obtain the potential energy of the beam as

Ep = 1

2
EI

∫ L

0
w2

xx (x, t)dx + 1

2
T

∫ L

0
w2

x (x, t)dx,

(2)
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where E I and T are bending stiffness and tension of
the beam.

The virtual work of the beam is given by

δW = −
∫ L

0
γbwt (x, t) δw (x, t) dx

+
∫ L

0
f (x, t) δw (x, t) dx

+ d(t)δw (L , t) + u(t)δw (L , t) , (3)

where the first term is the virtual work about damping
on the beam, the second and third terms are the vir-
tualwork about the distributed disturbances f (x, t) and
boundary disturbance d(t), and the last term is the vir-
tual work about control input u(t). And γb is damping
coefficient of the flexible beam. Using the Hamilton’s
principle

∫ t2

t1
(δEk(t) − δE p(t) + δW (t))dt = 0 (4)

where t1 and t2 are two time instants, t1 < t < t2 is the
integral interval, and δ (·) denotes the variation of (·),
by the calculation, we obtain the following governing
equation

ρwt t (x, t) + γbwt (x, t) + E Iwxxxx (x, t)

−T wxx (x, t) = f (x, t) (5)

and boundary conditions as

mwt t (L , t) − E Iwxxx (L , t) + T wx (L , t) = u(t) + d(t)
(6)

w(0, t) = wx (0, t) = wxx (L , t) = 0. (7)

In this paper, the model of the input restriction for
the beam is delineated as

u(t) = ug(u0(t)) = uM tanh

(
u0(t)

uM

)
(8)

where uM is a known bound of u(t) and u0(t) is the
designed control command.

For the convenience of control design, we present
the following assumptions for the subsequent develop-
ment.

Assumption 1 The disturbances f (x, t) and d(t) are
bounded so that there exist two positive constants f̄
and d̄ satisfying | f (x, t)| ≤ f̄ and |d(t)| ≤ d̄ .

Assumption 2 The control design is on the basis
of the assumption that w(L , t), wt (L , t), wx (L , t),
wxx (L , t), wxxx (L , t), wt x (L , t), wt xxx (L , t),
wt t x (L , t) and wt t xxx (L , t) are measurable.

Remark 1 In practice, all the signals in the control
design can be measured by sensors or obtained by a
backward difference algorithm. w(L , t) can be sensed
by a laser displacement.w′ (L , t) can be obtained by an
inclinometer, andw′′′ (L , t) can bemeasured by a shear
force sensors. Time and spatial variations of these sen-
sor measurements can be calculated with a backward
difference algorithm. Such measurements and higher-
order variations can introduce noise, which will affect
the control implementation.

Assumption 3 The kinetic energy of the EB beam
described by (1) is assumed to be bounded∀t ∈ [0,∞),

and ∂q+1w(x,t)
∂t∂xq is assumed to be bounded for t > 0,

∀x ∈ [0, L), q = 0, 1, 2, 3.

Assumption 4 The potential energy of the EB beam
described by (2) is assumed to be bounded∀t ∈ [0,∞),
and ∂ pw(x,t)

∂x p is assumed to be bounded for t > 0, ∀x ∈
[0, L), p = 2, 3, 4.

3 Control design and analysis

The control targets of designing controller in this study
are: (1) to restrain displacement w(x, t) of the beam
subject to input and output restrictions, and external
disturbances; (2) to satisfy the bounded output condi-
tion |w(L , t)| < b, where b is the constraint.

In this part, the backstepping method [36] will be
utilized to design u(t) and the Lyapunov approach will
be applied to prove the system’s stability.

As the usual backstepping approach, the following
transform of coordinate is made:

z1 = x1 = w(L , t) (9)

z2 = x2 − τ1 = wt (L , t) − τ1 (10)

z3 = ug(u0) − τ2, (11)

where τ1 and τ2 are the virtual control.
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Step 1 A Lyapunov function is chosen as

Vb1 = 1

2
ln

b2

b2 − z21
.

