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Abstract In today’s society, the Internet has become
an important tool of our life due to its potential appli-
cations in various areas such as economics, industry,
agriculture, medical and health care, and information
processing. To understand and grasp the law of the
Internet,many competitiveweb sitemodels of the Inter-
net and some phenomena related to World Wide Web
have been investigated systematically. However, many
scholars only study the integer-order competitive web
site models of the Internet. Up to now, there are few
papers that focus on the dynamics of fractional-order
competitive web site models of Internet, which pos-
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sess memory property. In this paper, we are concerned
with the stability and the existence of Hopf bifurca-
tion of a fractional-order competitive web site model of
Internet. By choosing the time delay as parameter and
applying the Routh–Hurwitz criteria, we will establish
a newsufficient condition guaranteeing the stability and
the existence of Hopf bifurcation for fractional-order
competitive web site model of Internet. The research
reveals that fractional order and the delay play a key
role in describing the stability and Hopf bifurcation
of the considered system. Computer simulations are
implemented to support the analytic results. Finally, a
simple conclusion is presented. The theoretical find-
ings of this article have a great significance in handling
the competition dynamics among different web sites.

Keywords Bifurcation control · Competitive web
site model · Internet · Stability · Hopf bifurcation ·
Fractional order · Delay

1 Introduction

Internet refers to the current world’s largest, open and
specific Internet connected by many networks, which
has developed into the world’s largest computer net-
work covering thewholeworld.With the rapid develop-
ment of society, the Internet has been widely applied in
various areas such as economics, industry, agriculture,
medical and health care, and information processing.
We can say that the competition of all aspects of life
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in the future depends on the Internet to a great extent.
Over the past several decades, many competitive web
sitemodels of the Internet and some phenomena related
to World Wide Web have emerged up. For example,
Smith et al. [1] referred to the electronic delivery of
web pages. Brynjolfsson and Smith [2] investigated the
comparison issue of Internet and conventional retailers,
Bakos and Brynjolfsson [3] discussed the bundling and
competition on the Internet, Varian [4] analyzed the
versioning information goods. In detail, we refer the
readers to [5–9,58–63]. The emergence of the Internet
brings out great changes in our daily economic life.
Thus, the maintenance of web site can provide better
information to user to make plans for the future. There-
fore, the research on competitive web site models has
important theoretical value and practical significance.

Based on the Lotka–Volterra competition systems,
the competitive web site model can be described as
follows:

dui (t)

dt
= ui (t)

⎛
⎝aibi − aiui (t) −

∑
i �= j

ci j u j

⎞
⎠ , (1.1)

where ui is the fraction of the market which is a cus-
tomer of site i ,ai ≥ 0 is the growth ratewhichmeasures
the capacity of site i to grow, bi ∈ [0, 1] is the maxi-
mum capacity which is related to the saturation value
of ui (the maximum value ui can reach) and ci j ≥ 0
is the competition rate between sites i and j . For the
sake of simplicity, we assume that bi = 1. If we assume
that themarket has three competitors, then system (1.1)
takes the following form:
⎧⎨
⎩
u̇1(t) = u1(t) [a1 − a1u1(t) − c12u2(t) − c13u3(t)] ,
u̇2(t) = u2(t) [a2 − a2u2(t) − c21u1(t) − c23u3(t)] ,
u̇3(t) = u3(t) [a3 − a3u3(t) − c31u1(t) − c32u2(t)] .

(1.2)

Considering that the first web site has self-feedback
time delay and for the simplification, Xiao and Cao
[10] assumed that a1 = a2 = a3 = a, c12 = c13 =
c21 = c23 = c31 = c32 = c and obtained the following
delayed competitive web site model:
⎧⎨
⎩
u̇1(t) = u1(t)

[
a − au1(t − �) − cu2(t) − cu3(t)

]
,

u̇2(t) = u2(t) [a − au2(t) − cu1(t) − cu3(t)] ,
u̇3(t) = u3(t) [a − au3(t) − cu1(t) − cu2(t)] ,

(1.3)

where � is time delay. By regarding the time delay � as
bifurcation parameter, Xiao and Cao [10] considered

the stability and the existence of Hopf bifurcation of
(1.3). Applying the normal form theorem and center
manifold reduction, the direction, the stability and the
period of bifurcating periodic solutions are determined.

During the past few decades, fractional calculus,
which is a generalization of traditional ordinary differ-
entiation and integration to random order (non-integer)
[11–19], has attracted much attention by numerous
scholars due to its potential applications in various
disciplines such as electroanalytical chemistry, vis-
coelasticity, robotics, bioengineering, and control and
medicine issues [20,51–57]. Moreover, a good deal
of phenomena in objective world can be modeled by
fractional-order differential equations since fractional-
order differential equations have memory and heredi-
tary properties of various materials and processes. So it
is more reasonable to establish the fractional-order dif-
ferential equations to describe the practical problems.

Hopf bifurcation and its control issue are impor-
tant dynamical behavior of delayed differential equa-
tions (integer-order and fractional-order). During the
past several decades, Hopf bifurcation phenomena of
integer-order delayed differential equations have been
widely investigated. But the research on theHopf bifur-
cation of fractional-order differential equations is rare.
Based on these considerations, Zhao et al. [21] estab-
lished the following fractional-order delayed competi-
tive web site model:
⎧⎨
⎩

Dp1u1(t) = u1(t)
[
a − au1(t − �) − cu2(t) − cu3(t)

]
,

Dp2u2(t) = u2(t) [a − au2(t) − cu1(t) − cu3(t)] ,
Dp3u3(t) = u3(t) [a − au3(t) − cu1(t) − cu2(t)] ,

(1.4)

where pi ∈ (0, 1](i = 1, 2, 3). By choosing the time
delay as bifurcation parameter, Zhao et al. [21] consid-
ered the stability and the existence of Hopf bifurcation
of (1.4). Meanwhile, they investigated the bifurcation
control issue of Hopf bifurcation of (1.4) by applying
the nonlinear time delay feedback control method.

Here we would like to mention that in real Internet,
customers of differentweb sites have time lag due to the
finite reaction times and propagation speeds of signals.
This case occurs in many web sites such as Baidu net
and Sina net. Thus, different customers of the same
site have self-feedback time delay. So we introduce
the following fractional-order delayed competitiveweb
site model:
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⎧⎪⎨
⎪⎩

Dp1u1(t) = u1(t)
[
a1 − a1u1(t − �) − c12u2(t) − c13u3(t)

]
,

Dp2u2(t) = u2(t)
[
a2 − a2u2(t − �) − c21u1(t) − c23u3(t)

]
,

Dp3u3(t) = u3(t)
[
a3 − a3u3(t − �) − c31u1(t) − c32u2(t)

]
.

(1.5)

where pi ∈ (0, 1](i = 1, 2, 3). All other coefficients
have the samemeaning as those in (1.2). Different from
the work of Zhao et al. [21], the characteristic equation
of model (1.5) which has three delays is more complex,
and the time delay feedback technique is more simple
than those in Zhao et al. [21].

