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Abstract In thiswork, two adaptive nonlinearmodel-
based control schemes have been proposed and imple-
mented on the simulated model of the nonlinear bench-
markprocesses. The servoperformance of the proposed
control schemes was found satisfactory. In order to
improve the servo-regulatory performance of one of the
proposed control schemes, themodel state and parame-
ters have been estimated simultaneously onlinewith the
help of a derivative-free Kalman filter and the predicted
values of model states have been used in the proposed
control law. The performances have been compared
between two proposed control schemes with conven-
tional adaptive PI control scheme. From the extensive
simulation studies, it has been found that proposed con-
trol schemes implemented on nonlinear processes are
having better performance over conventional adaptive
PI control scheme. It was also found that proposed con-
trol schemes are able to eliminate measurement noise
and having good robustness features.
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1 Introduction

P/PI/PID,MPC, IMCare themost commonly used con-
trol schemes in industries over past few decades. Most
of the industrial processes exhibit inherent nonlinear-
ity; hence, nonlinear controllerwould be a better choice
in order to control nonlinear process variables rather
than conventional linear controllers, which needs re-
linearizing the plant model, when it moves to new oper-
ating point. In the case of adaptive nonlinear system,
process states need to be updated with time to cope up
with process uncertainty [1]. Different kinds of adap-
tive control schemes such as gain-scheduled adaptive
controller, self-tuning controller and model reference
adaptive controller are widely used control techniques
for various types of processes whose parameters are
varying with time [2]. The design plethora of formulat-
ing control law on the basis of different performance
and robustness criteria has been discussed in the liter-
ature [1,2].

Due to difficulties of achieving exact values of pro-
cess parameters from real plant, a nonlinear model-
based control (NMBC) law needs to be employed for
the convergence with true process parameter value
[1]. As a well-recognized example of feedback control
loop,NMBCschemewas improvised for nonlinear pro-
cess. However, NMBC scheme specifies output/state
variable feedback to formulate driving action for gen-
erating proper manipulated variable to control the plant
output [1]. The noteworthy phenomenon ofMBC tech-
nique deals with trade-off between robustness and per-
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formances as well [3]. Several articles have already
been discussed about various way of approaches for
NMBC schemes like neural network model-based con-
trol scheme [4], fuzzymodel-based control scheme [5],
Hammerstein model-based control scheme [6], IMC-
based PID scheme [7], IMC on the basis of multiple
linear discrete transfer function models [8], minimum–
maximum-basedMPCscheme [9] and so on.An easiest
way of adaptive NMBC scheme has been introduced
by Economou, which relies on first principle model-
based scheme [3,10]. He had proposed a nonlinear
control scheme where nonlinear partition inverse was
imposed by means of nonlinear operator theory. A lin-
earmodel-basedfilter has been considered to reduce the
critically damped behavior in case of plant and model
mismatch. Controller stability and causality has also
been focused in his work. This work highlighted on
designing an unconstrained NMBC scheme. But most
of the citations refer direct way of adaption incorpo-
rated inMBC technique. In addition, direct synthesiza-
tion of NMBC control schemes redraws cumbersome
computation, which needs to be avoided. The practi-
cal utility of NMBC using Volterra model has been
presented in [11]. Furthermore, the need of adaptation
mechanism in NMBC techniques has been explained
by Michael and Costas [12], which shows significant
improvement in feedback control performances. An
event-based state and output feedback control tech-
niques were discussed in [13], whereas state and out-
put feedback control using NMPC was developed in
[14]. The difficulties of achieving true process param-
eter from the real plant have been mentioned in article
[15] by Hu and Rangaiah, and it still persists in sev-
eral nonlinear complex processes. They also suggested
an approach to measure true value of process parame-
ter in order to improve plant output. The methodology
deals with input–output linearization technique based
on certain constraints imposed on it. PI-like model-
based control scheme used for linear system has been
deployed in [16], whereas an indirect way of adap-
tion using NMBC techniques with having comparison
studywithNMPC implemented on nonlinear processes
was discussed in [17]. An experimental validation of
NMBC control algorithm on experimental rigs (bench-
mark conical tank system)has beenmentioned in article
[18].

The foremost drawback of designing model-based
controller faces real problem, especially in case of sud-
den changes in process parameters or load disturbances

[7]. Hence, model structure needs to cope up with
uncertainty associated with process or in the case of
load disturbances. A typical structural characteristics-
based models have been studied and considered in this
proposed work.

Thus, the objective of this simulation study employs
adaptation in NMBC scheme. In this proposed work,
we have implemented combination of state feedback-
and output feedback-based control schemes. To achieve
true value of process parameters in the case of regula-
tory response, model states and parameters need to be
estimated to cope up with process uncertainties.

A first principle model-based control scheme has
been considered in this work. A nonlinear model has
been incorporated to compute process gain, which in
term calculates controller output to obtain desired out-
put. The motivation of the proposed control scheme1
leads to development of an accurate nonlinear con-
troller which would be able to track desired value
and would be able to eliminate load disturbances.
Performance of the proposed scheme shows signifi-
cant improvement in uncertainties associated with pro-
cess/load disturbance.

