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Abstract In this paper, the vibration control problem
for the nonlinear three-dimensional Euler—Bernoulli
beam with input magnitude and rate constraints is
addressed. By using the backstepping method with
smooth hyperbolic tangent function, a boundary con-
trol scheme is designed to suppress vibration of the
nonlinear three-dimensional Euler—Bernoulli beam and
to satisfy the input magnitude and rate constraints. It
is proved that the proposed control scheme can han-
dle the vibration and input magnitude and rate con-
straints simultaneously. Finally, numerical simulations
illustrate the effectiveness of the proposed control.

Keywords Vibration control - Three-dimensional

Euler—Bernoulli beam - Input magnitude and rate
constraints - Smooth hyperbolic tangent function

1 Introduction

Recently, a number of researchers are devoted to design
control laws and stability analysis of partial differential
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equation systems and many researchers have done a lot
of significant work in this field [1-7]. In [8], the vibra-
tion control design is proposed to suppress the vibration
of a flexible Euler—Bernoulli beam under the boundary
output constraint. In [9], the boundary stabilization of
a one-dimensional tip-force destabilized shear beam
equation is considered with boundary control. In [10],
the finite-dimensional backstepping control and Lya-
punov’s direct method are applied in boundary con-
trol law design. An adaptive boundary control is devel-
oped in [11] to suppress the belt’s vibration. In [12],
boundary control law is designed on the original PDE
dynamics to reduce the hose’s vibration. A hybrid con-
trol scheme which combines the advantages of task-
space and joint-space control is presented in [13]. In
[14], the sliding mode control (SMC) with the back-
stepping approach is developed to deal with the distur-
bance in the boundary feedback stabilization design of
heat PDE—-ODE system. To suppress the vibration of the
nonuniform system in [15], full state feedback bound-
ary control is developed for a class of axially moving
nonuniform system. In [16], boundary vibration sup-
pression for an axially moving belt with high acceler-
ation/deceleration is studied. In [17], robust adaptive
control applied at the top boundary is developed for
a thruster assisted position mooring system via Lya-
punov’s direct method.

In practice, many researchers do not take the con-
trol input constraints into account. However, con-
straint problem is a very important problem for the
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research because of physical limits of the controller.
Researchers are supposed to pay more attention on
it. In [18], state feedback boundary control with an
auxiliary system is designed, which is proposed to
compensate for the input constraint. The anti-windup
design in [19] is proposed for the boundary control
problem of a flexible manipulator. By using the back-
stepping method in [20], a boundary control scheme
with smooth hyperbolic function is proposed based
on the original PDEs to regulate the hose’s vibra-
tion with input constraint. In [21], a neural network
(NN) controller approximated by a radial basis func-
tion neural network (RBFNN) is designed to suppress
the vibration of a flexible robotic manipulator system
with input deadzone. In [22], boundary control law
is designed to regulate angular position and suppress
elastic vibration simultaneously. And smooth hyper-
bolic functions are used to satisfy input constraints.
These above works are all talking about how to solve
the input constraint problem. However, they do not
solve input magnitude and rate constraints simultane-
ously. In [23], the paper studies the control problem
of spacecraft under control input magnitude and rate
constraints, but it aims at ordinary differential equa-
tion.

In this work, we study the vibration suppression
problem for the nonlinear three-dimensional Euler—
Bernoulli beam with input magnitude and rate con-
straints. The backstepping method with smooth hyper-
bolic tangent function is proposed to control the effect
of the input magnitude and input rate constraints. The
system stability is tested on the basis of the Lya-
punov’s direct method. The main contributions in this
paper are summarized below: (1) Boundary control
system with smooth hyperbolic tangent function by
using backstepping method is designed to stabilize
the nonlinear three-dimensional Euler—Bernoulli beam
under the condition of input magnitude and rate con-
straints; (2) the system stability analysis is on the basis
of the Lyapunov’s direct method without simplifica-
tion.

The rest of this paper is organized as follows. An
Euler—Bernoulli beam with a payload in the three-
dimensional space with input magnitude and rate con-
straints is shown in Sect. 2. In Sect. 3, a boundary
control scheme is designed and analyzed. In Sect. 4,
numerical simulations are demonstrated to show the
effectiveness of the proposed controller. A conclusion
is drawn in Sect. 5.
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2 System statement
2.1 Dynamics analysis

In this paper, we study Euler—Bernoulli beam with a
payload in the three-dimensional space with input mag-
nitude and rate constraints. The effect of gravity is
ignored due to the flexibility of the beam. In the engi-
neering field, the model of three-dimensional Euler—
Bernoulli beam has been widely used in many areas,
such as the flexible marine risers in [18] and flexible
aerial refueling hose in [20]. The system is shown in
Fig. 1.

InFig. 1, OUV W is the fixed global inertial coordi-
nate. The bending stiffness, the axial stiffness, and the
tension of the beam are represented by E[, EA,and T'. p
represents the mass per meter of the link. The length of
the link is represented by /. The mass of the payload at
the top of the beam is represented by m. U, U,, U,, and
U, ws U Vs U w are the inputs and the input rates generated
at the top of the beam by the controllers, respectively.

