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Abstract A new variant of the (2 + 1)-dimensional
[(2 + 1)d] Boussinesq equation was recently intro-
duced by Zhu [Line soliton and rational solutions to
(2+1)-dimensional Boussinesq equation by Dbar prob-
lem, 2017. arXiv:1704.02779v2; see eq. (3)]. First, we
derive in this paper the one-soliton solutions of both
bright and dark types for the extended (2+1)d Boussi-
nesq equation by using the traveling wave method.
Second, N -soliton, breather, and rational solutions are
obtained by using the Hirota bilinear method and the
long-wave limit. Nonsingular rational solutions of two
typeswere obtained analytically, namely (i) roguewave
solutions having the form ofW-shaped lines waves and
(ii) lump-type solutions. Two generic types of semi-
rational solutions were also put forward. The obtained
semi-rational solutions are as follows: (iii) a hybrid
of a first-order lump and a bright one-soliton solution
and (iv) a hybrid of a first-order lump and a first-order
breather.
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1 Introduction

During the last decades, awidevariety of nonlinear evo-
lution equation [NLEEs] have been used tomodelmany
interesting nonlinear phenomena in physics, chemistry,
biology, and even in social sciences. The continuing
fast-growing research area of solitons or more prop-
erly solitary waves and their diverse applications in
science and technology has attracted the interest of
many research groups around the world since the pio-
neering work of Zabusky and Kruskal, published more
than fifty years ago [1], see also Refs. [2–12]. The
observation of different types of solitons in a series of
physical settings uncovered many interesting phenom-
ena from both fundamental and applied points of view
[13–21].

Due to the exact dynamical counterbalancing
between nonlinear and dispersive effects, the solitary
waves are wave packets that travel in nonlinear dis-
persive and/or diffractive media and retain their stable
waveforms. The solitary waves in (1+ 1)-dimensional
[(1 + 1)d] settings have been researched extensively
and are understood quite well; thus, it was necessary
to study NLEEs in higher dimensions, e.g., in (2+ 1)d
and (3 + 1)d physical settings. In particular, the exact
solutions and their dynamics in the case of integrable
(2 + 1)d equations have been studied in detail, such
as the Davey–Stewartson [DS] equations [22,23], the
Kadomtsev–Petviashvili-I [KPI] equation [24,25], the
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(3+1)d KPequation [26], and other physically relevant
NLEEs, see, for example, Refs. [27–40].

More recently, the phenomenon of rogue waves
[RWs] has become a hot research topic. These rogue
(freak) waves “appear from nowhere and disappear
without a trace” [41]. The concept of RWs has been
extend beyond the common oceans RWs. During the
past fewyears,many theoretical and experimental stud-
ies of RWs range from geophysics and hydrodynamics
to oceanography, Bose–Einstein condensates [42,43],
optics and photonics [44,45], plasma physics [46,47],
superfluids [48], and atmosphere physics [49]. Pere-
grine was the first one who obtained the fundamen-
tal RW solution of the generic nonlinear Schrödinger
[NLS] equation [50]. Recently, the higher-order RW
solutions of the NLS-type equations were studied in a
series of articles by different methods [51–58]. What
is more, a hierarchy of other soliton equations has also
been verified possessing different types of RW solu-
tions [59–63]; for a recent review on rogue waves in
scalar, vector, andmultidimensional nonlinear systems,
see Ref. [64].

The dynamics of shallow water waves are gov-
erned by several kinds of NLEEs [65–73]. Typi-
cally, the corresponding soliton solutions of these
NLEEs model the dynamics of shallow waters waves
near ocean beaches, and in lakes and rivers. The
Korteweg–de Vries [KdV] equation that models shal-
low water waves was very much investigated. Nev-
ertheless, the related Boussinesq equation provides a
superior approximation to the adequate description of
such water waves.

In 1871, Boussinesq proposed the following equa-
tion

Utt −Uxx + β(U 2)xx + γUxxxx = 0, (1)

where β and γ are arbitrary constants. This NLEE is
completely integrable, possesses an infinite number of
conservation laws and has its Lie group symmetries.
The Boussinesq equation describes the propagation of
shallow water waves with small amplitudes as they
propagate at a uniform speed in a water canal of con-
stant depth and it arises in several other physical con-
texts. Severalmethods have be used to dealwithEq. (1),
including the Lie group method, the inverse scattering
transform [IST], the Darboux transformation [DT], the
Hirota bilinear method [3,70,74–78], see also diverse
physical applications, including one-dimensional non-
linear lattice waves [79], ion sound waves in plasma

[80], and vibrations of a nonlinear string [77]. Note that
very recently, Clarkson and Dowie studied the rational
solutions of the Boussinesq equation and application
to RWs and obtained families of rational solutions of
the KPI equation from the rational solutions of Eq. (1)
[81].