The derivative of Vb1 is

V̇b1 = z1 ż1
b2 − z21

= z1x2
b2 − z21

= z1
b2 − z21

(z2 + τ1) .

(12)

We choose the virtual control law τ1 as

τ1 = −c1z1 − (b2 − z21)ML (13)

where ML = T wx (L , t) − E Iwxxx (L , t) and c1 > 0.
Substituting Eq. (13) in Eq. (12), we have

V̇b1 = − c1z21
b2 − z21

− ML z1 + z1z2
b2 − z21

. (14)

Step 2 Then a Lyapunov function candidate is chosen
as

Vb2 = Vb1 + 1

2
mz22 (15)

Combing with Eq. (11), the derivative of Eq. (15) is

V̇b2(t) =z2 (−ML + z3 + τ2 + d(t) − mτ̇1)

− c1z21
b2 − z21

− ML z1 + z1z2
b2 − z21

. (16)

Similarly, we choose the control law τ2 as

τ2 = − c2z2 − βz2
2(b2 − z21)

− z1
b2 − z21

+ βc1z1
b2 − z21

+ ML + mτ̇1 (17)

where c2 > 0.
Substituting Eq. (17) in Eq. (16) yields

V̇b2(t) = − c1z21
b2 − z21

− c2z22 − βz22
2(b2 − z21)

− ML z1

+ βc1z1z2
b2 − z21

+ z2z3 + z2d(t). (18)

Using the inequality z2d(t) ≤ lz22 + 1
4l d2(t), Eq.

(18) then is written as

V̇b2(t) ≤ − c1z21
b2 − z21

− (c2 − l)z22 − βz22
2(b2 − z21)

− ML z1 + βc1z1z2
b2 − z21

+ z2z3 + 1

4l
d2(t).

(19)

We design an auxiliary system as

u̇0(t) = −cu0(t) + ω (20)

where c > 0.
Considering Eqs. (11), (17) and (20), we obtain

mż3 =m
∂ug

∂u0(t)
(−cu0(t) + ω) − mτ̇2

=mξ (−cu0(t) + ω) − ∂τ2

∂x2
d(t) − ϑ

ϑ = ∂τ2

∂x2

(
ug(u0) − ML

) + m
∂τ2

∂x1
x2

+ m
∂τ2

∂wx (L , t)
wt x (L , t)

+ m
∂τ2

∂wxxx (L , t)
wt xxx (L , t)

+ m
∂τ2

∂wt x (L , t)
wt t x (L , t)

+ m
∂τ2

∂wt xxx (L , t)
wt t xxx (L , t)

ξ =∂ug (u0(t))

∂u0(t)
= 4(

eu0(t)/uM + e−u0(t)/uM
)2 > 0.

(21)

Then we use a Nussbaum function N (χ) to design
the control law ω in (20), and ω is designed as

ω = N (χ) ω̄ (22)

ω̄ = ξcu0 + 1

m
ϑ − 1

m
c3z3 − 1

m
z2 − 1

m
l

(
∂τ2

∂x2

)2

z3

(23)

123



Boundary control of an Euler–Bernoulli beam with input and output restrictions 535

where c3 > 0, l > 0 and N (χ) is a Nussbaum function
defined as

N (χ) = χ2 cos (χ)

χ̇ = γχmz3ω̄ (24)

where γχ is a positive real design parameter. And the
Nussbaum function satisfies the two properties [37]

lim
k→±∞ sup

1

k

∫ k

0
N (s) ds = ∞

lim
k→±∞ inf

1

k

∫ k

0
N (s) ds = −∞

Step 3 A Lyapunov function candidate is chosen as

Vb(t) = Vb2(t) + 1

2
mz23. (25)

The derivative of Vb is

V̇b(t) ≤ − c1z21
b2 − z21

− (c2 − l)z22 − βz22
2(b2 − z21)

− ML z1

+ βc1z1z2
b2 − z21

+ z2z3 + 1

4l
d2(t) + mz3 ż3

= − c1z21
b2 − z21

− (c2 − l)z22 − βz22
2(b2 − z21)