The advantage of the new model (1.5) mainly lies
in the following two aspects: (i) model (1.5) is more
realistic than (1.4) due to the fact that it considers that
the threeweb sites have self-feedbackdelays; (ii)model
(1.5) reveals the memory and hereditary properties of
all variables of web sites and it can better reflect the
real situation of the operation process of web sites.
The key objective of this article is to consider two prob-
lems: (1) the stability and the existence of Hopf bifur-
cation of system (1.5) and (2) applying the time delay
feedback control method to control bifurcation of sys-
tem (1.5). In addition, we point out that fractional-order
delayed competitive web site model can characterize
thememory and hereditary properties of web site activ-
ities and the research on Hopf bifurcation can help site
maintainers handle their business strategies.
In order to establish our results, we make the following
assumption:
(P1) The following inequality

det

⎡
⎣

a1 c12 c13
c21 a2 c23
c31 c32 a3

⎤
⎦ �= 0

holds.
The highlights of this paper include the following
aspects:

• We generalize integer-order delayed competitive
web site model to new fractional-order version.

• A set of sufficient conditions to ensure the stability
and the existence of Hopf bifurcation of fractional-
order delayed competitiveweb sitemodel are estab-
lished.The study shows that the delay and fractional
order have an important effect on the stability and
the existence of Hopf bifurcation of involved sys-
tems.

• To the best of our knowledge, few authors have
dealt with the Hopf bifurcation of fractional-order
delayed competitive web site model. The theoret-
ical findings of this article will be an enrichment

and development to Hopf bifurcation theory of
fractional-order delayed differential equations and
complete the previous publications.

• The method of this article will provide a good ref-
erence to investigate some other fractional-order
delayed differential models.

The remainder of this article is planned as follows:
In Sect. 2, several vital notations and elementary results
on fractional calculus are prepared. In Sect. 3, the suffi-
cient criteria to ensure the stability and the existence of
Hopf bifurcation of considered system are presented.
In Sect. 4, Hopf bifurcation is controlled by applying
the linear time delay feedback approach. Two examples
with their numerical simulations are given to illustrate
the obtained main results in Sect. 5. Finally, a simple
conclusion is presented.

Remark 1.1 Since the Caputo fractional-order deriva-
tive only requires initial conditions given in terms of
inter-order derivativeswhich representwell-understand
nature of physical situations. Then it can better char-
acterize the real-world problems. Thus, we adopt the
Caputo fractional-order derivative in this paper.

2 Preliminary results

In this segment, some basic definitions and lemmas of
fractional calculus are listed.

Definition 2.1 [22] The fractional integral of order σ

for a function g(η) is defined as follows:

I σ g(η) = 1

�(σ)

∫ η

η0

(η − s)σ−1g(s)ds,

where η ≥ η0, σ > 0, �(.) denotes the Gamma func-
tion �(s) = ∫∞

0 ηs−1e−ηdη.

Definition 2.2 [22]TheCaputo fractional-order deriva-
tive of order σ for a function g(η) ∈ ([η0,∞), R) is
defined as follows:

Dσ g(η) = 1

�(n − σ)

∫ η

η0

g(n)(s)

(η − s)σ−n+1 ds,

where η ≥ η0 and n is a positive integer such that
n − 1 ≤ σ < n. In particular, when 0 < σ < 1,

Dσ g(η) = 1

�(1 − σ)

∫ η

η0

g
′
(s)

(η − s)σ
ds.
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Lemma 2.1 [23] Consider the following autonomous
system Dσu = Au, u(0) = u0 where 0 < σ < 1, u ∈
Rn, A ∈ Rn×n . Let λi (i = 1, 2, . . . , n) be the root of
the characteristic equation of Dσu = Au. Then sys-
tem Dσu = Au is asymptotically stable if and only
if |arg(λi )| > σπ

2 (i = 1, 2, . . . , n). In this case, each
component of the states decays toward 0 like t−σ . Also,
this system is stable if and only if |arg(λi )| > σπ

2 (i =
1, 2, . . . , n) and those critical eigenvalues that satisfy
|arg(λi )| = σπ

2 (i = 1, 2, . . . , n) have geometric mul-
tiplicity one.

Lemma 2.2 [11] For the given fractional-order
delayed differential equation with Caputo derivative:
Dσ v(t) = C1v(t)+C2v(t−τ), where v(t) = φ(t), t ∈
[−τ, 0], σ ∈ (0, 1], v ∈ Rn,C1,C2 ∈ Rn×n, τ ∈
R+(n×n). Then, the characteristic equation of the sys-
tem is det |sσ I − C1 − C2e−sτ | = 0. If all the roots
of the characteristic equation of the system have neg-
ative real roots; then, the zero solution of the system is
asymptotically stable.

3 Stability and Hopf bifurcation for
fractional-order delayed model (1.5)

In this segment, we will investigate the stability and the
existence of Hopf bifurcation for model (1.5). Under
the condition (P1), system (1.5) has a unique equilib-
rium point u∗ = (u∗

1, u
∗
2, u

∗
3), where

u∗
1 =

det

⎡
⎣

a1 c12 c13
c21 a2 c23
c31 c32 a3

⎤
⎦

det

⎡
⎣

a1 c12 c13
c21 a2 c23
c31 c32 a3

⎤
⎦

,

u∗
2 =

det

⎡
⎣

a1 c12 c13
c21 a2 c23
c31 c32 a3

⎤
⎦

det

⎡
⎣

a1 c12 c13
c21 a2 c23
c31 c32 a3

⎤
⎦

,

u∗
3 =

det

⎡
⎣

a1 c12 c13
c21 a2 c23
c31 c32 a3

⎤
⎦

det

⎡
⎣

a1 c12 c13
c21 a2 c23
c31 c32 a3

⎤
⎦

. (3.1)

The linearization of system (1.5) near the equilibrium
point u∗ = (u∗

1, u
∗
2, u

∗
3) takes the form:

⎧⎨
⎩

Dp1u1(t) = −u∗
1c12u2(t) − u∗

1c13u3(t) − u∗
1a1u1(t − �),

Dp2u2(t) = −u∗
2c21u1(t) − u∗

2c23u3(t) − u∗
2a2u2(t − �),

Dp3u3(t) = −u∗
3c31u1(t) − u∗

3c32u2(t) − u∗
3a3u3(t − �).

(3.2)

The characteristic equation of (3.2) is

det

⎡
⎣
s p1 + u∗

1a1e
−s� u∗

1c12 u∗
1c13

u∗
2c21 s p2 + u∗

2a2e
−s� u∗

2c23
u∗
3c31 u∗

3c32 s p3 + u∗
3a3e

−s�

⎤
⎦ = 0

(3.3)

which leads to

B0(s)e
−3s� + B1(s)e

−2s�+B2(s)e
−s� + B3(s)=0,

(3.4)

where B0(s), B1(s), B2(s), B3(s) can be seen in
“Appendix A”. Multiplying es� on both sides of (3.4),
we get

B0e
−2s� + B1(s)e

−s� + B2(s) + B3(s)e
s� = 0.

(3.5)

Let s = iθ = θ
(
cos π

2 + i sin π
2

)
(θ > 0) be a root of

(3.5). Then
⎧⎪⎪⎨
⎪⎪⎩

B0 cos 2θ� + (B1R(θ) + B3R(θ)) cos θ� + (B1I (θ)

−B3I (θ)) sin θ� + B2R(θ) = 0,
B0 sin 2θ� − (B1I (θ) + B3I (θ)) cos θ� + (B1R(θ)

−B3R(θ)) sin θ� − B2I (θ) = 0,

(3.6)

where Bi R(θ), Bi I (θ)(i = 1, 2, 3) are the real parts
and the imaginary parts of Bi (iθ) (see “Appendix B”).
In view of sin θ� = ±√1 − cos2 θ�, it follows from
the first equation of (3.6) that

2B0 cos
2 θ� + (B1R(θ) + B3R(θ)) cos θ� ± (B1I (θ)

− B3I (θ))

√
1 − cos2 θ� + B2R(θ) − B0 = 0

(3.7)

which leads to

α4 cos
4 θ� + α3 cos

3 θ�

+α2 cos
2 θ� + α1 cos θ� + α0 = 0, (3.8)

where αi (i = 0, 1, 2, 3, 4, 5) can be seen in “Appendix
C”.

