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Abstract An adjustable quantized approach is
adopted to treat the H∞ sliding mode control of
Markov jump systems with general transition proba-
bilities. To solve this problem, an integral sliding mode
surface is constructed by an observerwith the quantized
output measurement and a new bound is developed to
bridge the relationship between system output and its
quantization. Nonlinearities incurred by controller syn-
thesis and general transition probabilities are handled
by separation strategies. With the help of these mea-
surements, linear matrix inequalities-based conditions
are established to ensure the stochastic stability of the
sliding motion and meet the requiredH∞ performance
level. An example of single-link robot arm system is
simulated at last to demonstrate the validity.
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1 Introduction

Recently, much research effort has been devoted into
Markov jump systems (MJSs) due to theirs’ well
prospective applications in economic systems, flight
control systems and robot systems [1]. Transition prob-
abilities (TPs) which dominate the system behavior in
the jumping process, in most studies, are required to
be known [2–12]. Unfortunately, it is impossible to get
TPs precisely owing to environment factors, instrument
errors and measure costs [13]. Hence, in the viewpoint
of engineering, TPs allowed to be partial known are
investigated in [14–17] by means of robust methodolo-
gies, Gaussian transition probability density function
and Kronecker product technique, respectively.

Alternatively, sliding mode control (SMC) is an
effectivemethod to eliminate impact of uncertainty and
has advantages of fast response and robustness [18,19].
Regarding the sliding mode technique to cope with
uncertain MJSs [20], proposes a linear matrix inequal-
ity solution to the existence of linear sliding surfaces.
This result is extended by [21] where an integral slid-
ing mode surface is developed for singular MJSs. In
[22], a dynamic sliding surface relying on system states
and inputs is developed for descriptor MJSs. Wei et al.
[23] utilized a descriptor system setup to treat the slid-
ing mode output control of semi-MJSs. Contrast to the
above results with ideal TPs, [24] constructs an inte-
gral slidingmode control approach for stochasticMJSs
with incomplete TPs. In this result, the sliding mode
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controller depends on the accessability of partly known
TPs. Along this line, robust sliding mode synthesis of
MJSs with time delay is addressed in [25] where TPs
are known, uncertain but time varying, and unknown.

Noticeably, the above results are almost assumed
that system outputs are transmitted via analog chan-
nels. To be consistent with digital channels in network
environment, signal quantization is necessary [26].
Although the quantization could improve the trans-
mission efficiency, it could cause nonlinearities which
degenerate system performance or even destroy system
stability [27–31]. Therefore, the investigation on MJSs
with quantization has been conducted in [32–35]. To be
specific [32], adopts the non-conservative sector bound
approach to cope with the logarithmic quantized state
feedback control of MJSs. Rasool and Nguang [33]
treats the network delay as a finite stateMarkov process
andutilizes a logarithmicquantization strategy to tackle
the quantized robust H∞ control problem. Via aug-
menting the quantization error into system vector [34],
converts the quantized fault-tolerant control of MJSs
into the sliding mode control of a description system.
In contrast to above results with known TPs, quantized
output H∞ filtering of MJSs with known, uncertain
and unknown TPs is built in [35]. While these quan-
tized results have enriched the investigation on MJSs,
the quantizer is nonuniform and requires infinite quan-
tization levels around the equilibrium.

To propose a feasible solution, this paper is dedi-
cated to the H∞ sliding mode control of MJSs with
adjustable quantized parameter. TPs cover known,
uncertain and unknown. Based on the quantized sys-
tem output, an observer-based integral sliding mode
surface is developed and the relationship between sys-
tem output and the quantized parameter is built by a
technique lemma explicitly. Separation techniques are
utilized to cope with the nonlinearities caused by con-
troller synthesis and general TPs. A mode-dependent
slidingmode controller is developed via the knownTPs
information to ensure the sliding reachability. Synthe-
sis conditions for observer and controller gains with the
required disturbance attenuation performance level γ

are solved in a unified framework. A single-link robot
arm (SRA) system is simulated to show the validity of
the proposed method.

The subsequent paper architecture is: some prelim-
inaries are supplied in Sect. 2. In Sect. 3, an integral
sliding mode surface based on the quantized system
outputs and a sliding mode quantized controller are

presented. Then, separation strategies are introduced to
linearize the nonlinearities induced by quantization and
incomplete TPs. A simulation is carried out in Sect. 4.
Section 5 concludes this paper.

1.1 Notation

The transpose of H is presented by HT. The positive
(negative) definite of H is shortened as H > 0(H < 0).
|x | and |H | denote the 1-norm of the vector x and
matrix H , respectively. Similarly, ‖x‖ and ‖H‖ denote
2-norm. L2 denotes the space of square integrable vec-
tor functions over [0,∞) with ε

{‖x‖2} < ∞. Finally,
the symbol He(X) is used to represent

(
X + XT

)
.