Recently, Zhu [82] has found a new integrable (2+
1)d Boussinesq equation

Uxx + αUyt − αUyy + α1εUxy

+ α2ε(U
2)xx + α3ε

2Uxxxx = 0, ε2 = ±1,
(2)

where U = U (x, y, t) is a differentiable function
and α, α1, α2, α3 are arbitrary constants. Note that for
the sake of generality we have inserted four arbitrary
parameters in the original equation studied byZhu [82].
The line-type solitons and rational solutions obtained
in Ref. [82] depend on different choices of the kernel
of the Dbar problem.

In this paper, we focus on the exact families of solu-
tions of the more general equation (2). We derive one-
soliton solutions of both bright and dark types for the
extended (2+1)d Boussinesq equation (2) by using the
traveling wave method. The effects of free parameters
on the obtained one-soliton solutions are also analyzed.
We obtain the explicit Hirota bilinear form and the gen-
eral N -soliton solutions, breather, and rational solu-
tions are given. An effective tool, namely the contour
line method, is applied to study the localization char-
acteristics of the profiles of the obtained RWs [62,83–
86]. It is well known that the contour line above the
asymptotic plane is a closed curve, while the contour
line on the asymptotic plane is a hyperbola. A simple
question arises: What is the form of the contour line
of the obtained lump solution? We thus also study in
this paper the profile of the lump solution by using the
contour line method. Moreover, we show that rational
and semi-rational solutions can be generated by taking
the corresponding long-wave limit.

The organization of this paper is as follows. In
Sect. 2, two generic types of one-soliton solutions are
constructed by using the traveling wave method. In
Sect. 3, breathers and RWs were derived by employing
the Hirota bilinear method. In Sect. 4, semi-rational
solutions are generated by taking the corresponding
variant of the long-wave limit. The main results of this
paper are summarized in Sect. 5.
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2 One-soliton solutions of the extended (2+ 1)d
Boussinesq equation

In this section, we will derive the analytical one-soliton
solutions of the extended (2 + 1)d Boussinesq equa-
tion (2) by employing the traveling wave method. The
effects of the variation in the parameters α, α1, α2, α3

on the field profiles of one-soliton solutions of both
bright and dark types are also illustrated by correspond-
ing plots. In this paper, we set the parameter ε = 1 for
all specific examples and figures.

2.1 The bright one-soliton solutions

The solitary wave is regarded as a localized wave of
translation that arises from the balance between nonlin-
ear and dispersive or diffractive effects. In order to find
analytically the bright one-soliton solution, we con-
sider the following Ansatz

U (x, y, t) = Asechp{η1x + η2y − vt}, (3)

where A, η1, η2, and v are, respectively, the amplitude,
the inverse width, and the velocity of the soliton. The
unknown index p, where p > 0, will be determined
later.

Substituting Eqs. (3) into (2) and equating the high-
est exponents of sechp+4θ and sech2p+2θ functions,
one gets

2p + 2 = p + 4, (4)

which gives p = 2, where θ = η1x + η2y − vt .
Setting the coefficients of the same exponent of

sechp+ jθ to zero, where j = 0, 2, 4, since these func-

tions are linearly independent, we obtain a set of alge-
braic equations:

v2 − αη2v − αη22 + α1εη1η2 + 4α3εη
4
1 = 0, (5)

− v2 + αη2 + αη22 − α1εη1η2 − 4α2εA
2η21

+ 20α3εη
4
1 = 0, (6)

− 20A2α2εη
2
1 + 120Aη41α3ε

2 = 0. (7)

Solving Eq. (5), we obtain

v = 1

2

{
αη2 ±

√(
(α2 + 4α)η22 − 4α1εη1η2 − 16ε2η41α3

)}
,

(8)

From Eq. (7), we obtain

A = 6η12α3 ε

α2
. (9)