The motivation of another proposed control scheme
was formulated based on the model states which need
to be estimated as dynamics of system changes from
time to time. In servo response model, states have been
estimated on line and with the help of estimated model
outputs controller gain has been calculated. It should
be noted that UKF-based estimation technique has
been used to estimatemodel states. In servo–regulatory
response, process parameter has also been estimated
in addition to model states. The objective of this pro-
posed work leads to develop an accurate nonlinear con-
troller design where model states and parameters have
been estimated to eliminate load disturbances. Perfor-
mance of the proposed scheme was found satisfac-
tory.

In this work, a comparison study has been made
between proposed control schemes with conventional
adaptive PI control technique. From the extensive sim-
ulation study, performances like integral square error
(ISE) and control effort (CE) for the mentioned control
schemes have been calculated. The robustness of both
the controllers has also been discussed in this study. To
the best of our knowledge, both the proposed control
schemes were not addressed in the literature.

The organization of the paper is as follows: Sect. 1
discusses the literature survey and motivation of the
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proposed work. Section 2 deals with different control
schemes. Details of the processes as well as simula-
tion results related to servo response, load disturbance,
introduction of measurement noise and performance
comparison study of various control schemes have been
offered in Sect. 3. Section 4 explains conclusion of the
proposed work.

2 Control schemes

2.1 Conventional adaptive PI control scheme

The adaptive conventional PI control law has been
described by the general equation as [18,19]:

u(k) = u(k−1)+(kc1 ∗ ∂e1(k))+(Ts ∗ (kc1/Ti) ∗ e(k))
(1)

where kc1 and Ti are proportional gain and integral
time constant of the conventional adaptive PI control
scheme, respectively. Ts is the sampling time. e is the
process error which can be described as:

e(k) = ysp(k) − y(k) (2)

∂e(k) = e(k) − e(k − 1) (3)

In this simulation study, conventional adaptive PI
controller tuning parameters (kc1; Ti) have been esti-
mated by UKF algorithm. The system equations for
the controller parameters of the conventional adaptive
PI controller are as follows [20–22]:

θ(k) = θ(k − 1) + w(k − 1) (4)

θ(k) = [kc1; Ti] (5)

pv(k) = f [pv(k − 1), qc(k − 1), θ(k − 1)] + v(k)

(6)

pv is the measured value (of process variable) obtained
from the plant. The predicted controller parameters
estimation are obtained as

θ̂ (k|k − 1) = θ̂ (k − 1|k − 1) (7)

The covariance matrix of estimation errors in the
predicted controller parameters estimation is obtained
as follows:

Pθ (k|k − 1) = Pθ (k|k − 1) + Q (8)

A set of (2L + 1) sigma points with the associated
weights w(i) are chosen symmetrically about θ̂ (k|k −
1) as follows:

θs =
[
θ̂ (k|k − 1), θ̂ (k|k − 1) + √

(L + κ)Pθ (k|k − 1),

θ̂ (k|k − 1) − √
(L + κ)Pθ (k|k − 1)

]
(9)

The measurement prediction ( p̂v(k|k−1)), compu-
tationof innovation (ek|k−1), covariancematrix of inno-
vation (Pee(k)), the cross-covariance matrix between
the predicted model parameter estimation errors and
innovation (Pθe(k)) are computed as follows:

p̂vi (k|k − 1) = f (pv(k − 1), u(k − 1), θ i (k|k − 1))

(10)

p̂v(k|k − 1) =
2L∑
0

p̂v(k|k − 1) (11)

ek|k−1 = p̂v(k) − pv(k) (12)

Pee(k) =
2L∑
i=0

wi

(
p̂vi (k|k − 1) − pvr (k|k − 1)

)

(
pvir (k|k − 1) − pvr (k|k − 1))T + R (13)

Pθe(k) =
2L∑
i=0

wi

(
θ̂ is (k|k − 1) − θ̂ (k|k − 1)

)

(
p̂vi (k|k − 1) − pvr (k|k − 1)

)T
(14)

where w0 = κ/(L + κ) and wi = κ/(2(L + κ)). The
Kalman gain is computed using the equation

K = Pθe

(
P−1
ee

)
(15)

Theupdatedmodel parameter estimates are obtained
using the equation:

θ̂ (k|k) = θ̂ (k|k − 1) + Kek|k−1 (16)

The covariance matrix of estimation errors in the
updated model parameter estimation is obtained as:

Pθ (k|k) = Pθ (k|k − 1) − K PeeK
T (17)

2.2 Proposed control scheme1

An adaptive nonlinear model-based control scheme
implemented on conical tank and pH processes has
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Fig. 1 Schematic diagram of proposed control schemes1

Fig. 2 Schematic diagram of proposed control schemes2

been proposed. The proposed control law for the above-
mentioned systems is as follows:

u(k) = α ∗ kc2(k)(ysp(k) − y(k)) + ud(k) (18)

kc2(k) = ud(k)/ym(k) (19)

where ysp is the set point. ym is the model state. Con-
troller gain (kc2), bias (ud) and numerical multiplier
(α) are considered to be the tuning parameters of the
proposed control scheme. The schematic diagram of
the proposed control scheme is shown in Fig. 1.

