
Nonlinear Dyn (2019) 95:3041–3048
https://doi.org/10.1007/s11071-018-04739-z

ORIGINAL PAPER

Bilinear neural network method to obtain the exact
analytical solutions of nonlinear partial differential
equations and its application to p-gBKP equation

Run-Fa Zhang · Sudao Bilige

Received: 16 November 2018 / Accepted: 15 December 2018 / Published online: 1 January 2019
© Springer Nature B.V. 2019

Abstract A new method named bilinear neural net-
work is introduced in this paper, and the corresponding
tensor formula is proposed to obtain the exact analyti-
cal solutions of nonlinear partial differential equations
(PDEs). This is the first time that the neural network
model is used to find the exact analytical solution, and
thismethod covers almost all methods of constructing a
function after bilinearization to solve nonlinear PDEs.
Furthermore, this method is most likely a universal
method to obtain the exact analytical solutions of non-
linear PDEs. Abundant arbitrary functions solutions of
the reduced p-gBKPequation are obtained by using this
method. Various beautiful plots of the presented solu-
tions, which show diversity of exact solutions to PDEs,
are made. By choosing appropriate values and func-
tions, the fractal solitons waves are obtained and the
self-similar characteristics of these waves are observed
by reducing the observation range andmagnifying local
images. Via various three-dimensional plots, the evo-
lution characteristics of these waves are exhibited.
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1 Introduction

In order to avoid the complex calculations caused by
the derivation of multilayer composite functions, neu-
ral network model has always been used to obtain
numerical approximate solutions by gradient descent
algorithm since its introduction. Therefore, it has not
been paid attention to derive exact analytical solutions
of nonlinear partial differential equations (PDEs). In
recent years, with the development of various tech-
nologies and the improvement of computing power,
researchers are increasingly interested in numerical and
symbolic computation [1–33]. The study of nonlinear
PDEs has begun since the end of the nineteenth cen-
tury, and various methods have been proposed. Among
them, based on bilinear transformation, the method of
trying to construct a function to seeking an exact analyt-
ical solution through symbolic calculation is very hot
in the nonlinear field: for example, themethod to obtain
the lump solution and the arbitrary function interaction
solution proposed by Ma et al. [34–50]; the method to
obtain the breather-type kink soliton solutions used by
Sun et al. [29]; the method to obtain the periodic lump-
type solutions used by Dong et al. [30]; the method
to obtain the rational solutions used by Jia et al. [32];
the method to obtain the exact solutions used by Lü
et al. [51–58]; the method to obtain general lump-type
solutions introduced by Yong et al. [31]; the method
to obtain the periodic solitary wave solutions and the
three-wave solutions introduced by Liu et al. [15–17];
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and the method to obtain the interaction solution used
by Zhang et al. [22] and so on. But due to the complex-
ity of the nonlinear equations themselves, there is no
universal method to obtain the exact analytical solution
for nonlinear PDEs. Because the neural network model
has very complex nonlinear properties, the bilinear neu-
ral network method introduced in this paper covers all
the methods listed above and will most likely be a uni-
versal method for seeking the exact analytical solution
of nonlinear PDEs that may be proved based on the
universal approximation theorem [59].

In this paper, bilinear neural network method would
be introducedwith the example of the following dimen-
sionally reduced p-gBKP equation [34]:

Bp-gBKPy(u) := − 9

8
uxu

2v − 3

8
u3uy − 3

4
uxxuv

− 3

4
ux

2v − 9

4
uxuuy

− 3

4
u2uyx − 3

2
uxxuy − 3

2
uxuyx

+ uyt + 3 uyx = 0,

(1)

where uy = vx . The lump solutions of Eq. (1) are
obtained by Ma et al. [34], and the interaction phe-
nomenon is discussed by Zhang et al. [8].

The rest of this paper is as follows. In Sect. 2, bilin-
ear neural network method is introduced and the cor-
responding tensor formula is proposed to obtain the
exact analytical solutions of nonlinear PDEs. In Sect. 3,
the exact analytic solutions of Eq. (1) is obtained by
using this method with the “3-2-2-1” model. The frac-
tal soliton waves are found, and the dynamical charac-
teristics of these waves are exhibited via various three-
dimensional and density plots. That will bewidely used
to describe many interesting nonlinear phenomena in
the fields of gas, plasma, optics, acoustics, heat trans-
fer, fluid dynamics, classical mechanics and so on. A
few of conclusions and outlook will be given in Sect. 4.