2 Problem statement and preliminaries

ConsiderMarkov jump systemswith the following evo-
lution
ẋ(t) = (A(r(t)) + Ã(r(t)))x(t) + B1(r(t))(u(t))

+ B2(r(t))ω(t),

y(t) = C(r(t))x(t),

z(t) = Cd(r(t))x(t) + D(r(t))ω(t),

(1)

where x(t) ∈ R
n is the system state vector, ω(t) ∈ R

r

is energy bounded disturbance belonging to L2. u(t) ∈
R
m is control input, y(t) is measured output and z(t) is

the regulated output. Ã(r(t)) = M(r(t))E(t)N (r(t))
where M(r(t)), N (r(t)) are known and E(t)TE(t) ≤
I . r(t) is continuous-time Markov process in a finite
space I = {1, 2, . . . , N } and satisfies

Pr{r(t + h) = j |r(t) = i}
=

{
λi j h + o(h), i �= j
1 + λi i h + o(h), i = j

(2)

where h > 0, λi j � 0 for i �= j and λi i =
−∑N

j=1, j �=i λi j for each mode i , limh→0 o(h)/h = 0.
Considering the fact that TPs may be known, uncer-

tain and unknown [14,36], the incomplete TP matrix
with four operation modes is presented below

Π =

⎡

⎢⎢
⎣

λ11 λ12 ? ?
λ21 ? λ̄23 ?
λ31 λ̄32 λ̄33 λ̄34
λ̄41 λ̄43 ? λ44

⎤

⎥⎥
⎦ . (3)

where λ̄i j = λi j + ϕi j , λi j denotes known elements,
ϕi j

(
ϕi j ∈ [− δi j , δi j

])
represents uncertain estimate
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error with known upper and lower bound and “?” is
unknown. Furthermore, I i

k is used to denote the set of
known and uncertain TPs in i th row, while I i

uk rep-
resents the set of unknown ones. For convenience, let
λ̂i j includes all possible cases (known, uncertain and
unknown).

For the fluency of the derivative, some preliminaries
of assumption, definition and lemma are given below:

Assumption 1 [36]ω(t) satisfies the followingbound-
ary d (d > 0)

∫ T̄

0
ωT(t)ω(t)dt � d2. (4)

Definition 1 [2]The autonomous system (1) is stochas-
tically stable (SS), if the following inequality holds:

E

{∫ ∞

0
‖x(t)‖2 |x0, r0

}
< +∞ (5)

under initial conditions x0 and r0,

Definition 2 [2] Given γ > 0 and x0 = 0, the system
(1) meets the required H∞ level γ if

E

∫ ∞

t0
z(t)Tz(t)dt < γ 2

E

∫ ∞

t0
ω(t)Tω(t)dt (6)

holds for all nonzero ω(t) ∈ L2.

Lemma 1 [37] The following inequality holds, for
F(t)TF(t) ≤ I ,

GF(t)H + HTFT(t)GT ≤ ε−1GGT + εHTH.

where ε > 0.

Lemma 2 [37] Let υ ∈ Rn, P = PT ∈ Rn×n and
rank(H) = r < n (H ∈ Rm×n), then equivalent state-
ments are given below:

1. υTPυ, for all υ �= 0, Hυ = 0;
2. H⊥TPH⊥ < 0;
3. ∃X ∈ Rn×m such that P + He(XH) < 0.

For r(t) = i ∈ I, system matrices in the i th mode
are simplified as Ai , Ãi , B1i , B2i , Ci , Cdi , Mi and Ni .

As in [28], the dynamical uniform quantizer is given
as follows:

qμ(α)
Δ= μ(t) · q

(
α

μ(t)

)
(7)

where μ(t) is the quantizer parameter.
Choosing the quantization error eμ(t) as eμ(t) =

qμ(α) − α gives

∣∣eμ(t)
∣∣ = ∣∣qμ(α) − α

∣∣ ≤ �μ(t) (8)

where Δ =
√
p
2 and p is the dimension of α.

Lemma 3 For a positive constant β > 1, if the quan-
tizer parameter μ > 0 satisfies

μ(t) ≤ |y(t)|
(β + 1)Δ

(9)

then the following inequalities

|eμ(t)| ≤ �μ(t) ≤ 1

β + 1
|y(t)| (10)

holds.

Proof Based on (8) and the result given in [28], the
proof is completed. ��
Remark 1 Since the integral sliding mode surface is
constructed by an observed state, the quantized param-
eterμ(t) is determined by system output. Although this
lemma is an extension of [28], it could render a more
tighter bound to eμ(t).

3 Main results

3.1 Observer-based sliding manifold design

Consider the following integral sliding manifold

s(x̂(t)) = BT
1i Xi x̂(t)

−
∫ t

0
BT
1i Xi (Ai + B1i Ki )x̂(τ )dτ (11)

where Xi is a matrix variable to be designed and x̂(t)
is the observer state as below
˙̂x(t) = Ai x̂(t) + B1i u(t) + B1i Li (qμ(y) − Ci x̂(t))

(12)

where Li is to be designed.