2.3 Proposed control scheme2

Firstly, an adaptive nonlinear model-based control
scheme implemented on conical tank and pH processes
has been proposed. As an example of derivative-free
Kalman filter, UKF has been considered for estimat-
ing all the states. The values of the predicted states
have been used to formulate proposed adaptive NMBC
scheme (see Fig. 2). It should be noted that adaptive
NMBC scheme has been denoted as proposed scheme2

in the figures. In case of servo–regulatory response, x1i
has been estimated in addition with available process
state variable (i.e., Augmented UKF/AUKF). The pro-
posed control law for the above-mentioned systems is
as follows:

u(k) = α ∗ k̂c2(k/k − 1)(ysp(k) − y(k))

+ û(k/k − 1) (20)

k̂c2(k/k − 1) = û(k/k − 1)/ŷ(k/k − 1) (21)

where controller gain (k̂c2(k/k − 1)) or (kc2), bias
(û(k/k − 1)) or (ud) and numerical multiplier (α) are
considered to be the tuning parameters of the proposed
control scheme.The schematic diagramof the proposed
control scheme is shown in Fig. 2. The states of the sys-
tem can be represented as [16,20–22]:

x(k) = x(k − 1) +
⎡
⎢⎣

kT∫

(k−1)T

f [x(τ ), u(k − 1)]dτ
⎤
⎥⎦

+ w(k) (22)
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Measurement equation can be described as:

y(k) = h[x(k)] + v(k) (23)

where x(k) denotes the system state vector (x ∈ RL)

and qc(k) is the process input (qc ∈ Rm). w(k) is the
process noise (w ∈ RL) and y(k) is the measured state
variable (y ∈ Rr ). v(k) is themeasurement disturbance
(v ∈ Rr ). k is the sampling instances. f [.] and h[.]
are nonlinear process and measurement model, respec-
tively.

A set of (2L+1) sigma pointsχ(k−1/k−1, i)with
the associated weights w(i) are chosen symmetrically
about χ̂(k − 1/k − 1) as follows:

χ(k − 1/k − 1, i) = χ̂(k − 1/k − 1) (24)

χ(k − 1/k − 1, i) = χ̂(k − 1/k − 1)

+
(√

(L + λ)P(k − 1/k − 1
)
i

i = 1, . . . , L (25)

χ(k − 1/k − 1, i) = χ̂(k − 1/k − 1)

−
(√

(L + λ)P(k − 1/k − 1
)
i−L

i = L + 1, . . . , 2L (26)

Wm(0) = λ/(L + λ); (27)

Wc(0) = λ/(L + λ) + (1 − α2
1 + β); (28)

λ = α2
1(L + κ) − L; (29)

Wc(i) = Wm(i) = 1/(2(L + λ)); i = 1, . . . , 2L

(30)

where κ is a secondary scaling parameter. (α1) is the
factor determining by spread of sigma points around
χ̂ (k − 1/k − 1) and is usually set between (1e−4) to
1. The parameter β is used to incorporate prior knowl-
edge of distribution of x and for Gaussian distribution.
Its optimum value is 2. (2L+1)sigma points have been
derived from the state x̂(k−1/k−1) and covariance of
the state vector P(k − 1/k − 1). Here L is the dimen-
sion of the state vector. In case of prediction step, sigma
points are propagated through nonlinear differential
equation for obtaining predicted set of sigma points
as mentioned below:

χ(k/k − 1, i) = χ̂ (k − 1/k − 1, i)

+
kT∫

(k−1)T

f [χ(τ, i), u(k − 1)]dτ ; i = 0, . . . , 2L .

(31)

Predicted state estimates x̂(k/k − 1) are obtained
from predicted sigma points as:

x̂(k/k − 1) =
2L∑
0

Wm(i)χ(k/k − 1, i) (32)

Error covariance matrix P(k − 1/k − 1) can be
obtained from predicted sigma points as:

P(k/k − 1, i) =
2L∑
0

Wc(i){χ(k/k − 1, i)

− x̂(k/k − 1, i)} ∗ {χ(k/k − 1, i)

− x̂(k/k − 1, i)}T + Q (33)

Sigma points are re-drawn using the predicted state
estimate as given as:

χ∗(k/k − 1, i) = x̂(k − 1/k − 1); (34)

χ∗(k/k − 1, i) = x̂(k/k − 1)

+
(√

(L + λ)P(k/k − 1
)
i

i = 1, . . . , L; (35)

χ∗(k/k − 1, i) = x̂(k/k − 1)

−
(√

(L + λ)P(k/k − 1
)
i

i = L + 1, . . . , 2L;
(36)