2 Bilinear neural network method and its
corresponding tensor formula

2.1 Bilinear form

Under the dependent variable transformation:

u(x, y, t) = 2[ln f (x, y, t)]x ,
v(x, y, t) = 2[ln f (x, y, t)]y, (2)

Eq. (1) is transformed into the following generalized
bilinear form with p = 3,

Bp-gBKPy( f )

:= (Dp,t Dp,y − D3
p,t Dp,y + 3Dp,x Dp,y) f · f

= 2( fty f − ft fy − 3 fxx fxy − 3 fx fy + 3 fxy f )

= 0,

(3)

where p is an arbitrarily given natural number, often a
prime number, and the generalized bilinear operators
are defined by [39]

Dn1
p,x1 · · · DnM

p,xM a · b(x1, . . . , xM )

=
M∏

i=1

(
∂

∂xi
+ α

∂

∂x ′
i

)ni

a(x1, . . . , xM )b(x ′
1, . . . , x

′
M ) |x ′=x1,...,x ′=xM ,

(4)

where n1, . . . , nM are arbitrary nonnegative integers,
and for an integer m, the m th power of α is computed
as follows:

(αp)
m = (−1)r(m),

m ≡ r(m)mod p, 0 ≤ r(m) < p,
(5)

taking p = 3, we have

α1
3 = −1, α2

3 = 1, α3
3 = 1, α4

3 = −1, α5
3 = 1,

α6
3 = 1, α7

3 = −1, α8
3 = 1, α9

3 = 1,
(6)

which leads to

D3,x D3,t f · f = 2 fx,t f − 2 fx ft ,

D2
3,y f · f = 2 fy,y f − 2 f 2y ,

D4
3,x f · f = 6 f 2x,x ,

D3
p,x Dp,y f · f = 6 fx,x fx,y,

(7)

but if p = 2, then we can get,

D2,t D2,x f · f = 2 fxt f − 2 fx ft ,

D2
2,y f · f = 2 fyy f − 2 f 2y ,

D4
2,x f · f = 2 fxxxx · f − 8 fxxx fx + 6 f 2xx ,

D3
p,x Dp,y f · f = 2 fxxxy f − 6 fxxy fx + 6 fxy fxx

− 2 fy fxxx .

(8)

We have noticed that when p = 2, it is the Hirota
bilinear operator. Transform (2) is also a characteristic
transformation for establishing Bell polynomial the-
ory of soliton equation [41]. The relation between the
generalized bilinear p-gBKP Eq. (3) and the reduced
p-gBKP Eq. (1) is given as follows:
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Fig. 1 Nonlinear neural network of Eq. (10): l0 = {x, y, . . . , t},
l1 = {1, 2, . . . ,m1}, li = {mi−1 + 1,mi−1 + 2, . . . ,mi }, (i =
2, 3, . . . , n − 1)

Bp-gBKPy(u) =
[Bp-gBKPy( f )

f 2

]

x
. (9)

Hence, if f solves the generalized bilinear p-gBKP
Eq. (3), the reduced p-gBKP Eq. (1) will be solved.
Similar solution procedures have been used in gen-
erating lump solutions [60–62] and their interactions
solutions [63,64] and even for linear PDEs in (3+1)-
dimensions [65,66].

2.2 Neural network model and corresponding tensor
formula

To search for the exact analytical solutions of the bilin-
ear p-gBKP Eq. (3), the tensor formula of nonlinear
neural network is constructed as follows:

f = Wln, f Fln(ξln), (10)

where Wa,b is the weight coefficient of neuron a to
b. F is a generalized activation function, which can be
defined arbitrarily, but in the last layer, function F must
be satisfied that Fln(ξ) ≥ 0. ln = {mn−1 + 1,mn−1 +
2, . . . , n} represents the nth layer space of the neural
network model. ξli is given as follows:

ξli = Wli−1,liFli−1(ξli−1) + bli , i = 1, 2, . . . , n,

(11)

where l0 = {x, y, . . . , t}, l1 = {1, 2, . . . ,m1}, li =
{mi−1 + 1,mi−1 + 2, . . . ,mi }, (i = 2, 3, . . . , n − 1),
b means a threshold, which can be simply understood
here as an constant. This neural network tensor model
can be intuitively understood through Fig. 1.

Substituting Eq. (10) into the bilinear nonlinear
PDEs, a complicated equation can be obtained. Then,
making the coefficient of each term in this equation
equal to zero, we can obtain the algebraic equations.

Solving these sets of algebraic equations by symbolic
computation with the help of Maple, the coefficient
solutions can be obtained. Finally, substituting these
solutions and nonlinear neural network tensor for-
mula Eq. (10) into bilinear transformation Eq. (2), the
exact analytical solutions of nonlinear PDEs can be
derived.