We suppose that (3.8) has roots; then, we can get
the expression of cos θ�. Assume that cos θ� = g1(θ),
where g1(θ) is a continuous function with respect to
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θ . By the first equation of (3.6), we can easily get the
expression sin θ�, say sin θ� = g2(θ), where g2(θ) is
a continuous function with respect to θ . Then

g21(θ) + g22(θ) = 1. (3.9)

In view of cos θ� = g1(θ), we have

�( j) = 1

θ
[arccos g1(θ) + 2 jπ ], j = 0, 1, 2, . . . .

(3.10)

Suppose that (3.9) has at least one positive real root.
Let

�0 = min{�( j)}, j = 0, 1, 2, . . . , θ0 = θ |�=�0 .

(3.11)

In order to establish the main results of this article, we
give a necessary assumption as follows:

(P2) β0 > 0, β2β1 − β0 > 0, where βi (i = 0, 1, 2)
can be seen in “Appendix D”.

(P3) G1H1 +G2H2 > 0, where Gi , Hi (i = 1, 2) can
be seen in “Appendix E”.

Lemma 3.1 If � = 0 and (P2) is satisfied, then system
(1.5) is asymptotically stable.

Proof If � = 0, then (3.5) takes the form:

λ3 + β2λ
2 + β1λ + β0 = 0. (3.12)

It follows from (P2) that all the roots λi of (3.12) satisfy
|arg(λi )| >

piπ
2 (i = 1, 2, 3). By Lemma 2.2, we can

conclude that system (1.5)with� = 0 is asymptotically
stable. This ends the proof of Lemma 3.1. 	


Lemma 3.2 Let s(�) = μ(�) + iθ(�) be the root of
(3.5) at � = �0 satisfyingμ(�0) = 0, θ(�0) = θ0, then

Re
[
ds
d�

] ∣∣∣
�=�0,θ=θ0

> 0.

Proof Differentiating (3.5) with respect to � leads to

[
ds

d�

]−1

= A1(s)

A2(s)
− �

s
, (3.13)

where

A1(s) = e−s�
(
u∗
1u

∗
2a1a2 p3s

p3−1 + u∗
2u

∗
3a2a3 p1s

p1−1

+ u∗
1u

∗
3a1a3 p2s

p2−1
)

+u∗
2a2(p1 + p3)s

p1+p3−1

+u∗
1a1(p2 + p3)s

p2+p3−1

+ u∗
3a3(p1 + p2)s

p1+p2−1

+ es�
[
(p1 + p2 + p3)s

p1+p2+p3−1

− u∗
1u

∗
3c13c31 p2s

p2−1 − u∗
1u

∗
2c12c21 p3s

p3−1

− u∗
2u

∗
3c23c32 p1s

p1−1
]
,

A2(s) = 2B0se
−2s� + e−s�s(u∗

1u
∗
2a1a2s

p3

+ u∗
2u

∗
3a2a3s

p1 + u∗
1u

∗
3a1a3s

p2) − ses�.

Then

Re

{[
ds

d�

]−1
} ∣∣∣∣

�=�0,θ=θ0

= Re

{
A1(s)

A2(s)

} ∣∣∣∣
�=�0,θ=θ0

= G1H1 + G2H2

H2
1 + H2

2

. (3.14)

It follows from (P3) that

Re

{[
ds

d�

]−1
} ∣∣∣∣

�=�0,θ=θ0

> 0. (3.15)

This ends the proof of Lemma 3.2.

Based on the discussion above and Lemmas 3.1 and
3.2, one has the following result.

Theorem 3.1 Under the conditions (P1–P3). (a) If
� ∈ [0, �0), then the equilibrium point (u∗

1, u
∗
2, u

∗
3)

of system (1.5) is globally asymptotically stable; (b) if
� = �0, then a Hopf bifurcation of system (1.5) occurs
near the equilibrium point (u∗

1, u
∗
2, u

∗
3).

4 Bifurcation control of fractional-order delayed
model (1.5)

Over the past few decades, many time delay feedback
methods are applied to control the Hopf bifurcation
of integer-order models. However, the time delay feed-
back controllers are very rare in controlling Hopf bifur-
cation of fractional-order models. To make up the defi-
ciency, we design a time delay feedback controller [24]
which takes the form:

d(t) = −κ1[u1(t − �) − u1(t)], (4.1)
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where κ1 is feedback gain coefficient. We add the time
delay feedback controller to the first equation of system
(1.5), then (1.5) takes the form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dp1u1(t) = u1(t)
[
a1 − a1u1(t − �) − c12u2(t)

−c13u3(t)
]+ d(t),

Dp2u2(t) = u2(t)
[
a2 − a2u2(t − �) − c21u1(t)

−c23u3(t)
]
,

Dp3u3(t) = u3(t)
[
a3 − a3u3(t − �) − c31u1(t)

−c32u2(t)
]
.

(4.2)

The linearization of system (4.2) near the equilibrium
point u∗ = (u∗

1, u
∗
2, u

∗
3) takes the form:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dp1u1(t) = κ1u1(t) − u∗
1c12u2(t) − u∗

1c13u3(t)
−(u∗

1a1 + κ1)u1(t − �),

Dp2u2(t) = −u∗
2c21u1(t) − u∗

2c23u3(t)
−u∗

2a2u2(t − �),

Dp3u3(t) = −u∗
3c31u1(t) − u∗

3c32u2(t)
−u∗

3a3u3(t − �).

(4.3)

The characteristic equation of (4.3) is

det

⎡
⎣
s p1 − κ1 + (u∗

1a1 + κ1)e−s� u∗
1c12 u∗

1c13
u∗
2c21 s p2 + u∗

2a2e
−s� u∗

2c23
u∗
3c31 u∗

3c32 s p3 + u∗
3a3e

−s�

⎤
⎦

= 0 (4.4)

which leads to

M0e
−3s� + M1(s)e

−2s� + M2(s)e
−s� + M3(s)=0,

(4.5)

where Mi (s)(i = 0, 1, 2, 3) can be seen in “Appendix
F”. Multiplying es� on both sides of (4.5), we get

M0e
−2s� + M1(s)e

−s� + M2(s) + M3(s)e
s� = 0.

(4.6)

Let s = iθ = θ
(
cos π

2 + i sin π
2

)
be a root of (4.6).