Remark 2 The choice of B1i Li facilitates the sliding
mode reachability analysis which will be shown in
the following derivation. Although this form has been
adopted in [38], the observer gain matrix Li should be
given beforehand and no quantization has been consid-
ered.
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Fig. 1 The structure of
control system

To facilitate the controller construction in the fol-
lowing, Fig. 1 is given below.

For simplification, s(x̂(t)) is abbreviated by s. Then
the differential of si is achieved from (11):

ṡ = BT
1i Xi B1i [(u(t) + Li (qμ(y)−Ci x̂(t))−Ki x̂(t)].

(13)

3.2 SMC design

In the following theorem, the slidingmotion to the spec-
ified integral sliding surface s = 0 is ensured in finite
time by exploiting a proper controller.

Theorem 1 Consider systems (1) with the sliding
mode functions (13). With the SMC law designed as
(14), (15), (16), the state trajectories are driven onto
s = 0 in finite time and will keep on it.

u(t) = u1(t) + u2(t), (14)

u1(t) = − θi s + Ki x̂, (15)

u2(t) = − ρi sign(s), (16)

where

ρi ≥ ‖Li‖
∥∥qμ(y) − Ci x̂(t)

∥∥ + 1

2
‖Θ‖ ‖s‖ ,

Θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j∈Ii
k

λi j
(
X̄ j − X̄l

) + Θ1, i ∈ I i
k, l ∈ I i

uk

N∑

j∈Ii
k

λi j
(
X̄ j − X̄i

) + Θ2, i ∈ I i
uk,

Θ1 =
N∑

j∈Ii
k , j �=i

{
δ2i j

4
ηi j + (

X̄ j − X̄i − X̄l
)
η−1
i j

× (
X̄ j − X̄i − X̄l

)
}

+ δ2i i

4
ηi i + X̄lη

−1
i i X̄l ,

Θ2 =
N∑

j∈Ii
k

{
δ2i j

4
ηi j + (

X̄ j − X̄i
)
η−1
i j

× (
X̄ j − X̄i

)
}

, (ηi j > 0).

Proof Choose the candidate Lyapunov functional as

V1i (s) = 1

2
sT X̄i s (17)

where X̄i = (
BT
1i Xi B1i

)−1
.

Calculating the differential of (17) with (13) yields

E

.

V1i = sT X̄i X̄
−1
i

[
u(t) + Li (qμ(y) − Ci x̂(t))

− Ki x̂(t)
] + sT

1

2

N∑

j=1

λ̂i j X̄ j s. (18)

Taking the controller (14)–(16) into (18) gives

EV̇1i =sT
{

− θi s − ρi sign(s)

+ Li
[
qμ(y) − Ci x̂

] } + sT
1

2

N∑

j=1

λ̂i j X̄ j s

= − θi s
Ts − ρi |s| + sTLi

(
qμ(y) − Ci x̂

)

+ sT
1

2

N∑

j=1

λ̂i j X̄ j s.

(19)
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Since λ̂i j is incomplete, according to the accessibility
of diagonal elements, two cases are discussed as below
to ensure the negative definiteness of V̇1i .
Case I

(
i ∈ I i

k

)
:

Use the property
∑N

l∈I iuk λ̂il+∑N
j∈I ik λ̂i j = 0, one has

the following fact

N∑

j=1

λ̂i j X̄ j =
N∑

j∈I ik
λ̂i j X̄ j +

N∑

l∈I iuk
λ̂il X̄l . (20)

Resorting to

∑N
l∈I iuk

λ̂il

−∑N
j∈I ik

λ̂i j
= 1, one further has

∑N

j∈I ik
λ̂i j X̄ j +

∑N

l∈I iuk
λ̂il X̄ j

=
∑N

l∈I iuk λ̂il

−∑N
j∈I ik λ̂i j

(∑N

j∈I ik
λ̂i j X̄ j

)
+

∑N

l∈I iuk
λ̂il X̄l

=
∑N

l∈I iuk λ̂il

−∑N
j∈I ik λ̂i j

(∑N

j∈I ik
λ̂i j

(
X̄ j − X̄l

))
. (21)

Consequently, taking (21) into (19) supplies

EV̇1i =
∑N

l∈I iuk λ̂il

−∑N
j∈I ik λ̂i j

[
sT

1

2

∑N

j∈I ik
λ̂i j

(
X̄ j − X̄l

)
s

+ sTLi
(
qμ(y) − Ci x̂

) − θi s
Ts − ρi |s|

]
.

(22)

To get V̇1i < 0, a direct way is to ensure the following
terms from (22) satisfying

− ρi |s| + sTLi
(
qμ(y) − Ci x̂

)

+ sT
1

2

N∑

j∈I ik
λ̂i j

(
X̄ j − X̄l

)
s ≤ 0.

