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Abstract A new lattice hydrodynamic traffic flow
model is proposed by considering the preceding lat-
tice site’s flux change rate effect. Using linear stability
theory, stability condition of the presented model is
obtained. It is shown that the stability region signifi-
cantly enlarges as the flux change rate effect increases.
To describe the propagation behavior of a density wave
near the critical point, nonlinear analysis is conducted
and mKdV equation representing kink-antikink soliton
is derived. To verify the theoretical findings, numerical
simulation is conducted which confirms that preceding
lattice site’s flux change rate can improve the stability
of traffic flow effectively.
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1 Introduction

Recent years have witnessed more and more efforts
devoted to the complex traffic behaviormodeling inves-
tigation such as car-followingmodel, cellular automata
model, gas kinetic model and hydrodynamic models
[1–4]. Some of themost remarkable characteristics that
need to be modeled in complex traffic system are the
jamming transition, phase transitions and critical phe-
nomena [5,6]. Recently, Nagatani [6–8] proposed a lat-
tice hydrodynamicmodel, the lattice versions of contin-
uum models of traffic, which can describe the complex
traffic phenomena in traffic flow on a highway, and it
is a simplified version of macroscopic model and also
incorporates the ideas of car-following models.

Since the single-lane lattice hydrodynamic model
was proposed by Nagatani [7] to investigate the traffic
jam. A lot of extended lattice hydrodynamic models
have been widely employed to investigate the traffic
jam and nonlinear traffic phenomena in traffic system
for its convenience to analyze traffic density waves.
Such as the lattice model proposed in [9–12] by con-
sidering the density difference effect, somewere devel-
oped by introducing drivers’ anticipation effect or other
characteristics [13–18], and the others were extended
by considering special traffic road [19–26]. Based on
the lattice hydrodynamic models, delayed-feedback
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control and some other control schemes were pro-
posed to homogenize traffic flow [27–30]. Besides that,
Cheng et al. [31] found that aggressive driving is better
than timid act because the aggressive driver will adjust
his speed timely according to the leading car’s speed.
Gupta et al. [32] studied the effect of driver’s anticipa-
tion with passing and they found that traffic jam can be
suppressed efficiently by considering the anticipation
effect in the new lattice model. Two-dimensional net-
work as a typical traffic scene, it also has received an
astonishing amount of attention, such as the references
in [33–35] to name just a few.

Recently, transportation cyber physical systems (T-
CPS) have been increasingly used to improve the road
system regarding efficiency, emissions, driver comfort,
and safety. Recent advances in inter-vehicle commu-
nications and vehicle-infrastructure integration paved
ways to real-time information sharing among vehi-
cles and infrastructures [36]. And some hydrodynamic
lattice models were proposed by considering multi-
lattices’ information [37,38], where the simulation
results shown that the multi-lattices’ information is
beneficial for traffic flow in suppressing congestion.

In fact, except the density and flux, the flux change
rate of lattice site also can be obtained for a mod-
ern traffic system. But whether the preceding lattice
site’s flux change rate can improve or reduce the sta-
bility of the traffic flow is still unknown. So it is nec-
essary to understand the information (flux change rate)
from downstream impact on traffic system and make
full use of the information is very important. The rest
of the paper is organized as follows. Section 2 intro-
duces a new hydrodynamic model with consideration
of preceding lattice site’s flux change rate. Section 3
presents the linear stability analysis of the new model.
The mKdV equation near the critical point is derived
by using nonlinear reductive perturbation method, and
its kink-antikink soliton solution is also obtained to
depict the propagating behavior of traffic densitywaves
in Sect. 4. Simulation setup and analyses of the results
are discussed in Sect. 5. Finally, Sect. 6 offers conclu-
sion and future direction in this study.