Then⎧⎪⎪⎨
⎪⎪⎩

M0 cos 2θ� + (M1R(θ) + M3R(θ)) cos θ�

+(M1I (θ) − M3I (θ)) sin θ� + M2R(θ) = 0,
M0 sin 2θ� − (M1I (θ) + M3I (θ)) cos θ�

+(M1R(θ) − M3R(θ)) sin θ� − M2I (θ) = 0,

(4.7)

where MiR(θ), Mi I (θ)(i = 1, 2, 3) are the real parts
and the imaginary parts of Mi (iθ) (see “Appendix G”).
In view of sin θ� = ±√1 − cos2 θ�, then it follows
from the first equation of (4.7) that

2M0 cos
2 θ� + (M1R(θ)+M3R(θ)) cos θ� ± (M1I (θ)

− M3I (θ))

√
1 − cos2 θ� + M2R(θ) − M0 = 0

(4.8)

which leads to

γ4 cos
4 θ� + γ3 cos

3 θ� + γ2 cos
2 θ�

+ γ1 cos θ� + γ0 = 0, (4.9)

where γi (i = 0, 1, 2, 3, 4) can be seen in “Appendix
H”. We suppose that (4.9) has roots; then, we can get
the expression of cos θ�. Assume that cos θ� = h1(θ),
where h1(θ) is a continuous function with respect to
θ . By the first equation of (4.7), we can get easily the
expression sin θ�, say sin θ� = h2(θ), where h2(θ) is
a continuous function with respect to θ . Then

h21(θ) + h22(θ) = 1. (4.10)

In view of cos θ� = h1(θ), we have

�(l) = 1

θ
[arccos h1(θ) + 2lπ ], l = 0, 1, 2, . . . .

(4.11)

Suppose that (4.10) has at least one positive real root.
Let

�0∗ = min{�(l)}, l = 0, 1, 2, . . . , θ0∗ = θ |�=�0∗ .

(4.12)

In order to establish the main results of this article, we
give a necessary assumption as follows:

(P4) δ0 > 0, δ2δ1 − δ0 > 0, where δi (i = 0, 1, 2) can
be seen in “Appendix I”.

(P5) P1Q1 + P2Q2 > 0, where Pi , Qi (i = 1, 2) can
be seen in “Appendix J”.

Lemma 4.1 If � = 0 and (P4) is satisfied, then system
(4.2) is asymptotically stable.

Proof If � = 0, then (4.5) takes the form:

λ3 + δ2λ
2 + δ1λ + δ0 = 0. (4.13)

It follows from (P4) that all the roots λi of (4.13) satisfy
|arg(λi )| >

piπ
2 (i = 1, 2, 3). By Lemma 2.2, we can

conclude that system (4.2)with� = 0 is asymptotically
stable. This ends the proof of Lemma 4.1. 	

Lemma 4.2 Let s(�) = μ(�) + iθ(�) be the root of
(4.6) at � = �0∗ satisfying μ(�0∗) = 0, θ(�0∗) = θ0∗;
then, Re

[
ds
d�

] ∣∣∣
�=�0∗,θ=θ0∗

> 0.

Proof Differentiating (4.6) with respect to � leads to
[
ds

d�

]−1

= L1(s)

L2(s)
− �

s
, (4.14)
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Fig. 1 � = 1.36 < �0 = 1.4836. The equilibrium point (0.7413, 0.6739, 0.8101) of system (5.1) is asymptotically stable
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Fig. 1 continued

where

L1(s) = e−s�
(
u∗
1u

∗
2a1a2 p3s

p3−1

+ u∗
2u

∗
3a2a3 p1s

p1−1 + u∗
1u

∗
3a1a3 p2s

p2−1
)

+ u∗
2a2(p1 + p3)s

p1+p3−1

+ u∗
1a1(p2 + p3)s

p2+p3−1

+ u∗
3a3(p1 + p2)s

p1+p2−1

+ es�
[
(p1 + p2 + p3)s

p1+p2+p3−1

− u∗
1u

∗
3c13c31 p2s

p2−1 − u∗
1u

∗
2c12c21 p3s

p3−1

− u∗
2u

∗
3c23c32 p1s

p1−1
]

+ u3a − 3k1 p − 2s p2−1e−s�

+ k1(p2 + p3)s
p2+p3−1

− k1u
∗
2a2 p3s

p3−1 − k1u
∗
3a3 p2s

p2−1

− k1(p2 + p3)s
p2+p3−1es�,

L2(s) = 2B0se
−2s� + e−s�s

(
u∗
1u

∗
2a1a2s

p3

+ u∗
2u

∗
3a2a3s

p1

+ u∗
1u

∗
3a1a3s

p2) − ses�

+ e−s�u∗
3a3k1(s

p2 − u∗
2a2

)

− es�
[−k1s

p2+p3 + k1u
∗
2u

∗
3c23c32

]
.

Then

Re

{[
ds

d�

]−1
}∣∣∣∣

�=�0∗,θ=θ0∗
= Re

{
L1(s)

L2(s)

}∣∣∣∣
�=�0∗,θ=θ0∗

= P1Q1 + P2Q2

Q2
1 + Q2

2

. (4.15)

It follows from (P5) that

Re

{[
ds

d�

]−1
} ∣∣∣∣

�=�0∗,θ=θ0∗
> 0. (4.16)

This ends the proof of Lemma 4.2. 	

Based on the discussion above and Lemmas 4.1 and
4.2, one has the following result.

Theorem 4.1 Under the conditions (P1),(P4)and (P5).
(a) If � ∈ [0, �0∗), then the equilibrium point
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Fig. 2 � = 1.59 > �0 = 1.4836. Hopf bifurcation of system (5.1) occurs from the equilibrium point (0.7413, 0.6739, 0.8101)

123



3344 C. Xu et al.

0
100

200
300

400

0
0.5

1
1.5

2
0

0.5

1

1.5

t
u1(t)

u 2(t)

0
100

200
300

400

0
0.5

1
1.5

2
0

0.5

1

1.5

2

tu1(t)

u 3(t)

0
100

200
300

400

0

0.5

1

1.5
0

0.5

1

1.5

2

tu2(t)

u 3(t)

0
0.5

1
1.5

2

0

0.5

1

1.5
0

0.5

1

1.5

2

u1(t)u2(t)

u 3(t)

Fig. 2 continued

Table 1 Impact of fractional order p1 on the critical frequency
θ0 and bifurcation point �0 of (5.1)

p1 θ0 �0

0.45 2.4467 0.6336

0.56 2.3068 0.7772

0.64 2.1058 0.8793

0.75 1.9423 1.0164

0.79 1.8536 1.0655

0.82 1.6842 1.1019

0.89 1.5581 1.1860

0.95 1.4903 1.2571

0.98 1.3117 1.2923

1 1.1932 1.3156

(u∗
1, u

∗
2, u

∗
3) of system (4.2) is globally asymptotically

stable; (b) if � = �0∗, then aHopf bifurcation of system
(4.2) occurs near the equilibrium point (u∗

1, u
∗
2, u

∗
3).
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Fig. 3 Relation graph of fractional order p1 and bifurcation
point �0 of system (5.1)

Remark 4.1 In [25–39], the authors investigated the
Hopf bifurcation problems of integer-order delayed
systems. In this article, we consider the stability and
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Table 2 Impact of fractional order p2 on the critical frequency
θ0 and bifurcation point �0 of (5.1)

p2 θ0 �0

0.45 2.2136 0.6955

0.56 2.1217 0.8610

0.64 2.0028 0.9803

0.75 1.8871 1.1429

0.79 1.6942 1.2016

0.82 1.5866 1.2455

0.89 1.4022 1.3475

0.95 1.3374 1.4344

0.98 1.2028 1.4777

1 1.1022 1.5065

Hopf bifurcation of fractional-order delayed competi-
tion model of Internet. All the derived results of [25–
39] cannot be applied to (1.5) to obtain the stabil-
ity and the existence of Hopf bifurcation for (1.5). In
[10], Xiao and Cao discussed the Hopf bifurcation of
delayed competitive web sites model, but they did not
analyze the fractional-order case. Thus, we think that
the obtained results are completely innovative, and our
investigation on the stability and the existence of Hopf
bifurcation for (1.5) also complements the earlier pub-
lications.