Substituting A and v into Eq. (6), we see that (6)
is automatically satisfied; hence, Eq. (6) can be under-
stood as the integrability condition for the solitarywave
solution. Now Eq. (9) imposes the constraint condi-
tion on the parameters as α2α3 > 0, for the soliton to
exist, and Eq. (8) shows that the velocity v is depen-
dent on α, α1, and α3, and± sign in the soliton velocity
shows the moving direction of solitary waves. Finally,
the above expressions of A and v are substituted in
Eq. (3), and we get the solitary wave solution for the
extended (2 + 1)d Boussinesq equation as

U = 6η12α3 ε

α2
sech2{η1x + η2y − vt}. (10)

Figure 1 shows the profile of the bright one-soliton
solution of the (2 + 1)d generalized Boussinesq equa-
tion. The velocity of the solitary wave is equal to 3, for
our choice of the free parameters.

Fig. 1 Bright one-soliton
solution given by Eq. (10)
with parameters α =
1, α1 = −1, α2 = −1, α3 =
−1, η1 = 1, η2 = 1. (Color
figure online)

123



2596 Y. Cao et al.

We briefly analyze the effects of the free parameters
of the obtained bright one-soliton solution on both its
amplitude and the two widths in the x and y directions.
From the expression of the soliton amplitude A, we see
that if we fix the parameter ε, the soliton amplitude
is directly proportional to η21 and α3 and is inversely
proportional to the parameter α2. Thus, the amplitude
remains unchanged if we vary the soliton parameter η2.
Also, the two-soliton widths in the x and y directions
are directly proportional to η−1

1 and η−1
2 , respectively.

Thus, if we vary α2 and α3, the coresponding soliton
widths in the x and y directions remain unchanged.

2.2 The dark one-soliton solutions

In order to seek dark one-soliton solutions of Eq. (2),
the preliminary assumption is

U (x, y, t) = A tanhp{η1x + η2y − vt}, (11)

where A, η1, and η2 are free unknown parameters and
v is the velocity of the soliton. Additionally, the values
of the unknown exponents p will be determined later.

Substituting Eqs. (11) into (2), by equating the high-
est exponents of tanhp+4 θ and tanh2p+2 θ functions,
one obtains p = 2. Collecting the coefficients of the
same exponent of tanhp θ , where θ = η1x + η2y − vt ,
we obtain the following system of algebraic equations:

v2 − αη2v − αη22 + α1εη1η2 − 8α3εη
4
1 = 0, (12)

− 2v2 + 2αη2 + 2αη22 − 2α1εη1η2 + 3α2εA
2η21

+ 34α3εη
4
1 = 0, (13)

3v2 − 3αη2 − 3αη22 + 3α1εη1η2 − 16α2εA
2η21

− 120α3εη
4
1 = 0, (14)

20A2α2εη
2
1 + 120Aη41α3ε

2 = 0. (15)

From Eq. (12), the soliton velocity is determined as

v = 1

2

{
αη2 ±

√(
(α2 + 4α)η22 − 4α1εη1η2 + 32ε2η41α3

)}
,

(16)

and Eq. (15) leads to

A = −6η12α3 ε

α2
. (17)

Note that by substituting the value of v and A in
Eqs. (16) and (17), we will find that Eqs. (13) and
(14) are automatically satisfied. Accordingly, these two
equations can be understood as the integrability condi-
tions for the domain wall solutions (dark-type solu-
tions) to exist. The constraint condition is given by
α2α3 < 0, which must hold for this type of solutions
to exist. Finally, the solution U can be expressed as
follows

U = −6η12α3 ε

α2
tanh2{η1x + η2y − vt}. (18)

From the above results, we observe that the exis-
tence conditions for bright one-soliton solution and
dark one-soliton solution are opposite to each other.
Figure 2 shows the wave profile of dark one-soliton
solution (18), which satisfies the associated constraint
condition for its parameters.

We also briefly analyze the effects of the free param-
eters of the obtained dark one-soliton solution on both
its amplitude and the two widths in the x and y direc-
tions. From the expression of the soliton amplitude
A, we see that if we fix the parameter ε the soliton
amplitude is directly proportional to η21 and |α3| and

Fig. 2 Dark one-soliton
solution given by Eq. (18)
with parameters α =
1, α1 = −1, α2 = −1, α3 =
1, η1 = 1, η2 = 1. (Color
figure online)
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is inversely proportional to the parameter |α2|. Thus,
the amplitude remains unchanged if we vary the soli-
ton parameter η2. Also, the two-soliton widths in the
x and y directions are directly proportional to η−1

1 and
η−1
2 , respectively. Thus, if we vary α2 and α3, the core-

sponding solitonwidths in the x and y directions remain
unchanged.