3 Abundant exact analytical solutions and the
fractal soliton waves of the p-gBKP equation

To search for the exact analytical solutions of the bilin-
ear p-gBKP Equation (3), we can choose a “3-2-2-1”
neural networkmodel, whichmeans that there are three
neurons in the input layer l0, two neurons in hidden
layer l1, two neurons in hidden layer l2 and one neu-
ron in the print layer f . This “3-2-2-1” model can be
intuitively understood through Fig. 4a. By considering
l0 = {x, y, t}, l1 = {1, 2} and l2 = {3, 4}, we pro-
cure:

f = W3, f F3 (ξ3) + W4, f F4 (ξ4) ,

ξ3 = W1,3F1 (ξ1) + W2,3F2 (ξ2) + b3,

ξ4 = W1,4F1 (ξ1) + W2,4F2 (ξ2) + b4,

ξ1 = tWt,1 + xWx,1 + yWy,1 + b1,

ξ2 = tWt,2 + xWx,2 + yWy,2 + b2,

(12)

where Wi, j (i = x, y, t, 1, 2, 3, 4, j = 1, 2, 3, 4, f
and i �= j) and bk (k = 1, 2, 3, 4) are real parameters
to be determined later.

Substituting (12) into Eq. (3), we obtained a com-
plicated equation. Making the coefficient of each term
in this equation equal to zero, we have obtained an
overdetermined nonlinear algebraic equation system
with a total of 77 equations. Solving these algebraic
equations by the symbolic computation with the help
of Maple, we get the following four classes of solu-
tions:

Case 1 : {W1,3 = 0,W1,4 = W1,4,W2,3 = W2,3,W2,4 = 0,

W3,f = W3,f ,W4,f = W4,f ,Wt,1 = 0,Wt,2 = −3Wx,2,

Wx,1 = 0,Wx,2 = Wx,2,Wy,1 = Wy,1,Wy,2 = 0}.
(13)

Case 2 : {W1,3 = 0,W1,4 = W1,4,W2,3 = W2,3,W2,4 = 0,

W3,f = W3,f ,W4,f = W4,f ,Wt,1 = −3Wx,1,Wt,2 = 0,

Wx,1 = Wx,1,Wx,2 = 0,Wy,1 = 0,Wy,2 = Wy,2}.
(14)
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(a) t=−0.5 s (b) t=0 s (c) t=0.5 s

Fig. 2 Evolution plots (top) and contour plots (bottom) of Eq. (17)

Case 3 : {W1,3 = W1,3,W1,4 = 0,W2,3 = 0,W2,4 = W2,4,

W3,f = W3,f ,W4,f = W4,f ,Wt,1 = 0,Wt,2 = −3Wx,2,

Wx,1 = 0,Wx,2 = Wx,2,Wy,1 = Wy,1,Wy,2 = 0}.
(15)

Case 4 : {W1,3 = W1,3,W1,4 = 0,W2,3 = 0,W2,4 = W2,4,

W3,f = W3,f ,W4,f = W4,f ,Wt,1 = −3Wx,1,Wt,2 = 0,

Wx,1 = Wx,1,Wx,2 = 0,Wy,1 = 0,Wy,2 = Wy,2}.
(16)

Substituting the solution ofCase 1 into (12), we can
get the exact analytical solution for p-gBKP equation
through the bilinear transformation Eq. (2),

u = 2
W3,fD (F3) (ξ3)W2,3D (F2) (ξ2)Wx,2

W3,f F3 (ξ3) + W4,f F4 (ξ4)
, (17)

where the functions ξ2, ξ3 and ξ4 are given as fol-
lows:

ξ2 = −3 tWx,2 + Wx,2x + b2,

ξ3 = W2,3F2
(−3 tWx,2 + Wx,2x + b2

) + b3,

ξ4 = W1,4F1
(
Wy,1y + b1

) + b4.

(18)

In order to analyze the dynamics properties and
discuss the evolution characteristic briefly, we could

choose appropriate values and function of these param-
eters in Eq. (17) as

W3, f = −8,W2,3 = 2,Wx,2 = 2,W2,3 = 2,W4, f = 2,

W1,4 = 2,Wy,1 = 23, b1 = 1, b2 = 1, b3 = 1, b4 = 1,

F1(ξ1) = ξ1, F2(ξ2) = ξ2
3, F3(ξ3) = cosh(ξ3),

F4(ξ4) = exp(ξ4);
(19)

evolution characteristics of the solutions derived via the
appropriate values and function list above are exhibited
in Fig. 2.