2 The new model

In 1998, Nagatani proposed a simplified version of the
hydrodynamic model to analyze the density wave and
describe the traffic phenomena in traffic flow on unidi-

rectional roads. The governing equations are described
as follows:

∂tρ j + ρ0(ρ jv j − ρ j−1v j−1) = 0 (1)

∂t (ρ jv j ) = αρ0V (ρ j+1) − αρ jv j (2)

where ρ0 is the average density, α is the sensitivity of
a driver, and j indicates site j on a one-dimensional
lattice; ρ j and v j , respectively, represent the local den-
sity and velocity at site j ; V (∗) is the optimal velocity
function, for simplicity, and without loss of generality,
it is adopted in this paper as follows:

V (ρ) = vmax

2

[
tanh(

1

ρ
− 1

ρc
) + tanh(

1

ρc
)

]
(3)

Similarly, for simplicity, where vmax = 2 is themax-
imal velocity and ρc = 0.25 is the critical density. The
optimal velocity function V (ρ) is a monotone decreas-
ing function with an upper bound of vmax and has a
turning point at ρ = ρc. Today, extensive efforts are
focused upon solving problems related to traffic con-
gestion by applying a wide range of information tech-
nologies to manage and control traffic flow, such as the
advanced traveler information systems based on the
estimation and prediction of traffic flow are success-
fully implemented for use in transportation systems.
Therefore, the modern transportation system is a typi-
cal cyber physical systemwhich tight coupling between
transportation cyber system and transportation physi-
cal system. In this condition, the flux change rate in
the downstream can be received and it is an important
information for the upstream section to adjust the flux
in advance. Based on Nagatani’s [7] model, the new
model is presented:

∂t (ρ jv j ) = αρ0V (ρ j+1) − αρ jv j + k∂t (ρ j+1v j+1)

(4)

where k is the strength coefficient of flux change rate
effect. As k = 0, the new model is Nagatani’s model
[7]. By eliminating speed v in Eqs. (1) and (4), the
following density equation is obtained:

∂2t ρ j =αρ2
0V (ρ j )− αρ2

0V (ρ j+1)− α∂tρ j +k∂2t ρ j+1

(5)

3 Stability analysis

In this section, the stability analysis is applied to inves-
tigate the influence of the flux change rate from down-
stream in the newmodel. Thenew lattice hydrodynamic
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model is generalized to a nonlinear cascaded system,
without loss of generality, and we assume that each lat-
tice site has the equilibrium state [ρ j ∂tρ j ] = [ρ0 0].
The linearized system of Eq. (5) around equilibrium
state can be rewritten as follows:

∂2t ρ∗
j = αρ2

0�ρ∗
j − αρ2

0�ρ∗
j+1 − α∂tρ

∗
j + k∂2t ρ∗

j+1

(6)

where ρ j = ρ0 + ρ∗
j , � = dV (ρ)

dρ ‖ρ=ρ0 .
In order to facilitate the analysis,we take theLaplace

transformation of system of Eq. (6), and then themodel
(6) can be formulated in the Laplace domain as follows:

s2Pj (s) = αρ2
0�Pj (s) − αρ2

0�Pj+1(s)

−αsPj (s) + ks2Pj+1(s) (7)

where Pj (s) = L(ρ∗
j ),L denote the Laplace transform,

and s is the complex number frequency. Then, we can
obtain the transfer function that described the density
error dynamics propagated from j+1th site to j th site.

G(s) = ks2 − αρ2
0�

s2 + αs − αρ2
0�

(8)

According to the definition in [39,40] related to the
stability of the interconnect systems, if the new lattice
model (4) is stable, then Eq. (9) must satisfy

‖G(s)‖∞ = sup
w∈(0,+∞)

|G( jw)| ≤ 1 (9)

where

|G( jw)| =
√

(kw2 + αρ2
0�)2

(w2 + αρ2
0�)2 + (αw)2

(10)

Then, the following inequalities are obtained:{
0 ≤ k < 1
2(k − 1)ρ2

0� < α
(11)

If the stability condition (11) is satisfied, then traffic
jam does not occur in the traffic flowmodel. For k = 0,
the above stability condition will reduce into the same
as forNagatani [7]. Equation (11) clearly shows that the
preceding lattice site’s flux change play an important
role in stabilizing the traffic flow.