− ML z1

+ βc1z1z2
b2 − z21

+ z2z3 + 1

4l
d2(t)

+ z3 (mż3 + mω̄) − mz3ω̄ (26)

Substituting Eqs. (21) and (23) in Eq. (26), and using
Eq. (22), we have

V̇b(t) ≤ − c1z21
b2 − z21

− (c2 − l)z22 − βz22
2(b2 − z21)

− ML z1

+ βc1z1z2
b2 − z21

+ z3m (ξ N (χ) − 1) ω̄ − c3z23

− l

(
∂τ2

∂x2

)2
z23 + 1

4l
d2(t) − z3

∂τ2

∂x2
d (t) (27)

Considering the inequality

−d (t)
∂τ2

∂x2
z3 ≤ 1

4l
d(t)2 + l

(
∂τ2

∂x2

)2

z23 (28)

noting that χ̇ = γχmz3ω̄, we obtain

V̇b(t) ≤ − c1z21
b2 − z21

− (c2 − l)z22 − βz22
2(b2 − z21)

− c3z23

− ML z1 + βc1z1z2
b2 − z21

+ z3m (ξ N (χ) − 1) ω̄ + 1

2l
d2(t)

(29)

Theorem 1 Assume that the system (5–7) satisfies
Assumptions 1–4. Using the proposed boundary con-
trol scheme (8), (13), (17), and (20)–(23), the following
properties hold.

(1) The control input is bounded, and its bound is
described as:

|u(t)| = uM

∣∣∣∣tanh
(

u0(t)

uM

)∣∣∣∣ ≤ uM

(2) The uniform boundedness of the system is proven,
that is w(x, t) satisfies the following inequality

sup
x∈[0,L]

|w(x, t)| ≤ C

where C =
√

2L
βT α2

(
V0e−λt + ε0

λ

)
. V0 is the initial

value of V (t), and the parameters β, α2, λ and ε0 are
given in the process of proof in Appendix.

3) Provided that |w(L , 0)| < b, then w(L , t) will
keep in the following area |w(L , t)| < b.

Proof See Appendix. 	

Remark 2 From the proof process, we can see that the
size of C will decrease with the increase in the control
gain c2, c3 and l, which will produce a better vibration
reduction performance when the parameters c1, β, σ1,
σ2 and σ3 are chosen as proper values. However, a very
large control gain c2 and l could result in the instability
of system. Hence, the control gains should be chosen
prudently for satisfying the certain performance indi-
cators in a real world application.

Moreover, the transient performance of the deflec-
tion w(L , t) can be guaranteed, i.e., w(L , t) satisfies
the following condition |w(L , t)| < b.

Remark 3 The control scheme proposed in this paper
can handle input saturation and output constraint effec-
tively. As we know, the control design which is on
the basis of traditional truncated models will result in
spillover problemswhen thehigh-frequencymodels are
ignored. However, the controller design and stability
analysis in this paper are based on the original PDEs,
which can avoid these problems.
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Table 1 Parameters of a flexible beam

Parameter Description Value

L The length of the beam 1 m

ρ The mass of the unit length 0.1 kg/m

m The mass of the tip payload 2 kg

E I The bending stiffness 1.5 Nm2

T The tension of the beam 5 N

γb The damping coefficient 0.5

4 Numerical simulations

For the purpose of illustrating the system perfor-
mance, we utilize a finite difference method [38–41]
to compute numerical solution . And the simulations
are implemented to demonstrate the validity of the
presented control scheme (8) (13), (17), and (20) -
(23). The disturbances d(t) and f (x, t) are described
as: d(t) = 0.1 + 0.1 sin(0.1π t) + 0.1 sin(0.2π t) +
0.1 sin(0.3π t) and f (x, t) = [1 + sin(0.1πxt) +
sin(0.2πxt) + sin(0.3πxt)]/(10L). The initial values
are w(x, 0) = 0.05x and ẇ(x, 0) = 0. The boundary
output restriction b = 0.06. The constraint on the input
u(t) is |u(t)| ≤ uM = 5. The parameters of the flexible
beam are listed in Table 1.