Re-drawn sigma points are propagated through non-
linear measurement equation to obtain predicted mea-
surement as

ŷ(k/k − 1) =
2L∑
0

Wm(i) ∗ [χ(k/k − 1, i)] (37)

The covariance matrix of innovation Pyy(k) and
cross-covariance matrix between the predicted states
estimation errors and innovation Pxy(k) are computed
as follows:

Pyy(k) =
2L∑
0

[
Wc(i){h[χ∗(k/k − 1, i)]

− ŷ(k/k − 1)} ∗ {h[χ∗(k/k − 1, i)]
− ŷ(k/k − 1)}T

]
+ R (38)

Pxy(k) =
2L∑
0

[
Wc(i){χ∗(k/k − 1, i)

− x̂(k/k − 1)} ∗ {h[χ∗(k/k − 1, i)]
− ŷ(k/k − 1)}T

]
(39)

The residual can be calculated as follows:

γ (k) = y(k) − ŷ(k/k − 1) (40)
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The Kalman gain matrix can be obtained as

K (k) = Pxy(k)P
−1
yy (k) (41)

The updated state can be determined as mentioned
below:

x̂(k/k) = x̂(k/k − 1) + K (k) ∗ γ (k) (42)

The covariance matrix of error in the updated state
estimates can be computed by the equation

P(k/k) = P(k/k−1)−K (k) ∗ Pyy(k) ∗ KT(k) (43)

In case of servo–regulatory response, we have esti-
mated process parameter (Causes disturbance) in addi-
tion to process states.

In this proposed work, a performance comparison
study (ISE and CE) has been made between proposed
control schemes with conventional adaptive PI control
technique. The ISE and CE can be derived as follows
[16]:

ISE =
τ∫

0

(ysp(k) − y(k))2dk (44)

CE =
k∑

i=1

|u(k) − u(k − 1)| (45)

3 Process description and simulation results

The processes considered for the simulation study are
conical tank and pH processes.

3.1 Conical tank system

Table 1 shows the process parameter values for bench-
mark conical tank system. The material balance equa-
tion for the conical tank system is as follows [18]:

Table 1 Values of the process parameters and variables associ-
ated with conical tank system

Process variable Nominal operating value

Maximum height (Hmax) 60 cm

Maximum radius (Rmax) 25 cm

Valve coefficient (Cv) 0.5

A(h)
dh

dt
= fin − fout (46)

where A(h) is the area of the tank. fin (cc/s) and fout
(cc/s) are inflow and outflow rate of the tank, respec-
tively. h (cm) is the water level in the conical tank sys-
tem. The relationship between outflow rate ( fout) and
the water level (h) in the tank is as follows:

fout = cv
√
2gh (47)

where cv is the discharge coefficient. It should be noted
that the area of the conical tank varies with water level
in the tank. In case of conical tank, the area of the tank
can be calculated using following relations.

A(h) = π ∗ Rmax
2 ∗ h2

Hmax
2 (48)

where Rmax is the maximum radius and Hmax is the
maximum height of conical tank.

All the simulations were executed by considering
first principle model mentioned in Eqs. (46–48). True
state variable is obtained by solving differential equa-
tion using MATLAB 7.2 toolboxes. In the entire sim-
ulation studies, sampling time has been considered as
0.0833 min. A constrained on the manipulated variable
(0.01 < fin < 20 cc/s) has been imposed. Following
operating point has been taken for entire simulation
studies (h̄ = 30, fin = 2.7386). The controller per-
formances (ISE and CE computation) of all mentioned
control schemes at servo level, servo-regulatory perfor-
mance and in the presence of measurement noise are
reported in Tables 3 and 4, respectively.

3.1.1 Open-loop study

In order to assess the open-loop study of the conical
tank system, a sequence of step changes (combination
of positive and negative steps) in the manipulated vari-
able has been introduced. Figure 3a represents the steps
changes in the input ( fin). The variation of process out-
put (h) is reported in Fig. 3b.

3.1.2 Servo response

In order to assess the tracking capability of all the
above-mentioned control schemes, set point variation
as shown in Fig. 4a has been introduced. In the case
of conventional adaptive PI control scheme, controller
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Fig. 3 Open-loop response of the conical tank processes. a Variation of input, b process output
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Fig. 4 Servo response of the conical tank process with various control schemes. a Process output, b variation of controller output

tuning parameters (kc1; Ti) have been updated by UKF
estimation technique. For proposed control scheme2,
only model state [h] has been estimated by UKF algo-
rithm, which in term updated controller parameters.
Table 2 mentions parameters associated with UKF-
based state estimation scheme implemented on coni-
cal tank system. Simulation studies were made based

on the set point variation of 30–35, 35–30 and finally
30–25. From Fig. 4a, it can be inferred that the all the
controllers are able to maintain the set point at desired
level. The variation of controller output is reported
in Fig. 4b. The evolution of the conventional adap-
tive PI controller tuning parameters (kc1; Ti) and pro-
posed controllers tuning parameters (kc2; ud) is shown
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Table 2 Parameters associatedwithUKF-based state estimation
scheme