(23)

Resorting to norm calculation, the left-hand side of (23)
is scaled as

− ρi |s| + sTLi
(
qμ(y) − Ci x̂

)

+ sT
1

2

N∑

j∈I ik
λ̂i j

(
X̄ j − X̄l

)
s

≤
∥∥∥sTLi

(
qμ(y) − Ci x̂

)∥∥∥ − ρi |s|

+ 1

2

∥∥∥sT
∥∥∥

∥∥∥∥∥∥∥

N∑

j∈I ik
λ̂i j

(
X̄ j − X̄l

)

∥∥∥∥∥∥∥
‖s‖

≤ ‖s‖ [‖Li‖
(∥∥qμ(y) − Ci x̂

∥∥)

+1

2
‖s‖

∥∥∥∥∥∥∥

N∑

j∈I ik
λ̂i j

(
X̄ j − X̄l

)

∥∥∥∥∥∥∥

⎤

⎥
⎦ − ρi |s|. (24)

Applying the fact that |s| ≥ ‖s‖, (23) holds when ρi
satisfies

ρi ≥‖Li‖
(∥∥qμ(y) − Ci x̂

∥∥)

+ 1

2
‖s‖

∥∥∥∥∥∥∥

N∑

j∈I ik
λ̂i j

(
X̄ j − X̄l

)

∥∥∥∥∥∥∥
.

(25)

Since
∑N

j∈I ik λ̂i j
(
X̄ j − X̄l

)
include uncertain TPs λ̄i j ,

with the help of Lemma 1, it is disposed as below

N∑

j∈Ii
k

λ̄i j
(
X̄ j − X̄l

) ≤
N∑

j∈Ii
k

λi j
(
X̄ j − X̄l

)

+
N∑

j∈Ii
k

δ2i j

4
ηi j + X̄T

l η−1
i i X̄l

+
N∑

j∈Ii
k , j �=i

(
X̄ j − X̄i − X̄l

)T
η−1
i j

× (
X̄ j − X̄i − X̄l

)
.

(26)

Substituting (26) into (25) produces

‖Li‖
(∥∥qμ(y) − Ci x̂

∥∥) + 1

2
‖s‖

∥∥∥∥∥∥∥

N∑

j∈I ik
λ̂i j

(
X̄ j − X̄l

)

∥∥∥∥∥∥∥

≤ ‖Li‖
(∥∥qμ(y) − Ci x̂

∥∥)

+ 1

2
‖s‖

∥∥∥∥∥∥∥

N∑

j∈Ii
k

λi j
(
X̄ j − X̄l

) + Θ1

∥∥∥∥∥∥∥
. (27)
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As a result, in this case, ρi should meet

ρi ≥‖Li‖
(∥∥qμ(y) − Ci x̂

∥∥)

+ 1

2
‖s‖

∥∥∥∥∥∥∥

N∑

j∈Ii
k

λi j
(
X̄ j − X̄l

) + Θ1

∥∥∥∥∥∥∥

(28)

which is the condition in (14)–(16).
Case II (i ∈ I i

uk):

Utilizing the property (2) as λ̂i i = −∑N
j∈I ik λ̂i j −

∑N
l∈I iuk λ̂il and taking it into (21) gives

N∑

j=1

λ̂i j X̄ j =
N∑

j∈I ik
λ̂i j

(
X̄ j − X̄i

)

+
N∑

l∈I iuk ,l �=i

λ̂il
(
X̄l − X̄i

)
.

(29)

Let X̄ j , X̄l satisfy X̄l < X̄ j , then it leads to:

N∑

j=1

λ̂i j X̄ j ≤
N∑

j in I ik

λ̂i j
(
X̄ j − X̄i

)
.

With respect to uncertain TPs,
∑N

j=1 λ̄i j X̄ j has the
property as follows.

N∑

j=1

λ̄i j X̄ j ≤
N∑

j∈Ii
k

λ̄i j
(
X̄ j − X̄i

)

≤
N∑

j∈Ii
k

λi j
(
X̄ j − X̄i

) +
N∑

j∈Ii
k

δ2i j

4
ηi j

+
N∑

j∈Ii
k

(
X̄ j − X̄i

)T
η−1
i j

(
X̄ j − X̄i

)
.

(30)

In a similar way,
∑N

j=1 λ̂i j X̄ j is substituted by (30) and
ρi is required to satisfy

ρi ≥‖Li‖
(∥∥qμ(y) − Ci x̂

∥∥)

+ 1

2
‖s‖

∥∥∥∥∥∥∥

N∑

j∈Ii
k

λi j
(
X̄ j − X̄l

) + Θ2

∥∥∥∥∥∥∥

(31)

which is presented in (14)–(16). ��
Remark 3 Due to the sign function, the sliding mode
controller could render the chattering problem. To
avoid this phenomenon, −ρi sign(s) is substituted by
−ρ s

‖s‖+ι
, (ι > 0) in the simulation part.

Remark 4 In [39], system states are premised to be
available and the integral sliding mode surface is quan-
tized. However, in this paper, the surface is built on the
quantized system output at controller side. Moreover,
the distinction of this paper and [38] is that the incom-
plete TPs in the former cover the cases in the latter.