In order to analyze and verify the control effect, the
dynamic responses of the flexible beam system are sim-
ulated in four cases:

Case 1: The control gains of the proposed control
are chosen as c = 12, c1 = 5, c2 = 30, c3 = 20, l = 25
and β = 0.2;

Case 2: The control gains of the proposed control
are chosen as c = 12, c1 = 2, c2 = 5, c3 = 5, l = 10
and β = 0.2;

Case 3: The control gains of the proposed control
are chosen as c = 12, c1 = 0.5, c2 = 1, c3 = 1, l = 5
and β = 0.2;

Case 4: Without control input: u(t) = 0.
The dynamic responses for case 4 are displayed

in Fig. 2. It is obvious that the beam’s displacement
w(x, t) is large and the displacement w(L , t) trans-
gresses its barrier.

The simulation results for cases 1–3 are displayed
in Figs. 3, 4, 5, 6 and 7.

Figure 3 demonstrates the deflection w(L , t). The
displacements w(x, t) for cases 1–3 are shown in
Figs. 4, 5 and 6. From Figs. 3, 4, 5 and 6, we can
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(b)

Fig. 2 Dynamic responses for case 4. aDisplacement at the right
boundary of the beam. b Displacement of the beam

0 2 4 6 8 10

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Boundary displacement w(L,t) of the flexible beam

t [s]

w
(L

,t)
 [m

]

Case 1
Case 2
Case 3
Constraint b

Fig. 3 Displacement w(L , t) of the flexible beam
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Fig. 4 Displacement of the beam for case 1
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Fig. 5 Displacement of the beam for case 2
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Fig. 6 Displacement of the beam for case 3

get that the presented control for the flexible beam
(8) can regulate the displacement greatly within 1 s,

0 2 4 6 8 10

−5

0

5

Control input

t [s]

u(
t)

 [N
]

Case 1
Case 2
Case 3

Fig. 7 The control input

and w(x, t) converges to a small neighborhood of zero
after 2 s. Therefore, the perfect control performance
can be acquired with the presented control scheme
even if there are input restriction, output constraint and
external disturbances. Figure 7 shows the input signal
imposed on the right boundary of the beam.

Moreover, from Fig 3, we apparently see that using
the proposed control with the various control gains
c1, c2„ c3, and l, the displacement w(L , t) does not
transgress its barrier, that isw(L , t) satisfy the bounded
output condition |w(L , t)| < b. As the control gains
increase, the displacement w(L , t) converge to zero
more quickly and with less oscillation.

From above analysis of the simulations, we can
come to a conclusion that the validity of the con-
trol strategy proposed in this paper can be guaranteed
in handing the input saturation, output constraint and
external disturbances.

5 Conclusion

In this paper, we design a boundary control law to sta-
bilize a flexible beam modeled as a distributed param-
eter system (DPS) with input restriction, output con-
straint and external disturbances. The control schemes
are proposed based on backstepping method to sup-
press the beam’s vibration. In the controller design, an
auxiliary system based on a smooth hyperbolic func-
tion and a barrier Lyapunov function (BLF) are adopted
to handle the impact of the restricted input and pre-
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vent constraint violation, respectively. The Lyapunov
approach is applied for control design and the stabil-
ity analysis of the close-loop system. The numerical
simulations verified the effectiveness of the presented
method. Compared with the previous work about the
control scheme of the flexible beam, two advantages of
the control strategy in the present paper are that: 1) It
can stabilize the flexible beam with input and output
restrictions, and external disturbances, and 2) the anal-
ysis of the system’s uniformly boundedness need not
simplify or discretize the partial differential equations
(PDEs).
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Appendix: Proof of Theorem