In general, few vehicles on the roadmeans the traffic
density close to zero. On the other hand, when there is
a lot of vehicles on the road and they cannot move
at all, we define the traffic density for this case as 1.
Figure 1 indicates that the stable regions increase with
an increase in the value of the strength coefficient of
flux change rate. Therefore, we can conclude that the
consideration of the preceding lattice site’s flux change
rate can improve the traffic stability and it is helpful for
suppressing the traffic congestion.
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Fig. 1 The regions in density− α − k space where under the
surface is unstable

4 Nonlinear analysis

In this section, the reductive perturbation method is
used to investigate the nonlinear properties of traffic
density waves near the critical point (ρc αc). For space
variable j and time variable t , we define slow variables
X and T as follows:

X = ε( j + bt), T = ε3t (12)

where ε is a small positive scaling parameter and is a
constant determined later. The density ρ j (t) is defined
as

ρ j (t) = ρc + εR(X, T ) (13)

Substituting Eqs. (12) and (13) into Eq. (5) andmak-
ing the Taylor expansion to the fifth order of ε, one
obtains the following expression:

ε2F2 + ε3F3 + ε4F4 + ε5F5 = 0 (14)

where F2 = ∂X R[ρ2
0V

′ + b], F3 = ∂2X R[ (1−k)b2

α
+

1
2ρ

2
0V

′], F4 = (
ρ2
0V

′
6 − kb2

α
)∂3X R + ρ2

0V
′′′

6 ∂X R3 +
∂T R, F5 = ( 2b

α
− 2kb

α
)∂T ∂X R + (

ρ2
0V

′
24 − kb2

2α )∂4X R +
ρ2
0V

′′′
12 ∂2X R

3, V ′ = dV (ρ j )

dρ j
‖ρ j=ρc and V ′′′ = d3(V (ρ j ))

d(ρ j )
3

‖ρ j=ρc .

Near the critical point (ρc αc), 1
α

= 1+ε2

αc
. Taking

b = −ρ2
0V

′ and eliminating the second order and third
order terms of ε in Eq. (14), one obtains the following
simplified equation:

∂T R − g1∂
3
X R + g2∂X R

3

+ ε[g3∂2X R + g4∂
4
X R + g5∂

2
X R

3] = 0 (15)
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where g1 = kb2
αc

− ρ2
c V

′
6 , g2 = ρ2

c V
′′′

6 , g3 = −ρ2
c V

′
2 ,

g4 = ρ2
c V

′
24 − kb2

2αc
− 2b(1−k)

αc
(
ρ2
c V

′
6 − kb2

αc
), g5 = ρ2

c V
′′′

12 −
2b(1−k)ρ2

c V
′′′

6αc
.

In order to derive the standard mKdV equation, we
make the following transformations:

T ′ = g1T, R =
√
g1
g2

R′ (16)

Then, Eq. (15) turns into

∂T R
′ − ∂3X R

′ + ∂X R
′3 + εM[R′] = 0 (17)

where M[R′] = 1
g1

(g3∂2X R
′ + g4∂4X R

′ + g1g5
g2

∂2X R
′3).

Eq. (17) is the standard mKdV equation with an O(ε)

correction term. By ignoring the O(ε) term, we get the
following kink-antikink soliton solution of the mKdV
equation

R′
0(X, T ′) = √

ctanh(

√
c

2
(X − cT ′)) (18)

Supposing R′(X, T ′) = R′
0(X, T ′) + εR′

1(X, T ′), in
order to determine the value of the propagation velocity
for the kink-antikink soliton solution, it is necessary to
satisfy the following condition:

(R′
0, M[R′

0]) ≡
∫ +∞

−∞
dXR′

0M[R′
0] = 0 (19)

According to themethod described in [41–43], by solv-
ing Eq. (19), one can obtain the selected velocity for
the kink-antikink soliton solution as follows:

c = 5g2g3
2g2g4 − 3g1g5

(20)

Hence, the kink-antikink solution near the critical point
can be rewritten as

ρ j = ρc+
√

g1c

g2
(
αc

α
− 1)tanh

√
c

2
(
αc

α
− 1)[ j+(1− cg1(

αc

α
−1))]

(21)

Thus, the amplitude A of the kink-antikink soliton solu-
tion is described by

A =
√
g1c

g2
(
αc

α
− 1) (22)