Remark 4.2 Xu and Zhang [40] and Yang et al. [41]
dealt with the control of Hopf bifurcation for integer-
order delayed systems by applying linear time delay
feedback control. They did not discuss the control of
Hopf bifurcation for fractional-order systems. Based
on this viewpoint, the results of this article supplement
the works of Xu and Zhang [40] and Yang et al. [41].

Remark 4.3 Xiao et al. [42] analyzed the control of
Hopf bifurcation in fractional-order system by design-
ing the fractional-order PD controller. Huang et al.
[43] focused on the bifurcation control of fractional-
order system by designing hybrid controller. In this
article, we handle the bifurcation control of fractional-
order model by designing a linear time delay feed-
back controller, which is amore simple control strategy
than those in [42,43], and this controller can be easily
designed.

Remark 4.4 Zhao et al. [21] designed a feedback con-
troller with square term and cubic term. In this paper,

Table 3 Impact of fractional order p3 on the critical frequency
θ0 and bifurcation point �0 of (5.1)

p3 θ0 �0

0.45 2.1023 0.6256

0.56 2.0018 0.7729

0.64 1.9546 0.8786

0.75 1.7882 1.0223

0.79 1.7012 1.0741

0.82 1.6233 1.1127

0.89 1.3915 1.2024

0.95 1.2814 1.2786

0.98 1.1008 1.3165

1 1.0377 1.3416

we design a feedback controller without square term
and cubic term. The feedback controller of this paper is
simpler than that of [21]. In addition,we can also design
some non-delayed controllers to control theHopf bifur-
cation. We will leave this topic be our future direction.

5 Examples

Example 5.1 Consider the following fractional-order
system:
⎧⎪⎨
⎪⎩

Dp1u1(t) = u1(t)
[
1.2 − 1.2u1(t − �) − 0.1u2(t) − 0.3u3(t)

]
,

Dp2u2(t) = u2(t)
[
1.2 − 1.2u2(t − �) − 0.2u1(t) − 0.3u3(t)

]
,

Dp3u3(t) = u3(t)
[
1.1 − 1.1u3(t − �) − 0.1u1(t) − 0.2u2(t)

]
.

(5.1)

Obviously, system (5.1) has a unique equilibrium
point (0.7413, 0.6739, 0.8101). Let p1 = 0.85, p2 =
0.77, p3 = 0.91. Then the critical frequency θ0 =
0.8093 and the bifurcation point �0 = 1.4836.
Then all the conditions (P1–P3) of Theorem 3.1
hold true. Figure 1 reveals that the equilibrium point
(0.7413, 0.6739, 0.8101) of system (5.1) is locally
asymptotically stable for � ∈ [0, �0). Figure 2 implies
that system (5.1) loses its stability and that Hopf bifur-
cation occurs for � ∈ [�0,+∞). Next, we investigate
the impact of different fractional order on Hopf bifur-
cation of system (5.1). Let p2 = 0.77, p3 = 0.91;
then, the Hopf bifurcation appears in advance as p1
increases. Table 1 illustrates the relation of fractional
order p1 on the critical frequency θ0 and bifurcation
point �0. Figure 3 shows the relation of fractional order
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Fig. 4 � = 2.3 < �0∗ = 2.4551. The equilibrium point (0.7413, 0.6739, 0.8101). of system (5.2) is asymptotically stable
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Fig. 4 continued

p1 and bifurcation point �0.Let p1 = 0.85, p3 = 0.91;
then, the Hopf bifurcation occurs in advance as p2
increases. Table 2 illustrates the relation of fractional
order p2 on the critical frequency θ0 and bifurcation
point �0. Let p1 = 0.85, p2 = 0.77; then, the Hopf
bifurcation emerges in advance as p3 increases. Table 3
illustrates the relation of fractional order p3 on the crit-
ical frequency θ0 and bifurcation point �0.

Example 5.2 Consider the following fractional-order
controlled system:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dp1u1(t) = u1(t)
[
1.2 − 1.2u1(t − �) − 0.1u2(t) − 0.3u3(t)

]
+ κ1[u1(t − �) − u1(t)],

Dp2u2(t) = u2(t)
[
1.2 − 1.2u2(t − �) − 0.2u1(t) − 0.3u3(t)

]
,

Dp3u3(t) = u3(t)
[
1.1 − 1.1u3(t − �) − 0.1u1(t) − 0.2u2(t)

]
.

(5.2)

Obviously, system (5.2) has a unique equilibrium
point (0.7413, 0.6739, 0.8101). Let p1 = 0.85, p2 =
0.77, p3 = 0.91 and κ1 = 0.2. Then the critical
frequency θ0∗ = 1.6023 and the bifurcation point

�0∗ = 2.4551. Then all the assumptions (P1), (P4) and
(P5) of Theorem 4.1 hold true. Figure 4 shows that the
equilibrium point (0.7413, 0.6739, 0.8101) of system
(5.2) is locally asymptotically stable for � ∈ [0, �0∗).
Figure 5 implies that system (5.2) loses its stability
and that Hopf bifurcation appears for � ∈ [�0∗,+∞).
Clearly, the order can delay the onset of Hopf bifurca-
tion [compared with uncontrolled system (5.1)].

6 Conclusions

In recent years, the Hopf bifurcation and its control
issue have attracted great attention by many scholars
(see [44–50]). In the present paper, we mainly focus
on two themes: (1) We proposed a new fractional-
order delayed competitive web site model. By choos-
ing the time delay as bifurcation parameter, we estab-
lish a set of sufficient conditions to ensure the stabil-
ity and the existence of Hopf bifurcation of the new

123



3348 C. Xu et al.

0 50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

t

 u
3(t)

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

u1(t)

u 2(t)

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

u1(t)

u 3(t)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

u2(t)

u 3(t)

0 50 100 150 200 250 300
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

 u
1(t)

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t

 u
2(t)

Fig. 5 � = 2.82 > �0∗ = 2.4551. Hopf bifurcation of system (5.2) occurs from the equilibrium point (0.7413, 0.6739, 0.8101)
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Fig. 5 continued

fractional-order delayed competitive web site model.
The research shows that both time delay and the frac-
tional order have important effects on the bifurcation
behavior of the considered model. (2) We deal with
the bifurcation control issue of fractional-order delayed
competitive web site model by designing a simple time
delay feedback controller. Some new sufficient condi-
tions to ensure the stability and the existence of Hopf
bifurcation of fractional-order controlled fractional-
order delayed competitive web site model are given.
The investigation reveals that one can delay the onset
of Hopf bifurcation by adjusting the fractional-order,
time delay and feedback gain coefficients. The derived
results have important theoretical guiding significance
in maintaining the stability of web site of Internet. In
addition, the analysis method on Hopf bifurcation and
Hopf bifurcation control can also be applied to inves-
tigate bifurcation or chaotic control problems in many
fields such as engineering and physics. Here we men-
tion that three web sites have different self-feedback

time delays. Thus, the effect of different delays on
the stability and Hopf bifurcation of competitive web
site models of the Internet will be our future research
direction.
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Appendix A

B0 = u∗
1u

∗
2a1a2a3,

B1(s) = u∗
1u

∗
2a1a2s

p3 + u∗
2u

∗
3a2a3s

p1

+ u∗
1u

∗
3a1a3s

p2 ,

B2(s) = u∗
2a2s

p1+p3 + u∗
1a1s

p2+p3 + u∗
3a3s

p1+p2

− u∗
1u

∗
2u

∗
3(c13c31a2 + c12c21a3 + c23c32a1),
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B3(s) = s p1+p2+p3 + u∗
1u

∗
2u

∗
3(c12c21c31 + c13c21c32)

− u∗
1u

∗
3c13c31s

p2 − u∗
1u

∗
2c12c21s

p3

− u∗
2u

∗
3c23c32s

p1 .