Parameter Value

Measurement noise covariance (R) (0.15)2

Process noise covariance (Q) (0.05)2

α1, β and κ 1, 0 and 0

Initial estimated value of state vector x̂(0|0) x̂(0|0) = 25

Initial error covariance P(0|0) (0.25)2

in Fig. 5a–d, respectively. From the simulation study,
it can be concluded that conventional adaptive PI con-
trol scheme is very sluggish and oscillatory in nature.
However, it can be stated that controller is having poor
robustness. From the extensive simulation study, it was
found that initialization of the adaptive PI controller
tuning parameters should be considered as perfect as
possible. Even little bit deviation from accurate ini-
tialization of the controller tuning parameters causes
system to become unstable. The robustness of both the
proposed controllers was found satisfactory. In order
to achieve desired level quickly at the time of set point
variation, controller tuning parameter (α) needs to be
increased. From the observations, it was found that sig-
nificant increase of (α), robustness of the controller,
would have negligible impacts.

3.1.3 Regulatory response

In order to assess the disturbance rejection capability
of all thementioned control schemes, step-like changes
in the downstream valve position as shown in Fig. 7a
have been introduced. In case of regulatory response,
with proposed control scheme2, both model states with
process parameter [cv] have been estimated by UKF
algorithm (AUKF), which in term updated controller
parameters. In this simulation study, set point was
maintained at 30 cm. It should be noted that a posi-
tive step change in the downstream valve position of
magnitude 0.05 (from 0.5 to 0.55) has been introduced
at 501th sampling instance and the same value has
been maintained up to 1200th and again negative step
change in the downstream valve position of magnitude
0.05 (from 0.55 to 0.5) has been introduced at 1201th
sampling instance and the same value has been main-
tained up to 3000th sampling instance. From Fig. 6a, it
can be inferred that the conventional adaptive PI con-
troller is able to reject disturbance and bring back pro-
cess variable to the desired level. The variation of con-
troller output is reported in Fig. 6b. The evolution of
conventional adaptive PI controller tuning parameters
(kc1; Ti) and proposed controllers tuning parameters
(kc2; ud) is shown in Fig. 7. Variation of downstream
value position (true [cv] and estimated [cv]) is reported
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Fig. 5 Evolution of controller parameters in various control schemes for servo response. a kc1, b Ti, c kc2, d ud
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Fig. 7 Evolution of controller parameters in various control schemes for regulatory response. a Disturbance pattern—variation of
downstream valve (cv), b kc1, c Ti, d evolution of downstream valve (true cv and estimated cv), e kc2, f ud

in Fig. 7d. From the simulation study, it can be con-
cluded that eliminating disturbances with conventional
adaptive PI control scheme is oscillatory in nature and
taking longer time to settle. It can be inferred that con-
troller is having poor robustness. In case of conven-
tional adaptive PI controller, changes in downstream
valve position [cv]more than 10% resulted in the failure

of UKF to estimate controller parameters, whereas in
case of proposed controller2, large variation of down-
stream valve position does not have any impact on the
UKF to estimate model parameters. The merit of the
proposed schemes also leads to the robustness feature
of the controller.
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Fig. 8 Servo and regulatory response of the conical tank pro-
cess with various control schemes in the presence of measure-
ment noise. a Process output—servo response, b variation of

controller output—servo response, c process output—regulatory
response, d variation of controller output—regulatory response

3.1.4 Measurement noise elimination

Real-time processes exhibitmeasurement noise; hence,
effectiveness of the controller can be identified by
checking the ability to track at desired value in the pres-
ence of measurement noise [1]. In order to introduce
measurement noise into the system,white randomnoise
has been added into the process output. The efficacy of
the proposed control schemes in the presence of mea-
surement noise has been measured and compared with
conventional adaptive PI control scheme.

It should be noted that, for introduction of measure-
ment noise, NSR (noise-to-signal ratio) has been taken
as 0.02. FromFig. 8, it can be inferred that the proposed
control schemes are able to eliminate the measurement
noise and bring the process variable back to the desired
level, whereas introducingmeasurement noise (NSR=
0.02) with conventional adaptive PI controller, system
becomes unstable. The evolution of controller outputs
is reported in Fig. 8.

3.1.5 Robustness of the controller

To assess the robustness criteria for the proposed
control schemes, changes of parameters (downstream
valve coefficient [cv]) at different point of time between
plant and model have been introduced (shown in

Fig. 7a). From Fig. 6a, it can be concluded that all the
control schemes are able to maintain the water level
at the desired setpoint in the presence of plant and
model mismatch. The variations of controller outputs
are shown in Fig. 6b. The ISE and CE values of all the
control schemes in the absence and presence of plant
andmodel mismatch (10% deviation of discharge coef-
ficient) are reported in Tables 3 and 4. From Tables 3
and 4, it can be inferred that there is deterioration in per-
formances for all the control schemes in the presence
of plant and model mismatch.