3 Breather and rogue wave solutions of the
extended (2+ 1)d Boussinesq equation

In this section, we will derive breather and RW solu-
tions of Eq. (2) by using the Hirota bilinear method and
the long-wave limit. Equation (2) can be transformed
into the bilinear form(
D2
t + αDyDt − αD2

y + α1εDx Dy

+α3ε
2D4

x

)
f · f = 0,

(19)

through the dependent variable transformation:

U = 6α3ε

α2
(log f )xx , (20)

where f is a real function and D is the Hirota bilinear
differential operator.

The N -soliton solutions U given in (20) of the
extended (2+1)d Boussinesq equation can be obtained
by the bilinear transform method [87], in which f is
written in the following form:

f =
∑

μ=0,1

exp

⎛
⎝ (N )∑

j<k

μ jμk A jk +
N∑
j=1

μ jη j

⎞
⎠ . (21)

Here

η jv = Pj x + Q j y + Ω j t + η0j ,

Ω j = −1

2

{
αQ j

−
√(

(α2 + 4α)Q2
j − 4α1εPj Q j − 4ε2P4

j α3

)}
,

A jk = −α2A4ε2 − α1ABε + Bα(B − C) − C2

α2A4∗ε2 + α1A∗B∗ε − B∗α(B∗ − C∗) + C2∗
,

A = Pj − Pk, A∗ = Pj + Pk, B

= Q j − Qk, B∗ = Q j + Qk,C = ω j − ωk,

C∗ = ω j + ωk, (22)

where Pj , Q j , η
0
j are arbitrary real parameters and the

subscript j denotes an integer. The notation
∑

μ=0

Fig. 3 Two-soliton solutions of Eq. (2) in the (x, y)-plane at
t = 0, a α2 = 1, b α2 = −1. (Color figure online)

indicates summation over all possible combinations of
μ1 = 0, 1, μ2 = 0, 1, . . . , μn = 0, 1. The

∑(N )
j<k

summation is over all possible combinations of the
N elements with the specific condition j < k. We
must emphasize that (α2 + 4α)Q2

j − 4α1εPj Q j −
4ε2P4

j α3) > 0 must hold. For simplicity, the one-
soliton solution Usoliton can also be expressed in terms
of hyperbolic function as

Usoliton = 3
α3 ε P1

2sech
(
θ̃
)

α2

[
1 + sech

(
θ̃
)]2 ,

where θ̃ = 1
2 {αQ1 +√

((α2 + 4α)Q2
1 − 4α1εP1Q1 − 4ε2P4

1 α3)} − P1x −
Q1y − η01. It is not difficult to find that the Usoliton is
equivalent to Eq. (10) by choosing suitable parameters.
Taking N = 2, α2 = −1, α = −1, α1 = 1, α3 =
−1, η01 = η02 = 0, P1 = P2 = 1, Q1 = −Q2 = 1/2,
the two-soliton solutions can be generated by Eqs. (21)
and (22). These solutions are plotted in Fig. 3.

Following our earlier works [88,89], the nth-order
breather solutions of the extended (2+1)-dimensional
Boussinesq equation can be generated by taking the set
of parameters in Eq. (21)

N = 2n, P∗
j = Pj+1, Q

∗
j = Q j+1, α = −1, α1 = 1,

α2 = −1, α3 = −1. (23)

For example, we take

N = 2, P∗
1 = P2, Q

∗
1 = Q2, (24)

The first-order breather solution U is derived ana-
lytically, and its profile is shown in Fig. 4. As shown in
Fig. 4, the first-order breather describes growing and
decaying periodic line waves in the (x, y) plane. When

123



2598 Y. Cao et al.

Fig. 4 Evolution of the first-order line breather in the (x, y)-plane, corresponding to parameters P1 = i
2 , Q1 = i

3 , and η01 = 0 in
Eq. (24), f t = −4 (dash, black), 0 (solid, red), 1 (longdash, blue). (Color figure online)

t � 0, these solutions go to a uniform constant back-
ground. In the intermediate times, periodic line waves
arise from the constant background (see the panels at
t = − 8), and then, they attain much higher amplitudes
(see the panel at t = 0). At a larger time, these periodic
line waves go back to the constant background (see the
panel at t = 8).