Appendix B

B1R(θ) = u∗
1u

∗
2a1a2θ

p3 cos
p3π

2

+u∗
2u

∗
3a2a3θ

p1 cos
p1π

2

+ u∗
1u

∗
3a1a3θ

p2 cos
p2π

2
,

B1I (θ) = u∗
1u

∗
2a1a2θ

p3 sin
p3π

2

+ u∗
2u

∗
3a2a3θ

p1 sin
p1π

2

+ u∗
1u

∗
3a1a3θ

p2 sin
p2π

2
,

B2R(θ) = u∗
2a2θ

p1+p3 cos
(p1 + p3)π

2

+ u∗
1a1θ

p2+p3 cos
(p2 + p3)π

2

+ u∗
3a3θ

p1+p2 cos
(p1 + p2)π

2
− u∗

1u
∗
2u

∗
3(c13c31a2

+ c12c21a3 + c23c32a1),

B2I (θ) = u∗
2a2θ

p1+p3 sin
(p1 + p3)π

2

+ u∗
1a1θ

p2+p3 sin
(p2 + p3)π

2

+ u∗
3a3θ

p1+p2 sin
(p1 + p2)π

2
,

B3R(θ) = θ p1+p2+p3 cos
(p1 + p2 + p3)π

2
+ u∗

1u
∗
2u

∗
3(c12c21c31 + c13c21c32)

− u∗
1u

∗
3c13c31θ

p2 cos
p2π

2

− u∗
1u

∗
2c12c21θ

p3 cos
p3π

2

− u∗
2u

∗
3c23c32θ

p1 cos
p1π

2
,

B3I (θ) = θ p1+p2+p3 cos
(p1 + p2 + p3)π

2

− u∗
1u

∗
3c13c31θ

p2 sin
p2π

2

− u∗
1u

∗
2c12c21θ

p3 sin
p3π

2

− u∗
2u

∗
3c23c32θ

p1 sin
p1π

2
.

Appendix C

α0 = (B2R(θ) − B0)
2 − (B1R(θ) − B3I (θ))2,

α1 = 2(B1R(θ) + B3R(θ))(B2R(θ) − B0),

α2 = (B1R(θ) + B3R(θ))2 + 4B0(B2R(θ) − B0)

+ (B1I (θ) − B3I (θ))2,

α3 = 4B0(B1R(θ) + B3R(θ)),

α4 = 4B2
0 .

Appendix D

β0 = u∗
1u

∗
2a1a2a3 − u∗

1u
∗
2u

∗
3(c13c31a2

+ c12c21a3 + c23c32a1)

+ u∗
1u

∗
2u

∗
3(c12c21c31 + c13c21c32),

β1 = u∗
1u

∗
2a1a2 + u∗

2u
∗
3a2a3

+ u∗
1u

∗
3a1a3 − u∗

1u
∗
3c13c31

− u∗
1u

∗
2c12c21 − u∗

2u
∗
3c23c32,

β2 = u∗
2a2 + u∗

1a1 + u∗
3a3.

Appendix E

G1 = cos θ0�0

[
u∗
1u

∗
2a1a2 p3θ

p3−1
0 cos

(p3 − 1)π

2

+ u∗
2u

∗
3a2a3 p1θ

p1−1 cos
(p1 − 1)π

2

+ u∗
1u

∗
3a1a3 p2θ

p2−1 cos
(p2 − 1)π

2

]

+ sin θ0�0

[
u∗
1u

∗
2a1a2 p3θ

p3−1
0 sin

(p3 − 1)π

2

+ u∗
2u

∗
3a2a3 p1θ

p1−1 sin
(p1 − 1)π

2

+ u∗
1u

∗
3a1a3 p2θ

p2−1 sin
(p2 − 1)π

2

]

+ u∗
2a2(p1 + p3)θ

p1+p3−1
0 cos

(p1 + p3 − 1)π

2

+u∗
1a1(p2 + p3)θ

p2+p3−1
0 cos

(p2 + p3 − 1)π

2

+ u∗
3a3(p1 + p2)θ

p1+p2−1
0 cos

(p1 + p2 − 1)π

2

+ cos θ0�0

[
(p1 + p2 + p3)θ

p1+p2+p3−1
0

× cos
(p1 + p2 + p3 − 1)π

2
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− u∗
1u

∗
3c13c31 p2θ

p2−1
0 cos

(p2 − 1)π

2

− u∗
1u

∗
2c12c21 p3θ

p3−1
0 cos

(p3 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 cos

(p1 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 cos

(p1 − 1)π

2

]
− sin θ0�0

×
[
(p1 + p2 + p3)θ

p1+p2+p3−1
0

× sin
(p1 + p2 + p3 − 1)π

2

− u∗
1u

∗
3c13c31 p2θ

p2−1
0 sin

(p2 − 1)π

2

− u∗
1u

∗
2c12c21 p3θ

p3−1
0 sin

(p3 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 sin

(p1 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 sin

(p1 − 1)π

2

]
,

G2 = cos θ0�0[
u∗
1u

∗
2a1a2 p3θ

p3−1
0 sin

(p3 − 1)π

2

+ u∗
2u

∗
3a2a3 p1θ

p1−1 sin
(p1 − 1)π

2

+ u∗
1u

∗
3a1a3 p2θ

p2−1 sin
(p2 − 1)π

2

]

− sin θ0�0[
u∗
1u

∗
2a1a2 p3θ

p3−1
0 cos

(p3 − 1)π

2

+ u∗
2u

∗
3a2a3 p1θ

p1−1 cos
(p1 − 1)π

2

+ u∗
1u

∗
3a1a3 p2θ

p2−1 cos
(p2 − 1)π

2

]

+ u∗
2a2(p1 + p3)θ

p1+p3−1
0 sin

(p1 + p3 − 1)π

2

+ u∗
1a1(p2 + p3)θ

p2+p3−1
0 sin

(p2 + p3 − 1)π

2

+ u∗
3a3(p1 + p2)θ

p1+p2−1
0

sin
(p1 + p2 − 1)π

2
+ cos θ0�0

×
[
(p1 + p2 + p3)θ

p1+p2+p3−1
0

× sin
(p1 + p2 + p3 − 1)π

2

− u∗
1u

∗
3c13c31 p2θ

p2−1
0 sin

(p2 − 1)π

2

− u∗
1u

∗
2c12c21 p3θ

p3−1
0 sin

(p3 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 sin

(p1 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 sin

(p1 − 1)π

2

]