3.3 Adjustment policy for μ(t)

In this section, similar to [31], an adjustment policy of
parameter μ(t) in the quantizer is proposed as follows.
Initialization:

Choose μ(t0) as an arbitrary positive constant and
set μ(t) = μ(t0);
Adjustment steps:

If |y(t)| ≥ 1,μ(t) is taken asμ(t) = �|y(t)|�
(β+1)Δ , where

the notation �y� denotes the function floor(·) which
rounds the elements of y(t) to the nearest integers less
than or equal to y(t).

If 0 < |y(t)| < 1, take α(0 < α < 1) as a fixed
positive constant, there always exists a positive integer
i such that αi ≤ |y(t)| < α(i − 1); then, we take
μ(t) = αi

(β+1)Δ .
If |y(t)| = 0, which means the sliding surface is

arrived, then we take μ(t) = 0.

3.4 Stability analysis

The subsequent work pays attention to the stability of
the closed-loop systems with the controller composed
of (14)–(16). Since the designed sliding mode surface
is proved to be accessible, a sliding motion is happened
on the surface in a finite time. Then, the system stability
is analyzed through x̂(t) and e(t).
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Taking into account s = 0, ṡ = 0, the equivalent
control law is given as follows:

ueq(t) = Ki x̂(t) − Li
(
qμ(y) − Ci x̂(t)

)
. (32)

Subsequently, the state trajectory under (32) is
described as

˙̂x(t) = (Ai + B1i Ki )x̂(t). (33)

Setting e(t) = x(t) − x̂(t) yields

ė (t) =
(
Ai + Ã (t)

)
x + B1i Ki x̂ + B2iω (t)

− B1i Li
(
qμ (y) − Ci x̂

) − Ai x̂ − B1i Ki x̂

=
(
Ai + Ãi (t) − B1i LiCi

)
e (t)

+ Ãi (t) x̂ (t) + B2iw (t) − B1i Li eμ (t) . (34)

To get the controller and observer gains, sufficient con-
ditions for SS with the required H∞ performance are
established Theorem 2.

Theorem 2 For given scalars τ1i ,τ2i ,υ1i ,υ2i ,υ3i , υ4i ,
if there exist symmetrical matrices Xi , Ti j > 0 and
matricesUi , Vi ,Wi ,Yi andpositive scalars ε1i , ε2i (i ∈
I) such that the following inequalities hold:
⎡

⎢⎢⎢⎢
⎣

Γ11 0 Γ13 Γ14 0
∗ Γ22 Γ23 Γ24 Γ25

∗ ∗ Γ33 Γ34 0
∗ ∗ ∗ Γ44 0
∗ ∗ ∗ ∗ Γ55

⎤

⎥⎥⎥⎥
⎦

< 0, (35)

Xl ≤ Xi l �= i i ∈ I i
uk, l ∈ I i

uk, (36)

where

Γ11 = He(Xi Ai + τ1i B1iWi ) + ε2i N
T
i Ni + Θ̄,

Γ13 = [
0 0 0 CT

di C
T
i 0

]
,

Γ14 =
{ [

X̃ j1 . . . X̃ jm Xl Γ̂14 0
]
, i ∈ I i

k, j �= i,
[
X j1 − Xi . . . X jm − Xi Γ̂14 0

]
, i ∈ I i

uk,

Γ̂14 = Xi B1i − τ1i B1iUi + τ2iW
T
i ,

Γ22 = He(Xi Ai − υ1i B1i YiCi ) + ε1i N
T
i Ni + Θ̄,

Γ23 = [
Xi Mi Xi Mi Xi B2i 0 CT

i υ3i B1i Yi
]
,

Γ24 = [
0 . . . 0 Xi B1i − υ3i B1i Vi

]
,

Γ25 =
{ [

X̃ j1 . . . X̃ jm Xl Γ̂25
]
, i ∈ I i

k, j �= i,
[
X j1 − Xi . . . X jm − Xi Γ̂25

]
, i ∈ I i

uk,

X̃ jk = X jk − Xi − Xl , k ∈ {1, . . . ,m},

Γ̂25 = Xi B1i − υ1i B1i Vi + υ2iC
T
i Y

T
i ,

Γ33 = − diag{ε1i I, ε2i I,Di , (β + 1)2 I, I },

Di =
[

γ 2 I −DT
i

0 I

]
, Γ34 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 . . . 0 0
0 . . . 0 0
0 . . . 0 0
0 . . . 0 0
0 . . . 0 0
0 . . . 0 υ4i Y T

i

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

Γ44 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− diag{Ti j1, . . . , Ti jm, Tii , He(τ2iUi ),

He(υ4i Vi )} i, j ∈ I i
k, j �= i,

− diag{Ti j1, . . . , Ti jm, He(τ2iUi ),

He(υ4i Vi )} i ∈ I i
uk,

Γ55 =

⎧
⎪⎨

⎪⎩

− diag{Ti j1, . . . , Ti jm, Tii ,

He(υ2i Vi )} i, j ∈ I i
k, j �= i,

− diag{Ti j1, . . . , Ti jm, He(υ2i Vi )}, i ∈ I i
uk,

Θ̄ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j∈Ii
k

{

λi j (X j − Xl) + δ2i j

4
Ti j

}

l ∈ I i
uk, i ∈ I i

k

N∑

j∈Ii
k

{

λi j (X j − Xi ) + δ2i j

4
Ti j

}

i ∈ I i
uk

the controller (14) renders the system (1) to be SS with
the H∞ index γ . Moreover, Ki = U−1

i Wi and Li =
− V−1

i Yi .