We also give the second-order breather solution. In
this case, we set the parameters in Eq. (21) as follows:

N = 4, P∗
1 =P2, Q

∗
1 = Q2, P

∗
3 =P4, Q

∗
3 = Q4,

η01 = η02 = η03 = η04 = 0.
(25)

As shown in Fig. 5, the two-line breathers arise from
the asymptotic constant background and then interact
with each other. This solution reaches a much higher
amplitude in the region of intersection and interaction
of line breathers. Interestingly, the interactions of the
two-line breathers generate doubly periodic line waves
(see the panel at t = − 1.25). When t � 10, these
periodic line waves retreat back to the asymptotic con-
stant background, uniformly in the (x, y)-plane. What
is interesting, the second-order breather solutions have
qualitatively different behaviors in the (x, y)-plane, if
we modify the values of P and Q, see Fig. 6.

For larger values of N , similar to the N -th soli-
ton solution, the higher-order breathers can be also
obtained analytically and they display a richer dynami-
cal behavior. However, we will not going to investigate
here this problem.

The rational solutions of Eq. (2) are generated from
breathers given by Eq. (21) under the long-wave limit.
Taking the parameters in Eq. (21) as

N = 2, Q1 = λ1P1, Q2 = λ2P2, λ
∗
1 = λ2,

α = α3 = −1, α1 = α2 = 1, (26)

and taking the limit of Pj → 0 ( j = 1, 2), the first-
order rational solution is obtained in the following form

U = θ1θ2 + α12, (27)

where

θ j = 1

2

{(
−3λ2j − 4λ j

) 1
2 + λ j (t + 2y) + 2x

}
,

α jk = 24α3

{(
3λ2j + 4λ j

) 1
2
(
3λ2k + 4λk

) 1
2
γ jγk

+ 3λ jλk + 2λ j + 2λk
}
.

(28)

The rational solutions can be classified into two
types: RWs and lumps. The corresponding rational
solutions are line RWs, when λk is real [22,23], and
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Fig. 5 Evolution of the second-order breather solution under conditions in Eq. (25) and parameters P1 = i
4 , Q1 = − i

2 , P3 = i
2 , Q3 =

i
4 . (Color figure online)

Fig. 6 Second-order breather solutionU of Eq. (2) in the (x, y)-
plane at t = 0 under conditions inEq. (25) andparametersa P1 =
i, Q1 = − i

2 , P3 = i
2 , Q3 = 1, b P1 = i

2 , Q1 = − 1
2 , P3 =

i
2 , Q3 = 1

3 . (Color figure online)

are lumps when λk is complex [90,91]. Then, the fol-
lowing two cases of rational solutions are considered
for the extended (2 + 1)d Boussinesq equation.

Case 1 (RWs) In order to obtain RW solutions from
Eq. (27), we set

λ1 = λ2 = 1, γ1 = −γ2 = 1. (29)

The RW solution is

URW = −1200(2x + 2y + t)2 + 6000t2 + 11520

[5(2x + 2y + t)2 + 25t2 + 48]2 , (30)

and the corresponding profile of RW solution URW is
shown in Fig. 7. It is seen that this W-shaped solution
describes an emerging and decaying line wave oriented
in the (1,− 1) direction of the (x, y)-plane. At any
given time, this solution keeps a constant value along
the line direction defined by 2y + 2x + c = 0, and
the solution URW uniformly approaches the constant
background at t → ±∞. At finite time, URW attains
the maximum value 5 (i.e., five times the background
amplitude) at the center (y+ x = 0) of the line wave at
t = 0.We note that in general, the breather solution is a
kind of traveling periodic solution; see, for example, the
second-order breather solution shown in Fig. 6b, which
consists of two separate breather solitons. In contrast,
the rogue wave solution is a kind of rational solution
that has a significant amplitude growth during a short
interval of time around t = 0. Figure 7 clearly shows
this unique feature of the roguewave solution.We stress
that the amplitude of the RW is changing, and it is
also moving at a speed equal to 1 for our choice of
parameters.
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Fig. 7 Time evolution in the (x, y) plane of the first-order (W-shaped) line rogue wave given by solution (30). (Color figure online)

Case 2 (Lump solution) It can be obtained from
Eq. (27) as

ULump = 12(x + t)2 − 12y2 − 36

[(x + t)2 + y2 + 3]2 . (31)

Here, the constraint conditions are

λ1 = −λ2 = i, γ1 = γ2 = 1. (32)