3.1.6 Performance measurement of different control
schemes

In order to assess the performances of different control
schemes for servo, regulatory response and in the pres-
ence of measurement noise, ISE and CE computation
have been reported. Tables 3 and 4 represent ISE and
CE calculations for conical tank process, respectively.
Servo performance was made based on set point vari-
ation as shown in Fig. 4a. For computation of regula-
tory performance, Fig. 6a has been considered. It was
observed that the performance of proposed schemes
(ISE and CE value) is better than conventional adap-
tive PI scheme. From Tables 3 and 4, it can be inferred
that there is deterioration in performances for all the
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Table 3 ISE chart for servo, servo–regulatory responses and in the presence of measurement noise (NSR = 0.015) for various control
schemes implemented on conical tank system

Control schemes Servo change Regulatory
change

Servo change (with
measurement noise)

Regulatory change (with
measurement noise)

Conventional adaptive PI 1.0474*e+004 1.5590*e−001 System becomes unstable System becomes unstable

Proposed scheme1 5.9831*e+003 2.7408*e−002 6.0797*e+003 3.2562*e−002

Proposed scheme2 6.0087*e+003 2.8976*e−002 6. 0981*e+003 3.3205*e−002

Table 4 CE chart for servo, servo–regulatory responses and in the presence of measurement noise (NSR = 0.015) for various control
schemes implemented on conical tank system

Control schemes Servo change Regulatory change Servo change (with
measurement noise)

Regulatory change (with
measurement noise)

Conventional adaptive PI 3.8350*e+003 4.0275*e+003 System becomes unstable System becomes unstable

Proposed scheme1 3.3119*e+003 3.7969*e+003 4.7592*e+003 5.0863*e+003

Proposed scheme2 3.4771*e+003 3.9610*e+003 4.8315*e+003 5.1492*e+003

control schemes in the presence of measurement noise
and in the presence of plant and model mismatch. It
has been observed that, introducingmeasurement noise
(NSR = 0.02) with conventional adaptive PI control
scheme, system becomes unstable. From overall com-
parison study (both ISE and CE as shown in Table 9),
it can be stated that control scheme1 has better perfor-
mances over other control schemes.

3.2 pH process

The material balance equation of the pH process men-
tioned in [8,23] has been considered in this work. pH is
the desired output. Disturbancewas introduced through
changes in the acid composition in acid flow rate (x1i ).
Table 5 mentions the process parameter data for pH.
The first principle-based model equation for pH pro-
cess can be described by [8,23]:
·
X1 = 1

θ
(X1i − X1) − 1

θ
X1u (49)

·
X2 = 1

θ
(X2i−X2)u−1

θ
X2 (50)

·
X3 = 1

θ
(X3i−X3)u−1

θ
X3 (51)

h(X, y) = ξ + X2 + X3 − X1

−Kw

ξ
− X3

1+Kxξ/Kw
= 0 (52)

where

ξ = 10−y; θ = V
/
qa; u = qb

qa
(53)

Table 5 Steady-state values of the process parameters and vari-
ables associated with pH Process

Process variables/
parameters

Normal operating condition

Volume (V ) 2.5 L

Acid flow rate (qa) 0.01667 L/s

Base flow rate (qb) 0.00637 L/s

Acid composition in acid
flow rate (X1i )

0.0012 mol HCl/L

Base composition in base
flow rate (X2i )

0.002 mol NaOH/L

Buffer agent composition in
base flow rate (X3i )

0.0025 mol NaHCO3/L

Dissociation constant of
buffer (Kx)

10−7 mol/L

Dissociation constant of
water (Kw)

10−14 mol2/L2

All the simulations were executed by considering
Eqs. (49–53). True state variables are obtained by
solving differential equation using MATLAB 7.2 tool-
boxes. In the entire simulation studies for pH process,
sampling time has been considered as 0.083 min. A
constraint on the process output (0 < pH < 14)
has been imposed. Following operating point has been
taken for entire simulation studies (x̄1 = 8.3537 ∗
e−004; x̄2 = 6.0771 ∗ e−004; x̄3 = 7.5964 ∗ e−004)
(see [8,23]).
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Fig. 9 Open-loop response of pH processes. a Variation of input, b process output—pH
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Fig. 10 Servo response of the pH process with various control schemes. a Process output, b variation of controller output

3.2.1 Open-loop study

In order to assess the open-loop study of thepHprocess,
a sequence of step changes (combination of positive
and negative steps) in the manipulated variable (u) has
been introduced. Figure 9a represents the steps changes
introduced in the input (u). The variation of process
output (pH) is reported in Fig. 9b.