+ sin θ0�0

×
[
(p1 + p2 + p3)θ

p1+p2+p3−1
0

cos
(p1 + p2 + p3 − 1)π

2

− u∗
1u

∗
3c13c31 p2θ

p2−1
0 cos

(p2 − 1)π

2

− u∗
1u

∗
2c12c21 p3θ

p3−1
0 cos

(p3 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 cos

(p1 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 cos

(p1 − 1)π

2

]
,

H1 = θ0 sin θ0�0

(
u∗
1u

∗
2a1a2θ

p3
0 cos

p3π

2

+ u∗
2u

∗
3a2a3θ

p1
0 cos

p1π

2

+ u∗
1u

∗
3a1a3θ

p2
0 cos

p2π

2
+ 1

)

−θ0 cos θ0�0

(
u∗
1u

∗
2a1a2θ

p3
0 sin

p3π

2

+ u∗
2u

∗
3a2a3θ

p1
0 sin

p1π

2

+ u∗
1u

∗
3a1a3θ

p2
0 sin

p2π

2

)
+ 2B0θ0 sin 2θ0�0,

H2 = −θ0 sin θ0�0

(
u∗
1u

∗
2a1a2θ

p3
0 sin

p3π

2

+ u∗
2u

∗
3a2a3θ

p1
0 sin

p1π

2

+ u∗
1u

∗
3a1a3θ

p2
0 sin

p2π

2

)
+ θ0 cos θ0�0

(
u∗
1u

∗
2a1a2θ

p3
0 cos

p3π

2

+ u∗
2u

∗
3a2a3θ

p1
0 cos

p1π

2

+ u∗
1u

∗
3a1a3θ

p2
0 cos

p2π

2

)

+ 2B0θ0 cos 2θ0�0 − θ0 cos θ0�0.

Appendix F

M0 = u∗
1u

∗
2a1a2a3 + k1u

∗
2u

∗
3a2a3,

M1(s) = u∗
1u

∗
2a1a2s

p3 + u∗
2u

∗
3a2a3s

p1
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+ u∗
1u

∗
3a1a3s

p2 + u∗
3a3k1(s

p2 − u∗
2a2),

M2(s) = u∗
2a2s

p1+p3 + u∗
1a1s

p2+p3 + u∗
3a3s

p1+p2

− u∗
1u

∗
2u

∗
3(c13c31a2 + c12c21a3 + c23c32a1)

+ k1[(s p2 − u∗
2a2)s

p3

− u∗
3a3s

p2 − u∗
2u

∗
3c23c32],

M3(s) = s p1+p2+p3

+ u∗
1u

∗
2u

∗
3(c12c21c31 + c13c21c32)

− u∗
1u

∗
3c13c31s

p2

− u∗
1u

∗
2c12c21s

p3

− u∗
2u

∗
3c23c32s

p1

− k1s
p2+p3 + k1u

∗
2u

∗
3c23c32.

Appendix G

M1R(θ) = u∗
1u

∗
2a1a2θ

p3 cos
p3π

2

+ u∗
2u

∗
3a2a3θ

p1 cos
p1π

2

+ u∗
1u

∗
3a1a3θ

p2 cos
p2π

2

+ u∗
3a3k1

(
θ p2 cos

p2π

2
− u∗

2a2
)

,

M1I (θ) = u∗
1u

∗
2a1a2θ

p3 sin
p3π

2

+ u∗
2u

∗
3a2a3θ

p1 sin
p1π

2

+ u∗
1u

∗
3a1a3θ

p2 sin
p2π

2

+ u∗
3a3k1θ

p2 sin
p2π

2
,

M2R(θ) = u∗
2a2θ

p1+p3 cos
(p1 + p3)π

2

+ u∗
1a1θ

p2+p3 cos
(p2 + p3)π

2

+ u∗
3a3θ

p1+p2 cos
(p1 + p2)π

2
− u∗

1u
∗
2u

∗
3(c13c31a2 + c12c21a3 + c23c32a1)

+ k1

[
θ p2+p3 cos

(p2 + p3)π

2

− u∗
2a2θ

p3 cos
p3π

2
− u∗

3a3θ
p2 cos

p2π

2

− u∗
2u

∗
3c23c32

]
,

M2I (θ) = u∗
2a2θ

p1+p3 sin
(p1 + p3)π

2

+ u∗
1a1θ

p2+p3 sin
(p2 + p3)π

2

+ u∗
3a3θ

p1+p2 sin
(p1 + p2)π

2

+ k1

[
θ p2+p3 sin

(p2 + p3)π

2

− u∗
2a2θ

p3 sin
p3π

2

− u∗
3a3θ

p2 sin
p2π

2

]
,

M3R(θ) = θ p1+p2+p3 cos
(p1 + p2 + p3)π

2
+ u∗

1u
∗
2u

∗
3(c12c21c31 + c13c21c32)

− u∗
1u

∗
3c13c31θ

p2 cos
p2π

2

− u∗
1u

∗
2c12c21θ

p3 cos
p3π

2

− u∗
2u

∗
3c23c32θ

p1 cos
p1π

2

− k1θ
p2+p3 cos

(p2 + p3)π

2
+ k1u

∗
2u

∗
3c23c32,

M3I (θ) = θ p1+p2+p3 cos
(p1 + p2 + p3)π

2

− u∗
1u

∗
3c13c31θ

p2 sin
p2π

2

− u∗
1u

∗
2c12c21θ

p3 sin
p3π

2

− u∗
2u

∗
3c23c32θ

p1 sin
p1π

2

− k1θ
p2+p3 sin

(p2 + p3)π

2
.

Appendix H

γ0 = (M2R(θ) − M0)
2 − (M1R(θ) − M3I (θ))2,

γ1 = 2(M1R(θ) + M3R(θ))(M2R(θ) − M0),

γ2 = (M1R(θ) + M3R(θ))2 + 4M0(M2R(θ) − M0)

+ (M1I (θ) − M3I (θ))2,

γ3 = 4M0(B1R(θ) + M3R(θ)),

γ4 = 4M2
0 .

Appendix I

δ0 = u∗
1u

∗
2a1a2a3

− u∗
1u

∗
2u

∗
3(c13c31a2 + c12c21a3 + c23c32a1)
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+ u∗
1u

∗
2u

∗
3(c12c21c31 + c13c21c32),

δ1 = u∗
1u

∗
2a1a2 + u∗

2u
∗
3a2a3

+ u∗
1u

∗
3a1a3 − u∗

1u
∗
3c13c31 − u∗

1u
∗
2c12c21

− u∗
2u

∗
3c23c32 − k1u

∗
2a2,

δ2 = u∗
2a2 + u∗

1a1 + u∗
3a3.