Proof The candidate Lyapunov function is chosen as:

V2i = x̂T(t)Xi x̂(t) + eT(t)Xie(t) (37)

where Xi > 0. Calculating V̇2i yields

EV̇2i = ˙̂xT(t)Xi x̂(t) + x̂T(t)Xi
˙̂x(t)

+ ėT(t)Xie(t) + eT(t)Xi ė(t)

+ x̂T(t)
N∑

j=1

λ̂i j X j x̂(t)

+ eT(t)
N∑

j=1

λ̂i j X j e(t).

(38)
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Substituting (33)–(38) renders

EV̇2i = 2x̂T(t)Xi (Ai + B1i Ki )x̂(t)

+ 2eT(t)Xi (Ai + Ãi (t) − B1i LiCi )e(t)

+ 2eT(t)Xi Ãi (t)x̂(t) + x̂T(t)
N∑

j=1

λ̂i j X j x̂(t)

+ eT(t)
N∑

j=1

λ̂i j X j e(t) + 2eT(t)Xi B2iw(t)

− 2eT(t)Xi B1i Li eμ(t). (39)

UtilizingLemma1, the following inequality holds from
(39):

EV̇2i ≤ x̂T(t) [He (Xi (Ai + B1i Ki ))

+ε2i Ni
TNi +

N∑

j=1

λ̂i j X j

⎤

⎦ x̂(t)

+ eT(t)
[
He (Xi (Ai − B1i LiCi ))

+
(
ε1i

−1 + ε2i
−1

)
Xi Mi M

T
i Xi

+ ε1i Ni
TNi +

N∑

j=1

λ̂i j X j

]
e(t)

+ 2eT(t)Xi B2iw(t)

− 2eT(t)Xi B1i Li eμ(t).

(40)

Integrating zT(t)z(t)−γ 2wT(t)w(t) into (40), one has
the inequality (41).

EV̇2i + zT(t)z(t) − γ 2wT(t)w(t)

≤ x̂T(t)

⎡

⎣He (Xi (Ai + B1i Ki )) + ε2i Ni
TNi

+
N∑

j=1

λ̂i j X j

⎤

⎦ x̂(t)

+ eT(t)

⎡

⎣ε1i Ni
TNi +

(
ε1i

−1 + ε2i
−1

)
Xi Mi M

T
i Xi

+ He (Xi (Ai − B1i LiCi )) +
N∑

j=1

λ̂i j X j

⎤

⎦ e(t)

+ 2eT(t)Xi B2iw(t) − 2eT(t)Xi B1i Li eμ(t)

+wT(t)
(
DT
i Di − γ 2 I

)
w(t) + 2x̂T(t)CT

di Diw(t)

(41)

To deal with 2eT(t)Xi B1i Li eμ(t), applying
Lemma 3 gives

2eT(t)Xi B1i Li eμ(t)

≤ eT(t)(Xi B1i Li )(Xi B1i Li )
Te(t)

+ eμ(t)Teμ(t)

≤ eT(t)(Xi B1i Li )(Xi B1i Li )
Te(t)

+ 1

(β + 1)2
yT(t)y(t)

= eT(t)(Xi B1i Li )(Xi B1i Li )
Te(t)

+ 1

(β + 1)2
xT(t)(Ci )

T(Ci )x(t)

= eT(t)(Xi B1i Li )(Xi B1i Li )
Te(t)

+ 1

(β + 1)2
(x̂ + e)TCT

i Ci (x̂ + e). (42)

Substituting (42) into (41) yields

EV̇2i + zT(t)z(t) − γ 2wT(t)w(t) ≤ αT(t)Ξiα(t)

(43)

where

α(t) = [
x̂T(t) eT(t) wT(t)

]T
,

Ξi =
⎡

⎣
Λ11 0 CT

di Di

∗ Λ22 Xi B2i

∗ ∗ Λ33

⎤

⎦ ,

Λ11 = He(Xi (Ai + B1i Ki )) + ε2i N
T
i Ni + CT

diCdi

+
N∑

j=1

λ̂i j X j + 1

(β + 1)2
CT
i Ci ,

Λ22 = He(Xi (Ai − B1i LiCi )) + ε1i N
T
i Ni

+
N∑

j=1

λ̂i j X j + (ε−1
1i + ε−1

2i )Xi Mi M
T
i Xi

+ 1

(β + 1)2
CT
i Ci + (Xi B1i Li )(Xi B1i Li )

T,

Λ33 = DT
i Di − γ 2 I. (44)