3.2.2 Servo response

In order to assess the tracking capability of all the
above-mentioned control schemes, set point variation
as shown in Fig. 10a has been introduced. In case of
conventional adaptive PI control scheme, controller
tuning parameter (kc1; Ti) has been updated by UKF
estimation technique. For proposed control scheme2,
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Table 6 Parameters
associated with UKF-based
state estimation scheme

Parameter Value

Measurement noise
covariance matrix (R)

[
(0.05)2

]

Process noise covariance
matrix (Q)

⎡
⎣
8.3537e−010 0 0
0 6.0771e−015 0
0 0 7.5964e−015

⎤
⎦

α1, β and κ 1, 0 and 0

Initial estimated value of
state vector x̂(0|0)

x̂(0|0) = [
8.3537e−004 6.0771e−004 7.5964e−004

]T

Initial error covariance
matrix P(0|0)

⎡
⎣
8.3537e−010 0 0
0 6.0771e−015 0
0 0 7.5964e−015

⎤
⎦
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Fig. 11 Evolution of controller parameters in various control schemes for servo response. a kc1, b Ti, c kc2 (proposed scheme1), d ud
(proposed scheme1), e kc2 (proposed scheme2), f ud (proposed scheme2)

only model states [x1; x2; x3] have been estimated
by UKF algorithm, which in term updated controller
parameters. Table 6 mentions parameters associated
with UKF-based state estimation scheme implemented
on pH process. Simulation studies were made based on
the set point variation of 7.37–9, 9–7 and finally 7–4.5.
From Fig. 10a, it can be inferred that all the controllers
are able to bring back the process variable at desired
value. The variation of controller output is reported
in Fig. 10b. The evolution of conventional adaptive
PI tuning parameters (kc1; Ti) and proposed controller
tuning parameters (kc2; ud) is shown in Fig. 11. From

the simulation study, it can be concluded that conven-
tional adaptive PI control scheme is sluggish in nature
compared to the proposed control schemes. It was also
observed that proposed controller1 is aggressive in
nature at the time of set point variation. Performance of
proposed schemes can further be improved by adjust-
ing (α). It was found that significant increase of (α),
robustness of both proposed schemes, would have neg-
ligible impacts. The robustness of the proposed control
schemes is found better than conventional PI control
scheme.
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3.2.3 Regulatory response

In order to assess the disturbance rejection capability of
all the control schemes, ramp-based step-wise changes
(see Fig. 12a) in the acid composition in acid flow
rate (x1i ) have been introduced at different sampling
instance (see Fig. 12a). In this simulation study, set
point was maintained at 7 throughout simulation study.
From Fig. 12b, it can be inferred that all the above-
mentioned controllers are able to reject disturbance
and bring back process variable to the desired value.
The variations of controller outputs are reported in
Fig. 12c. The evolution of conventional adaptive PI tun-
ing parameters (kc1; Ti) and proposed controller tuning
parameters (kc2; ud) has been shown in Fig. 13. It was
found that conventional adaptive PI is taking almost
same time like proposed control schemes to eliminate
disturbances.

3.2.4 Measurement noise elimination

In order to assess the tracking capability and distur-
bance rejection capability of various control schemes
in the presence of measurement noise, white random
noise has been added into the process. It should be
noted that for introduction of measurement noise, NSR
has been taken as 0.03. In case of servo response, sim-
ilar kind of set point variation as mentioned in Fig. 10

has been considered and for regulatory response sim-
ilar kind of disturbance as well as set point variation
as mentioned in Fig. 12 has been maintained in this
simulation study. From Fig. 14a, it can be inferred
that all the control schemes are able to maintain the
set point at desired value. The variation of controller
outputs at servo response is reported in Fig. 14b.
From Fig. 14c, it can be inferred that all the con-
trol schemes are able to eliminate disturbance and
bring back process variable at set point. The varia-
tion of all the controller outputs at regulatory level
is reported in Fig. 14d. From the simulation study, it
can be inferred that both proposed control schemes
are able to settle quickly over conventional adaptive
PI controller at the time of set point variation. It was
noticed that conventional adaptive PI is taking almost
same time like proposed control schemes to eliminate
disturbances.

3.2.5 Robustness of the controllers

To assess the robustness criteria for the proposed con-
trol schemes, step changes of different parameters [acid
composition in acid flow rate (x1i ) and base composi-
tion in base flow rate (x2i )] at different points of time
have been introduced (shown in Fig. 15a, b, respec-
tively). It should be noted that for checking robust-
ness of the controller, white random noise has been
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taken as NSR = 0.03. From Fig. 15c, it can be con-
cluded that all the control schemes are able to maintain
the desired level even in case of plant and model mis-
match. The evolution of controller outputs is shown in
Fig. 15d.