It is easy to see that the lump solutionULump is con-
stant along the trajectory when y = 0, x + t = 0. If we
modify the time variable t , the patterns of lump solution
do not change. The solution ULump has the following
critical points

A1 = (x1, y1) = (0, 0), A2 = (x2, y2) = (3, 0),

A3 = (x3, y3) = (−3, 0).
(33)

The lump solutionULump moves along the direction of
y = 0 and attains the maximum value 4 at the (0, 0)
point and the minimum value − 1

2 at the (−3, 0) and
(3, 0) points when t = 0. The solution UL goes to 0
when x → ∞ and t → ∞, which implies that the
hight of the asymptotic background is equal to 0.

Next we shall use the contour line method applied to
Eq. (31) in order to study the lumpprofile byvarying the
height d of contour line. Using this method, a contour

line of Eq. (31) at height d along the (x, y)-plane is
expressed by

−64(t2 + 2t x + x2 + y2 + 3)2d + 768t2

+1536t x + 768x2 − 768y2 − 2304 = 0. (34)

Here d denotes the height of contour line from the
asymptotic background.

We set d = 0 in Eq. (34), andwe see that the contour
line is a hyperbola on the asymptotic plane, which has
two asymptotes:

l1 : y = x, l2 : y = −x . (35)

The two asymptotes are plotted in Fig. 8b. The height
of contour line above the asymptotic background must
be in the interval (0, 4]. It is clear from Fig. 8c that the
contour line above the asymptotic background is reduc-
ing from a single point at height of 4 to a concave line,
and then, it becomes a convex line. Finally, it reduces
to a hyperbola on the asymptotic plane (for d = 0). For
the contour line of lump solution below the asymptotic
plane, it is not difficult to find that the two separate
contour lines are convex for all values of the param-
eter d, and finally, they reduce to two separate points
(see Fig. 8d). The two minimum points are located at
(− 3, 0) and (3, 0), for our choice of parameters.
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Fig. 8 Lump solution
ULump given by Eq. (31), in
the (x, y) plane and at
t = 0. (Color figure online)

The profile of the first-order lump solutions ULump

is shown in Fig. 8a, and the panel (b) is the density plot
of the panel (a) of Fig. 8. In panel (b), l1 (longdash,
blue) and l2 (dash, black) are the two asymptotes of the
contour line in Eq. (34). Panel (c) shows the contour
lines for different values of d from outside to inside:
d = 0 (longdash, yellow), d = 0.1 (solid, red), d = 0.2
(dash, green), d = 1.5 (solid, blue), d = 4 (a single
point). The solutionULump reaches themaximum value
of 4 at the origin (0, 0). The parameter d = 0 produces
two branches of a hyperbola on the asymptotic plane. In
panel (d), we show the contour lines for different values
of the parameter d below the asymptotic background.
The contour lines are plotted from the margins of the
figure to its center, for d = − 0.08, d = − 0.15, d =
− 0.34, and d = − 0.5, respectively. Two symmetric
points with respect to the x-axis are clearly visible in
the panel (d) for d = −0.5.

4 Semi-rational solutions of the (2+ 1)d extended
Boussinesq equation

Through the above discussion, we know that the ratio-
nal solutions are generated by taking a long-wave limit
of all of the exponential functions inU . Furthermore, it
is natural to derive the semi-rational solutions by taking
a long-wave limit of only a part of exponential func-
tions in f . Setting 0 < 2 j < N and 1 ≤ k ≤ 2 j ,

Qk = λk Pk, η
0
k = iπ, α = −1,

α1 = 1, α2 = −1, α3 = −1,
(36)

and taking the limit Pk → 0 for all k, then the func-
tions f defined in Eq. (21) become a combination of
polynomial and exponential functions, which generate
the semi-rational solutionsU of the extended (2+ 1)d
Boussinesq equation through Eq. (20). Moreover, in
order to avoid the singularity of U generated by f and
the use of the parameter constraints given in Eq. (36)
and the above long-wave limit, it is necessary to take
the following constraints:

λk = λ∗
j+k, δkδ j+k = −1 (2 j + 1 ≤ s ≤ N ). (37)
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Fig. 9 Time evolution in the (x, y) plane of the two distinct patterns of semi-rational solutions consisting of a first-order lump and a
single soliton given by Eq. (39), with parameters a, b, c P3 = −1, Q3 = 1; d, e, f P3 = 1, Q3 = −1. (Color figure online)