To ensure the stochastic stability with the requiredH∞
performance, one just needs to prove Ξi < 0. With the
help of Schur complement to Ξi , one obtains
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Λ̄11 0 0 0 0 CT
di CT

i 0
∗ Λ̄22 Xi Mi Xi Mi Xi B2i 0 CT

i Xi B1i Li

∗ ∗ −ε1i I 0 0 0 0 0
∗ ∗ ∗ −ε2i I 0 0 0 0
∗ ∗ ∗ ∗ −γ 2 I DT

i 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ Λ̄77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0

where Λ̄11 = He(Xi (Ai + B1i Ki )) + ε2i NT
i Ni +

∑N
j=1 λ̂i j X j , Λ̄22 = He(Xi (Ai − B1i LiCi )) +

ε1i NT
i Ni + ∑N

j=1 λ̂i j X j , and Λ̄77 = −(β + 1)2 I .

To linearize Xi B1i Ki and Xi B1i LiCi , by setting
Ki = U−1

i Wi , Li = − V−1
i Yi , a separated approach

in [36] is utilized as below

Xi B1i Ki = Xi B1iU
−1
i Wi

= (Xi B1i − B1iU )U−1
i Wi + B1iWi (45)

−Xi B1i Li = Xi B1i V
−1
i Yi

= (Xi B1i − B1i V )V−1
i Yi + B1i Yi . (46)

Alternatively, Ξi is equivalent to

Ξi = H⊥TPH⊥ (47)

where

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Λ̄11 0 0 0 0 CT
di CT

i 0 0 0 0
∗ Λ̄22 Xi Mi Xi Mi Xi B2i 0 CT

i Xi B1i Li 0 0 0
∗ ∗ −ε1i I 0 0 0 0 0 0 0 0
∗ ∗ ∗ −ε2i I 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ −γ 2 I DT

i 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Λ̄77 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,H⊥ =
[

I
H̃⊥

]
.

Calculating the kernel space of H⊥ gives

H̃⊥ =
⎡

⎣
Ki 0 0 0 0 0 0 0
0 − LiCi 0 0 0 0 0 0
0 0 0 0 0 0 0 Li

⎤

⎦ .

Combining (45), (46) and Lemma 2 ,Ξi is rewritten
as (48).
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P + He(XH)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Λ̂11 0 0 0 0 CT
di CT

i 0 Λ̂19 0 0
∗ Λ̂22 Xi Mi Xi Mi Xi B2i 0 CT

i υ3i B1i Yi 0 Λ̂210 Xi B1i − υ3i B1i Vi
∗ ∗ −ε1i I 0 0 0 0 0 0 0 0
∗ ∗ ∗ −ε2i I 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ −γ 2 I DT

i 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −(β + 1)2 I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 υ4i Y T

i
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ̂99 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ̂1010 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ He(−υ4i Vi )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0 (48)

where

X =
[ X̃1

X̃2

]
, X̃1 =

⎡

⎣
(τ1i B1iUi − Xi B1i )

T 0 0 0 0 0 0 0
0 (υ1i B1i Vi − Xi B1i )

T 0 0 0 0 0 0
0 (υ3i B1i Vi − Xi B1i )

T 0 0 0 0 0 0

⎤

⎦

T

X̃2 = diag{τ2iUi , υ2i Vi , υ4i Vi },

H =
⎡

⎣
Ki 0 0 0 0 0 0 0 −I 0 0
0 −LiCi 0 0 0 0 0 0 0 −I 0
0 0 0 0 0 0 0 Li 0 0 −I

⎤

⎦ ,

Λ̂11 = He(Xi Ai + τ1i B1iWi ) + ε2i N
T
i Ni +

N∑

j=1

λ̂i j X j , Λ̂19 = Xi B1i − τ1i B1iUi + τ2iWi
T, Λ̂1010 = He(−υ2i Vi ),

Λ̂22 = He(Xi Ai − υ1i B1i YiCi ) + ε1i N
T
i Ni +

N∑

j=1

λ̂i j X j , Λ̂99 = He(−τ2iUi ), Λ̂210 = Xi B1i − υ1i B1i Vi − υ2iCi
TYi

T.

Along the similar line as Theorem 1 to handle gen-
eral TPs, one gets that

∑N
j=1 λ̂i j X j satisfies the fol-

lowing inequalities

Case I (i ∈ I i
k):

N∑

j=1

λ̂i j X j ≤
N∑

j∈Ii
k , j �=i

{
(X j − Xi − Xl)

T

× T−1
i j (X j − Xi − Xl)

}
+ XlT

−1
i i Xl

×
N∑

j∈Ii
k

(

λi j
(
X j − Xl

) + δ2i j

4
Ti j

)
(49)

Case II (i ∈ I i
uk):

N∑

j=1

λ̂i j X j ≤
N∑

j∈Ii
k

λi j
(
X j − Xi

)

+
N∑

j∈Ii
k

{
δ2i j

4
Ti j + (X j − Xi )

TT−1
i j (X j − Xi )

}

.