Consider a Lyapunov functional

V (t) = Va1(t) + Va2(t) + Vb(t), (30)

where the first two terms Va1(t) and Va2(t) are

Va1(t) =β

2
ρ

∫ L

0
w2

t (x, t)dx + β

2
E I

∫ L

0
w2

xx (x, t)dx

+ β

2
T

∫ L

0
w2

x (x, t)

Va2(t) =
∫ L

0
ρwt (x, t)w(x, t)dx

where the constant β > 0.
We firstly notice the term Va2(t). It satisfies the fol-

lowing inequality

|Va2(t)| ≤ ρ

∫ L

0
(w2

t (x, t) + w2(x, t))dx

≤ ρ

∫ L

0
(w2

t (x, t) + Lw2
t x (x, t))dx

≤ α1Va1(t), (31)

where α1 = 2ρL
min(βρL ,βT )

.
Choosing β as a positive constant satisfying β >
2ρL

min(ρL ,T )
> 0, we obtain 0 < α1 < 1, we further

obtain

α2 = min(1, 1 − α1) = 1 − α1 (32)

α3 = max(1, 1 + α1) = 1 + α1. (33)

Considering Eqs. (30) and (31), we have

α2 (Va1(t) + Vb(t)) ≤ V (t) ≤ α3 (Va1(t) + Vb(t))

(34)

Then differentiating Eq. (30) with respect to time,
we obtain

V̇ (t) = V̇a1(t) + V̇a2(t) + V̇b(t) (35)

Applying Eqs. (5) and boundary equations, using
integration by parts, we get

V̇a1(t) = − βγb

∫ L

0
w2

t (x, t)dx

+ β

∫ L

0
wt (x, t) f (x, t)dx

+ βMLwt (L , t) (36)

Considering Eqs. (10) and (13) yields

V̇a1(t) =β
z22 − w2

t (L , t) − c21z21
2(b2 − z21)

− β
c1wt (L , t) z1

(b2 − z21)

− β
(b2 − z21)

2
M2

L

2(b2 − z21)
− βc1z1ML

+ β

∫ L

0
wt (x, t) f (x, t)dx − βγb

∫ L

0
w2

t (x, t)dx .

(37)

Similarly, combining Eq. (5) and boundary equa-
tions, using integrationbyparts, then according toLem-
mas 10 and 11 in [42], we get

V̇a2(t) ≤ − E I
∫ L

0
w2

xx (x, t)dx + γb L

2σ1

∫ L

0
w2

x (x, t)dx

− T
∫ L

0
w2

x (x, t)dx + L

2σ2

∫ L

0
w2

x (x, t)dx

+ ρ

∫ L

0
w2

t (x, t)dx + γb

2
σ1

∫ L

0
w2

t (x, t)dx

+ MLw(L , t) + 1

2
σ2

∫ L

0
f 2(x, t)dx . (38)
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Then substituting Eqs. (29), (37) and (38) into Eq.
(35) yields

V̇ (t) ≤ −
(

c1 − βc21
2

)
z21

b2 − z21
− (c2 − l)z22 − c3z23

−
(

βγb − 1

2σ3
β − ρ − γb

2
σ1

) ∫ L

0
w2

t (x, t)dx

−
(

T − γb L

2σ1
− L

2σ2

)∫ L

0
w2

x (x, t)dx

− E I
∫ L

0
w2

xx (x, t)dx − β
w2

t (L , t)

2(b2 − z21)

− β
(b2 − z21)M2

L
2

+ ε + z3m (ξ N (χ) − 1) ω̄ (39)

where the constant σ3 > 0, and ε = ( 1
2σ2 + β 1

2σ3
)

∫ L
0 f̄ 2dx + 1

2l d̄2.
Choosing parameters c1, c2, c3, l, σ1,σ2 σ3 and β to

satisfy the following conditions:

γ1 = c1 − βc21
2

> 0 (40)

γ2 = c2 − l > 0 (41)

γ3 = c3 > 0 (42)

γ4 = βγb − 1

2σ3
β − ρ − γb

2
σ1 > 0 (43)