Appendix J

P1 = cos θ0∗�0∗

×
[
u∗
1u

∗
2a1a2 p3θ

p3−1
0 cos

(p3 − 1)π

2

+ u∗
2u

∗
3a2a3 p1θ

p1−1 cos
(p1 − 1)π

2

+ u∗
1u

∗
3a1a3 p2θ

p2−1 cos
(p2 − 1)π

2

]

+ sin θ0∗�0∗

×
[
u∗
1u

∗
2a1a2 p3θ

p3−1
0 sin

(p3 − 1)π

2

+ u∗
2u

∗
3a2a3 p1θ

p1−1 sin
(p1 − 1)π

2

+u∗
1u

∗
3a1a3 p2θ

p2−1 sin
(p2 − 1)π

2

]

+ u∗
2a2(p1 + p3)θ

p1+p3−1
0∗ cos

(p1 + p3 − 1)π

2

+ u∗
1a1(p2 + p3)θ

p2+p3−1
0∗

cos
(p2 + p3 − 1)π

2

+ u∗
3a3(p1 + p2)θ

p1+p2−1
0 cos

(p1 + p2 − 1)π

2
+ cos θ0∗�0∗

×
[
(p1 + p2 + p3)θ

p1+p2+p3−1
0∗

× cos
(p1 + p2 + p3 − 1)π

2

− u∗
1u

∗
3c13c31 p2θ

p2−1
0 cos

(p2 − 1)π

2

− u∗
1u

∗
2c12c21 p3θ

p3−1
0∗ cos

(p3 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0∗ cos

(p1 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 cos

(p1 − 1)π

2

]

− sin θ0∗�0∗

×
[
(p1 + p2 + p3)θ

p1+p2+p3−1
0∗

× sin
(p1 + p2 + p3 − 1)π

2

− u∗
1u

∗
3c13c31 p2θ

p2−1
0 sin

(p2 − 1)π

2

−u∗
1u

∗
2c12c21 p3θ

p3−1
0∗ sin

(p3 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 sin

(p1 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0∗ sin

(p1 − 1)π

2

]

+ k1(p2 + p3)θ
p2+p3−1
0∗

× cos
(p2 + p3 − 1)π

2

+ u∗
3a3k1 p2θ

p2−1
0∗

×
[
cos

(p2 − 1)π

2
cos θ0∗�0∗

+ sin
(p2 − 1)π

2
sin θ0∗�0∗

]

− u∗
2a2k1 p3θ

p3−1
0∗ cos

(p3 − 1)π

2

−u∗
3a3k1 p2θ

p2−1
0∗ cos

(p2 − 1)π

2

− k1(p2 + p3)θ
p2+p3−1
0∗

×
[
cos

(p2 + p3 − 1)π

2
cos θ0∗�0∗

− sin
(p2 + p3 − 1)π

2
sin θ0∗�0∗

]
,

P2 = cos θ0∗�0∗[
u∗
1u

∗
2a1a2 p3θ

p3−1
0∗

sin
(p3 − 1)π

2
+ u∗

2u
∗
3a2a3 p1θ

p1−1
0∗

sin
(p1 − 1)π

2

+ u∗
1u

∗
3a1a3 p2θ

p2−1
0∗ sin

(p2 − 1)π

2

]

− sin θ0∗�0∗[
u∗
1u

∗
2a1a2 p3θ

p3−1
0 cos

(p3 − 1)π

2

+ u∗
2u

∗
3a2a3 p1θ

p1−1
0∗ cos

(p1 − 1)π

2

+ u∗
1u

∗
3a1a3 p2θ

p2−1
0∗ cos

(p2 − 1)π

2

]
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+ u∗
2a2(p1 + p3)θ

p1+p3−1
0∗ sin

(p1 + p3 − 1)π

2

+ u∗
1a1(p2 + p3)θ

p2+p3−1
0∗ sin

(p2 + p3 − 1)π

2

+ u∗
3a3(p1 + p2)θ

p1+p2−1
0∗ sin

(p1 + p2 − 1)π

2
+ cos θ0∗�0∗

×
[
(p1 + p2 + p3)θ

p1+p2+p3−1
0∗

× sin
(p1 + p2 + p3 − 1)π

2

− u∗
1u

∗
3c13c31 p2θ

p2−1
0∗ sin

(p2 − 1)π

2

− u∗
1u

∗
2c12c21 p3θ

p3−1
0∗

× sin
(p3 − 1)π

2
− u∗

2u
∗
3c23c32 p1θ

p1−1
0∗

× sin
(p1 − 1)π

2

−u∗
2u

∗
3c23c32 p1θ

p1−1
0∗

× sin
(p1 − 1)π

2

]
+ sin θ0∗�0∗

×
[
(p1 + p2 + p3)θ

p1+p2+p3−1
0∗

× cos
(p1 + p2 + p3 − 1)π

2

−u∗
1u

∗
3c13c31 p2θ

p2−1
0∗ cos

(p2 − 1)π

2

− u∗
1u

∗
2c12c21 p3θ

p3−1
0∗ cos

(p3 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0 cos

(p1 − 1)π

2

− u∗
2u

∗
3c23c32 p1θ

p1−1
0∗ cos

(p1 − 1)π

2

]

+ k1(p2 + p3)θ
p2+p3−1
0∗

× sin
(p2 + p3 − 1)π

2

+ u∗
3a3k1 p2θ

p2−1
0∗

×
[
sin

(p2 − 1)π

2
cos θ0∗�0∗

+ cos
(p2 − 1)π

2
sin θ0∗�0∗

]

− u∗
2a2k1 p3θ

p3−1
0∗ sin

(p3 − 1)π

2

− u∗
3a3k1 p2θ

p2−1
0∗ sin

(p2 − 1)π

2

− k1(p2 + p3)θ
p2+p3−1
0

×
[
sin

(p2 + p3 − 1)π

2
cos θ0�0

− cos
(p2 + p3 − 1)π

2
sin θ0�0

]
,

Q1 = θ0∗ sin θ0∗�0∗
(
u∗
1u

∗
2a1a2θ

p3
0∗

× cos
p3π

2
+ u∗

2u
∗
3a2a3θ

p1
0∗ cos

p1π

2

+ u∗
1u

∗
3a1a3θ

p2
0 cos

p2π

2
+ 1

)

− θ0∗ cos θ0∗�0∗
×
(
u∗
1u

∗
2a1a2θ

p3
0∗ sin

p3π

2
+ u∗

2u
∗
3a2a3θ

p1
0∗

sin
p1π

2
+ u∗

1u
∗
3a1a3θ

p2
0∗ sin

p2π

2

)

+2B0θ0∗ sin 2θ0∗�0∗ + u∗
3a3k1[

cos θ0∗�0∗
(
θ
p2
0∗ cos

p2π

2
− u∗

2a2
)

+ θ
p2
0∗ sin θ0∗�0∗ sin

p2π

2

]

+ k1 cos θ0∗�0∗[
θ
p2+p3
0∗ cos

(p2 + p3)π

2

+u2 ∗ u∗
3c23c32

]

− k1θ
p2+p3
0∗ sin θ0∗�0∗ sin

(p2 + p3)π

2
,

Q2 = −θ0∗ sin θ0∗�0∗
(
u∗
1u

∗
2a1a2θ

p3
0∗ sin

p3π

2

+ u∗
2u

∗
3a2a3θ

p1
0∗ sin

p1π

2

+ u∗
1u

∗
3a1a3θ

p2
0∗ sin

p2π

2

)

+ θ0 cos θ0∗�0∗

×
(
u∗
1u

∗
2a1a2θ

p3
0∗ cos

p3π

2

+u∗
2u

∗
3a2a3θ

p1
0∗ cos

p1π

2

+u∗
1u

∗
3a1a3θ

p2
0∗ cos

p2π

2

)

+ 2B0θ0∗ cos 2θ0∗�0∗
− θ0∗ cos θ0∗�0∗

+ u∗
3a3k1

[
cos θ0∗�0∗ sin

p2π

2

− sin θ0∗�0∗
(

θ
p2
0∗ cos

p2π

2
− u∗

2a2

)]
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+ k1θ
p2+p3
0∗ cos θ0∗�0∗ sin

(p2 + p3)π

2
+ k1 sin θ0∗�0∗

×
[
θ
p2+p3
0∗ cos

(p2 + p3)π

2
− u2 ∗ u∗

3c23c32

]
.
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