(50)

Taking (49) and (50) into (48) produces the factΞi <

0, respectively. �� ��

Remark 5 In the course of derivation, to make the
obtained controller and observer synthesis conditions
be solvable, Lemma3 is utilized to dealwith the nonlin-
ear term eTμ(t)eμ(t). As a result, the established synthe-
sis conditions are formulated by means of linear matrix
inequalities.
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4 Numerical simulation

The simulation is developed on a SRA system appeared
in [40] to verify the proposed method.

The evolutionary of SRA system dynamic is

θ̈ (t) = − MgL
J

sin(θ(t)) − D(t)

J
θ̇ (t)

+ 1

J
u(t) + L

J
w(t)

(51)

where θ(t),M andL are the arm’s angle position,mass
payload and length, respectively. u(t), w(t), J , D(t)
and g are the control input, external disturbance, inertia
moment, the uncertain viscous friction coefficient and
gravity acceleration. Moreover, g = 9.81, L = 0.8,
and D(t) = 2. As [40], linearizing (51) gives, for M
and J with four modes,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
([

0 1
−Lg − D

J (r(t))

]

+ Ã(r(t), t)

)

x(t)

+
[

0
1

J (r(t))

]
u(t) +

[
0
L

J (r(t))

]

w(t)

y(t) = [
1 1

]
x(t)

z(t) = [
1 1

]
x(t) + D(r(t))w(t)

(52)

where x(t) = [
x1(t) x2(t)

]T
, r(t) = {1, 2, 3, 4},

Ã(r(t), t) = M(r(t))E(t)N (r(t)),D(1) = − 0.1,
D(2) = 0.3,D(3) = 0.5,D(4) = 0.2, M(r(t)) and
J (r(t)) change depending on the jump mode. J (1) =
0.82, J (2) = 0.74, J (3) = 0.93 and J (4) = 0.89
(M(r(t)) = J (r(t))).

The matrices of parameter perturbation and distur-
bance are given as:

E(t) = 0.2 sin(t),

M1 =
[
0.1
0.2

]
, N1 = [

0.3 0.2
]
,

M2 =
[
0.2
0.1

]
, N2 = [

0.2 0.2
]
,

M3 =
[
0.1
0.1

]
, N3 = [

0.2 0.1
]
,

M4 =
[
0.2
0.2

]
, N4 = [

0.1 0.1
]
.

For initialization, the real and estimated state vectors
are given as x = [

4 5
]T
, x̂ = [

0 0
]T
. Other parame-

ters are selected as follows θ = 0.01; ι = 0.01; τ1i =
1; τ2i = 1;υ1i = 1;υ2i = 1;υ3i = 1;υ4i = 1; ηi j =
1(i ∈ {1, 2, 3, 4}) and the parameters in quantizer
β = 4;α = 0.5.

The general TP matrix is

⎡

⎢⎢
⎣

−1.2 + ϕ11 0.3 ? ?
? ? 0.6 0.3
0.8 ? −1.5 + ϕ33 ?
0.2 ? ? ?

⎤

⎥⎥
⎦ (53)

where ϕ11 = ϕ33 = [− 0.1, 0.1].
Solving conditions (35) and (36) inTheorem2yields

X1 =
[
2.1973 0.2643
0.2643 0.3889

]
, X2 =

[
2.1973 0.2643
0.2643 0.3889

]
,

X3 =
[
1.3832 0.1750
0.1750 0.2536

]
, X4 =

[
2.2948 0.2269
0.2269 0.4032

]
,

K1 = [
0 − 1.2195

]
, L1 = 1.1712,

K2 = [
0 − 1.3514

]
, L2 = 1.8885,

K3 = [
0 − 1.0753

]
, L3 = 1.3759,

K4 = [
0 − 1.1236

]
, L4 = 0.8016.

Applying the proposed sliding mode controller, the
response curves of system states, quantizer parameters,
input, quantized output and measured output are given
in Figs. 2, 3 and 4, respectively.

It is seen that system state trajectories are stochas-
tically stable in Fig. 2. Figure 3 shows the variation of
the mode-dependent sliding mode control input with

0 2 4 6 8 10
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2
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,x
2

x1
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Fig. 2 The curves of system states x1(t), x2(t)
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Fig. 3 The curve of u(t)
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Fig. 4 The curve of output qμ(y)
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Fig. 5 The response of the quantization parameter μ

the possible mode evolution. The system output y(t)
and its corresponding quantized case are depicted in
Fig. 4. Figure 5 tells the quantized range varied by the
proposed quantization adjustable steps.

In summary, the validity of the proposed sliding
mode control approach are shown in these figures.

5 Conclusions

The quantized sliding mode control of MJSs with
incompleteTPs is investigated.Anobserver-based inte-
gral sliding mode surface is built on the quantized sys-
tem output, and effective techniques are established to
copewith the quantization nonlinearities, unknown and
uncertain TPs. Linear matrix inequalities-based suffi-
cient conditions are obtained to guarantee the sliding
mode reachability and the required H∞ performance.
The SRA system is employed to verify the proposed
method.
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