Moreover, we can also choose appropriate values
and function of these parameters in (17) as

t = 2s,W3, f = −5,W2,3 = 2,Wx,2 = 2,W2,3 = 2,

W4, f = 2,W1,4 = 2,Wy,1 = 23, b1 = 1, b2 = 1,

b3 = 1, b4 = 1,

F1(ξ1) = ξ1, F2(ξ2) = sin(ξ2), F3(ξ3) = ξ23 ,

F4(ξ4) = ξ24 ;

(20)
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Fig. 3 Three-dimensional plots, contour plots and density plot of Eq. (17)

Fig. 4 “3-2-2-1” neural
network model of Eq. (12)
and the single hidden layer
neural network model
corresponding to many
current methods

dynamical characteristics of the solutions derived via
the appropriate values and function list above are exhib-
ited in Fig. 3.

Via various three-dimensional and contour plots,
we find the fractal soliton waves and the self-similar
characteristics of these waves are observed by reduc-
ing the observation range and magnifying local image;
dynamical characteristics of these waves are exhibited

in Fig. 3. That will be widely used to describe many
interesting nonlinear phenomena in the fields of gas,
plasma, optics, acoustics, heat transfer, fluid dynam-
ics, classical mechanics and so on.

4 Conclusion

In this paper, a new method named bilinear neural net-
work is introduced and the corresponding tensor for-
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mula is proposed to obtain the exact analytical solu-
tions of nonlinear PDEs. This is the first time, the neu-
ral network model is used to solve the exact analytical
solution of nonlinear PDEs.

The evolution phenomenon of thewaves for p-gBKP
equation is observed in Fig. 2 by choosing the appropri-
ate parameters and functions. The fractal soliton waves
are found and the self-similar characteristics of these
waves are observed by reducing the observation range
and magnifying local images in Fig. 3. The dynam-
ical characteristics of these waves are exhibited via
various three-dimensional and contour plots. That will
be widely used to describe many interesting nonlinear
phenomena in the fields of gas, plasma, optics, acous-
tics, heat transfer, fluid dynamics, classical mechanics
and so on.

In addition, this method covers almost all meth-
ods of constructing a function after bilinearization
to solve nonlinear PDEs that can be seen as models
with only one hidden layer (see Fig. 4b): for exam-
ple, the lump solution (which can be seen as a sin-
gle hidden layer neural network model with F1(ξ) =
F2(ξ) = ξ2, F3(ξ) = C) and the arbitrary func-
tion interaction solution (which can be seen as a sin-
gle hidden layer neural network model with F1(ξ) =
F2(ξ) = ξ2, F3(ξ) is the arbitrary function) pro-
posed by Ma et al. [34–50]; the breather-type kink
soliton solutions method (which can be seen as a sin-
gle hidden layer neural network model with F1(ξ) =
e−p1ξ , F2(ξ) = cos(pξ), F3(ξ) = ep1ξ ) used by Sun
et al. [29]; the periodic lump-type solutions method
(which can be seen as a single hidden layer neural
network model with F1(ξ) = cosh(−p1ξ), F2ξ =
cos(pξ), F3(ξ) = cosh(−p1ξ)) used by Dong et
al. [30]; the rational solutions method (which can be
seen as a single hidden layer neural network model
with F3(ξ) = F2(ξ) = ξ2, F1(ξ) = 1) used by Jia et
al. [32]; the exact solutions method (which can be seen
as a single hidden layer neural network model with
F1(ξ) = e−ξ , F2(ξ) = sin(ξ) or cos(ξ), F3(ξ) =
sinh(ξ) or cosh(ξ), F4(ξ) = eξ ) used by Lü et
al. [57]; general lump-type solutions method (which
can be seen as a single hidden layer neural network
model with F1 = C, Fi (ξ) = ξ2, (i = 2, 3, . . . , n))
introduced by Yong et al. [31]; the periodic solitary
wave solutions method (which can be seen as a sin-
gle hidden layer neural network model with F1(ξ) =
e−ξ , F2(ξ) = tan(ξ), F3(ξ) = tanh(ξ), F4(ξ) =
eξ ) and the three-wave solutions method (which can

be seen as a single hidden layer neural network
model with F1(ξ) = e−ξ , F2(ξ) = cos(ξ), F3(ξ) =
sin(ξ), F4(ξ) = eξ ) introduced by Liu et al. [15–
17]; and the interaction solution method (which can
be seen as a single hidden layer neural network
model with F1(ξ) = F2(ξ) = ξ2, F3(ξ) = eξ or
cosh(ξ)) used by Zhang et al. [22] and so on. Further-
more, the bilinear neural network method will most
likely be a universal method for seeking the exact
analytical solution of nonlinear PDEs that may be
proved based on the universal approximation theo-
rem [59].
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