To clearly illustrate this method for constructing the
smooth semi-rational solutions, we first consider the
case of N = 3. Setting

N = 3, Q1 = λ1P1, Q2 = λ2P2, η
0
1 = η02 = iπ, (38)

and taking P1, P2 → 0 in Eq. (21), we obtain

f = (θ1θ2 + a12) + (θ1θ2

+ a12 + a13θ2 + a23θ1 + a12a23)e
η3 ,

(39)

where a j3 = 12 P32

−4P33+2
√

P3 (P33−Q3)
√−λ j+λ j P3+Q3

and θ j , a12, η3 are given by Eqs. (22) and (28). The
corresponding semi-rational solutions U are hybrids
of first-order lump solutions and one-soliton solutions.
A generic type of semi-rational solution is plotted in
Fig. 9. We can see the different patterns of the inter-
action of lump wave and one-soliton wave, by varying
the parameters P3 and Q3. We see that the lump moves
and passes the soliton, and in the intersection domain of
the two waveforms the amplitude increases consider-
ably, see Fig. 9a–c. The lump can also move only along
the direction of the peak amplitude of the one-soliton
wave, see Fig. 9d–f.

Higher-order semi-rational solutions consisting of
lump and breather solutions can also be generated in a
similar way for larger values of N . For example,

N = 4, Q1 = λ1P1, Q2 = λ2P2, η
0
1 = η02 = iπ, (40)

and taking P1, P2 → 0 in Eq. (21), we obtain

f = eA34 (a13a23 + a13a24 + a13θ2 + a14a23 + a14a24
+ a14θ2 + a23θ1 + a24θ1

+ θ1θ2 + a12)e
η3+η4 + (a13a23 + a13θ2

+ a23θ1 + θ1θ2 + a12)e
η3

+ (a14a24 + a14θ2 + a24θ1
+ θ1θ2 + a12)e

η4 + θ1θ2 + a12,

(41)

where

a js = 12
Ps2

−4Ps3 + 2
√
Ps

(
Ps3 − Qs

)√−λ j + λ j Ps + Qs

,

j = (1, 2),

s = (3, 4) and θ j is defined by Eq. (28). Further, we
take
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Fig. 10 Semi-rational solutions consisting of a first-order lump
and a first-order breather given by Eq. (41) at time t = 0 with
parameters a P3 = i, Q3 = − i

2 , b P3 = i, Q3 = 1
2 . (Color

figure online)

λ1 = −λ2, γ1γ2 = −1, P3 = P∗
4 ,

Q∗
3 = Q4, η

0
3 = η04. (42)

For the above expression of f , semi-rational solu-
tions of Eq. (20), which consist of fundamental lump
solution and one-breather solution are obtained, see
Fig. 10. We see from this figure that we get two dif-
ferent kinds of such hybrid solutions: The first one is
a mixture of a line breather and a lump (see Fig. 10a),
and the second one is the usual breather solution and
lump solution (see Fig. 10b).

5 Summary and discussion

In this paper, the traveling wave method was applied
to construct exact bright and dark one-soliton solutions
for the extended (2+1)-dimensional Boussinesq equa-
tion. The effects of varying the free parameters on the
profiles of these exact solutions are also analyzed. The
N -soliton and nth breather solutions are derived analyt-
ically by theHirota bilinearmethod. The first-order and
the second-order breather solutions have been shown
(see Figs. 4, 5). Such solutions constitute arrays of peri-
odic line waves in the (x, y) plane, and they are grow-
ing and then decaying in time. The W-shaped line RW,
the lump solution, and the semi-rational solution have
been constructed analytically by taking the correspond-
ing long-wave limit of the above-mentioned periodic
solutions.

We studied the localization features of the lump
profile by employing the contour line method (see
Fig. 8). Moreover, we have shown that several pat-
terns of the derived semi-rational solutions exhibit a
range of interesting and rather complicated dynamics

(see Figs. 9, 10). To the best of our knowledge, such
type of semi-rational solution composed of a first-order
lump and a first-order line breather (see Fig. 10a) has
never been reported in the study of other variants of
(2 + 1)-dimensional Boussinesq equation. We expect
new results in this area helpingus to understandboth the
unique features of nonlinear evolution equations in the
multidimensional space and the applicability of non-
linear partial differential equations to the description
of nonlinear phenomena in diverse physical settings.
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