3.2.6 Performance measurement of different control
schemes

In order to assess the performances of different control
schemes for servo, regulatory response and in the pres-
ence of measurement noise, ISE and CE computation
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Table 7 ISE chart of servo, servo–regulatory responses in the absence and presence of measurement noise (NSR = 0.015) for various
control schemes implemented on pH process

Control schemes Servo change Regulatory change Servo change (with
measurement noise)

Regulatory change (with
measurement noise)

Conventional adaptive PI 949.767 498.381 985.107 507.926

Proposed scheme1 426.519 751.403 509.148 827.563

Proposed scheme2 428.283 748.792 512.854 829.729

Table 8 CE chart of servo, servo–regulatory responses and in the presence of measurement noise (NSR = 0.015) for various control
schemes implemented on pH process

Control schemes Servo change Regulatory
change

Servo change (the presence
of measurement noise)

Regulatory change (the
presence of measurement
noise)

Conventional adaptive PI 157.304 108.049 176.957 112.940

Proposed scheme1 117.249 136.634 157.265 149.674

Proposed scheme2 118.571 135.928 159.843 147.379

have been reported. Tables 7 and 8 represent ISE and
CE computation of pH process, respectively. Servo per-
formance of pH process was made based on set point
variation as shown in Fig. 8a. For regulatory perfor-
mance calculation, Fig. 12 has been considered. From
the simulation study, it can be inferred that conventional
adaptive PI control scheme is sluggish in nature and

taking longer time to settle compared to proposed con-
trol schemes. It was observed that servo performance
of proposed schemes (ISE and CE value) is better than
of conventional adaptive PI scheme, whereas conven-
tional adaptive PI scheme performs better in regula-
tory level over proposed control schemes. From over-
all comparison study (both performance of ISE and CE
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Table 9 Comparison of overall closed-loop performance (ISE + CE) for conical tank and pH process

Process taken Scheme Servo Regulatory Servo (with
measurement noise)

Regulatory (with
measurement noise)

pH Conventional adaptive PI 1107.071 606.43 1162.057 620.866

Proposed scheme1 543.768 888.037 666.413 977.237

Proposed scheme2 546.854 884.72 672.697 977.208

Conical tank Conventional adaptive PI 14,309 4027.65 Unstable Unstable

Proposed scheme1 9295 3796.92 10,838.9 5086.33

Proposed scheme2 9485.8 3961.028 10929.6 5149.23
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Fig. 16 Performance measure (J ) as a function of (α)

as shown in Table 9), it can be inferred that control
scheme1 provides better performances over other con-
trol schemes.

3.3 Guidelines of choosing (α)

The proposed NMBC control schemes have tuning
parameters, namely Kc2, ud and numerical multiplier
(α). Hence, optimization of Kc2 for any process can be
determined byminimizing the performance measure in
terms of integral square error J (ISE).

J (ISE) = (α ∗ Kc2)

N0∑
k=1

w0e
2(k) (54)

where output error e(k) = ysp(k) − y(k) and w0 is
the weighting factor associated with output error. N0

signifies the length of the simulation trail. Here (α)

can be derived as:

α = (1/Kc2) ∗
[
u p(k)

ym(k)

]
= (1/Kc2) ∗

[
u p(k)

Cmxm(k)

]

(55)

Hence, (α) can be determined by minimizing the
performance measure as follows:

J = α

N0∑
k=1

w0e
2(k) (56)

Figure 16a, b shows the variation of J with respect
to (α) for pH process and conical tank system, respec-
tively. From Tables 10 and 11, it can easily be con-
cluded that optimal value of (α) can be determined
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Table 10 Performance (J ) measured on pH process for different control parameter

α = 9 α = 15 α = 22 α = 30 α = 39 α = 48 α = 49 α = 49.5

134.07 72.82 47.75 34.27 26.01 20.96 21.26 22.48

Table 11 Performance (J ) measured on conical tank system for different control parameter

α = 25 α = 50 α = 100 α = 200 α = 300 α = 400 α = 500 α = 600

1.268e−02 2.548e−03 5.652e−04 5.218e−04 5.184e−04 5.406e−04 8.195e−04 8.562e−04

based on minimal range of J . From the extensive sim-
ulation study, it can also be inferred that minimal range
of J can be obtained either on awider range or on a nar-
row region of (α) variation. It was observed that with
the increase in (α) system takes lesser time to reach set
point, resultingminimal performance value.We have to
keep on increasing (α). A point will be reached where
performance will be started degrading. Please be noted
that, with having lesser values of (α), system becomes
sluggish in nature. Hence, there exists a trade-off.

4 Conclusion

In this paper, a successful design and implementa-
tion of proposed adaptive nonlinear model-based con-
trol schemes has been discussed. From the simulation
study, it can be concluded that servo and regulatory per-
formances of proposed control schemes (both the pres-
ence and absence of measurement noise) implemented
on conical tank and pH processes were found satisfac-
tory. From the comparison study, it can be inferred that
proposed control schemes take very less time to set-
tle over conventional adaptive PI controller at the time
of set point variation. It was also observed that conven-
tional adaptive PI control scheme is having poor robust-
ness compared to proposed control schemes. From the
controller performances chart (ISE and CE computa-
tion), it can be inferred that proposed controllers are
having better performance over conventional adaptive
PI control schemes, whereas for pH process, proposed
control schemes are having poorer ISE and CE value in
regulatory level. It was also noticed that proposed con-
trol schemes are good to eliminate measurement noise
compared to conventional adaptive PI control scheme.
From overall performance of all the mentioned con-
trol schemes, it can be concluded that proposed control

schemes perform better over conventional adaptive PI
control law.
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