The kink-antikink soliton represents the coexisting
phases including the freelymoving phasewith lowden-
sity and the congestedphasewith highdensity. Theden-
sities of the freely moving phase and congested phase
are given by ρ j = ρc − A and ρ j = ρc + A, respec-
tively.
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Fig. 2 Phase diagram in parameter space (ρ, α). The dotted lines
and the solid curves indicate the coexisting curves and the neutral
stability lines, respectively, for different k

Figure 2 shows the coexisting curves and the neu-
tral stability curves in the density-sensitivity space. The
sensitivity (α) described in [6,7,44] is related to delay
time of a driver (τ ): α = 1

τ
, and the delay time of

a driver indicates seconds. For each pair of curves,
the space is divided into three regions, i.e., the stable
region, the metastable region and the unstable region.
FromFig. 2, we can find the critical points, and the neu-
tral stability lines and the coexisting curve decrease
with the increase in the strength coefficient of flux
change rate k, which also means the stability of the
uniform traffic flow has been strengthened further by
considering the preceding lattice site’s flux change rate
ahead.

5 Numerical simulation

In this section, we investigate the effect of preceding
lattice site’s flux change rate for new model numeri-
cally and validate the theoretical results under the peri-
odic boundary. And the initial density profile is set as
follows:

ρ j (0) =

⎧⎪⎪⎨
⎪⎪⎩

ρ0; j 
= M
2 , M

2 + 1

ρ0 − σ ; j = M
2

ρ0 + σ ; j = M
2 + 1

(23)

ρ̇ j (0) = 0; 1 ≤ j ≤ M (24)

where the total number of sites M is taken as 100, the
initial disturbance σ taken as 0.05 and other parameters
are set as follows: ρ0 = 0.25, α = 1.2. For all results,
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Fig. 3 Space-time evolutions of local density for different parameters k

we use the Runge–Kutta algorithm for numerical inte-
gration with time-step 	t = 0.1s.

Figure 3 shows the spatiotemporal evolution of den-
sity waves, when the strength coefficient of flux change
rate k = 0 and k = 0.25, the small disturbance is added
to the uniform traffic flow, this is amplified and finally
evolve into inhomogeneous flow. One can see that the
kink-antikink waves appear and propagate backwards
in this condition. It indicates that the traffic flow is
unstable which is consistent with the theoretical result
in Eq. (11). But with the increase in the strength coeffi-
cient k, the amplitudes of the density waves decreases;
as soon as k = 0.5 and k = 0.75, the small ampli-
tude perturbation to the homogeneous density dies out.
It indicates that the traffic flow is stable which is also
consistent with the theoretical result in Eq. (11).

Figure 4 describes the density profile at sufficiently
large time t = 900 s corresponding to Fig. 3. It is also
clear from Fig. 4 that for small values of k, a nonlinear

wave with kink-antikink form similar to the solution
of mKdV equation appears and propagates backward.
And it exhibits the stop-and-go waves in traffic flow.
The amplitude of the density wave decreases and con-
verts into an oscillatory traffic and finally evolves into
uniform flow with an increase in strength coefficient k,
which is consistent with the description in Figs. 1 and 2.
Therefore, the simulation results are in good agreement
with theoretical analysis.

6 Conclusions

In this manuscript, we proposed a new lattice hydro-
dynamics model by considering the effect of preced-
ing lattice site’s flux change rate. The effects of flux
change rate on traffic flow dynamics have been exam-
ined through linear and nonlinear analyses. From non-
linear analysis, we derived the kink-antikink solution of
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Fig. 4 The density profile at t = 900s for different parameters k

mKdV to describe the traffic flownear the critical point.
Phase diagram in the density-sensitivity space with the
neutral stability curves and the coexisting curves is
given for different values of strength coefficients of flux
change rate effect. It can be seen that with the increase
in the value of k, the unstable region reduces. Numeri-
cal simulation shows that flux change rate effect plays
an important role in stabilizing the traffic flow. Simu-
lation results obtained are also in good agreement with
the theoretical findings which verifies that our consid-
eration is useful. However, only one preceding lattice
site’s flux change rate has been considered in this paper;
whether the flux change rate from more lattice sites
works well for the stability of traffic flow is our future
work.
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