γ5 = E I > 0 (44)

γ6 = T − γb L

2σ1
− L

2σ2
> 0. (45)

According to Lemma 2 in [31], we obtain

V̇ (t) ≤ − γ1 ln
b2

b2 − z21
− γ2z22 − γ3z23

− γ4

∫ L

0
w2

t (x, t)dx

− γ5

∫ L

0
w2

xx (x, t)dx − γ6

∫ L

0
w2

x (x, t)dx

+ ε + 1

γχ
(ξ N (χ) − 1) χ̇

≤ λ1
(
V̇1(t) + V̇b(t)

) + ε + 1

γχ
(ξ N (χ) − 1) χ̇

(46)

where λ1 = min
(
2γ1,

2γ2
m ,

2γ3
m ,

2γ4
βρ

,
2γ5
βE I ,

2γ6
βT

)
.

Combining Eqs. (34) and (46), we have

V̇ (t) ≤ −λV (t) + 1

γχ

(ξ N (χ) − 1) χ̇ + ε (47)

where λ = λ1/α3 > 0.
Then multiplying (47) by eλt , we obtain

∂

∂t

((
V (t)eλt)) ≤ εeλt + 1

γχ

(ξ N (χ) − 1) χ̇eλt . (48)

Integrating of the inequality (48), we have

V (t) ≤V0e−λt + ε

λ

(
1 − e−λt)

+ e−λt

γχ

∫ t

0
(ξ N (χ) − 1) χ̇eλτ dτ

≤ V0e−λt + ε0

λ
(49)

where ε0 = ε + λ
γχ

∫ t
0 (ξ N (χ) − 1) χ̇e−λ(t−τ)dτ .

Applying Lemma 2 in [37], we have a conclusion
that V (t), χ and

∫ t
0 (ξ N (χ) − 1) χ̇dτ are bounded on

[0, t).
We can further obtain the boundedness of the states

z1, z2, z3, w(x, t), wt (x, t), wx (x, t) and wxx (x, t).
According to Assumptions 3 and 4, we get the bound-
edness ofwxxx (x, t),wt x (x, t) andwt xxx (x, t) . More-
over, according to Assumption 1 and Eq. (6), we can
acquire the boundedness of wt t (x, t), wt t x (x, t) and
wt t xxx (x, t). Note that

∣∣ug (u0)
∣∣ = uM

∣∣∣∣tanh
(

u0

uM

)∣∣∣∣ ≤ uM (50)

∣∣∣∣∂ug (u0)

∂u0

∣∣∣∣ =
∣∣∣∣∣

4(
eu0/uM + e−u0/uM

)2
∣∣∣∣∣ ≤ 1 (51)

∣∣∣∣∂ug (u0)

∂u0
u0

∣∣∣∣ =
∣∣∣∣∣

4u0(
eu0/uM + e−u0/uM

)2
∣∣∣∣∣ ≤ uM

2
(52)

Then we can obtain that ω̄ is bounded from Eqs.
(50–52) and (23). This further implies that ω and u0(t)
are bounded.
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Moreover, combining with Eq. (34) and according
Lemma 10 in [42], we have

w2(x, t) ≤ L
∫ L

0
w2

x (x, t)dx ≤ 2L

βT
Va1(t)

≤ 2L

βT
(Va1(t) + Vb(t)) ≤ 2L

βT

V (t)

α2
, ∀x ∈ [0, L]

(53)

Then we have |w(x, t)| ≤
√

2L
βT α2

(
V0e−λt + ε0

λ

)
,

∀x ∈ [0, L], we obtain w(x, t) is uniformly bounded.
Equations (34) and (25) indicates Vb(t) is nonnega-

tive and bounded ∀t ∈ [0,∞). From the term Vb(t), we
can see that Vb(t) → ∞, as |w(L , t)| → b. Supposing
|w(L , 0)| < b, and according to Lemma 1 presented
in [31], we infer that w(L , t) satisfies the inequality
|w(L , t)| < b.
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