Remark 1 For clarity, the following notations are used
throughout this article:

R ORI O
(k) = W’ (%) =

iG]
a2 = 5

)

Fig. 1 A nonlinear three-dimensional Euler—Bernoulli beam
with a payload
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#" = 2:;2 ()0 = *(0, 1), ()0 = W,
o= TEGD, (= 200D,
= LG,y TGO,
G = w G = 782(2512’ 0,

o = 200Dy 2 BOGD)
o = L0

The model of the nonlinear three-dimensional
Euler—Bernoulli beam with a payload is given by [24].

pii = Tu”" + BEAW"u’ +u"w)
3 EA
+ EEA(M/)zul/ 4 7[14”(1)/)2

+2u'v'v"] — EIu™” (D)
pi = Tv" +EAw"v' +v"w)
3 EA
+ EEA(v/)2v” + 7[v//(u/)Z
+2v/ulu//] _ EIv//// (2)
pw = EAw” + EAu'u” + EAv'v” 3)

V(s,t) € [0,[] x [0, 00), and the boundary conditions
are shown as follows:

ugy=v,=0 4)
W= =0 )

. 1
Uu = miiy + Tuj + SEA (u))’
1
+EAujw] + SBA; (v})” — Elu}’ (6)
Uy, = mi; + Ty,
1
+ §EA (vl’)3 + EAvjw;
1
+EAY] (u))* — El)" %
Uy = miy; + EAw;

1 1
+5EA ()’ + SEA (v))° (8)
2.2 Preliminaries

Lemma 1 [25] Let ¢(s,t) € R be a function defined
ons € [0,l]andt € [0, oo] that satisfies the boundary

conditions ¢ (0, t) = 0, Vt € [0, 00), then the following
inequalities hold:

1 1
/(pz(s, t)ds < 12/ [(p’(s, t)]zds, Vs € [0,1],

0 0
l

0% (s, 1) 51/[<p/(s,t)]2ds, Vs € [0, ]
0

Lemma 2 [26] Let ¢1(s, 1), p2(s, 1) € R with s €
[0,1] and t € [0, o], then the following inequalities
hold:

@1 (5. D2 (s, 1)] = ‘(%wl (s, t)) (Voeas, z))'

IA

1
gso%(s,t) + 83 (s, 1),
Voi(s, 1), p2(s, 1) € R

3 Control design and stability analysis

In this paper, the usual block diagram of the closed-
loop control of the nonlinear three-dimensional Euler—
Bernoulli beam is given as follows (Fig. 2).

3.1 Control design

The control objective is to suppress elastic vibration of
the nonlinear three-dimensional Euler—Bernoulli beam
in the presence of input magnitude and rate constraints.
The backstepping method with smooth hyperbolic tan-
gent function is used to design control laws U,, U,,
Uy . The Lyapunov’s direct method is adopted to ana-
lyze the closed-loop stability of the system.

In this paper, the control inputs with magnitude con-
straints are described as:

Uy (1) = gu(uy) = upy tanh <:T]4) ©)
Uy (1) = gu(2) = 1y tanh (;‘-;) (10)
U (1) = gu(u3) = up tanh (:—;) an

In this paper, the control inputs with rate constraints
are described as:

Uu(t) = gu(v1) = vy tanh (ﬂ> (12)
vy
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Fig. 2 the usual block input rate
diagram of the closed-loop constraints

. u(s,t)
control of the nonlinear O U0
three-dimensional BN — v(s,1)
Euler—Bernoulli beam _/ w(s, 1)
system > boundary ) > plant >

controllers
>
_ /]
Uu’Uw’Uw 4
input
constraints
y v2 1 ! 2 M2
Uy(t) = gy(v2) = vy tanh | — (13) + SB[+ ()]s
M 2 0
. v3 1 ! N2 N2
U (t) = gu(v3) = vy tanh | — (14) +5T [ W)+ ()] ds (25)
M 2 0

As the usual backstepping approach, we define the vari-
ables as follows:

diq =d1+,31u; (15)
dp =0 + ﬂlvl/ (16)
diz = w; + ﬂlw; (17)
dr1 = gu(u1) —ai (18)
dy = gu(uz) —az (19)
dy3 = gu(uz) — a3 (20)
d31 = gv(v1) —as (21)
dz = gy(v2) —as (22)
dz3 = gv(v3) — a6 (23)

Step 1 We consider the Lyapunov function as

| S
1
+ zmaz%3 + Vi) + Va(r) 24)

where

1 l
Mo =50 [ @2+ @02+ @r]as

1 ! / 1 n2 /22
+§EA/0 [w 5 W) +§(v)} s
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Differentiating the Lyapunov function Vj (), we can
obtain

1 l l
V](t):p/ L‘tiids+,o/ 1')i)'ds+,0/ wwds
0 0 0
! 1 2 1 2
—i—EA/ u/+—(u/) —i——(U/)
A 2 2
(u.)’ + u't! + v/v") ds
I
—i—EI/ (u”u”—i—v”v”) ds
0
l . .
+T/ (u'w +'v')ds
0

= A1+ Ay + A3 + Ay, (26)

where
i I i

Al = p/ L'tijds—l—,o/ i)i)'ds—i—p/ wwds 27)
0 0 0

= kA /o[ (w4507 +507)

(W' +u'u +v'v') ds (28)
1
A3 = EI f ("u" +v"v") ds (29)
0
l . .
A4 = T/ (u'u’ +v'v')ds (30)
0

Substituting (1)—(3) into A, we can obtain
1

Ay =f i |[Tu” + EA@W"u' +u"w')
0

3 EA
+ EEA(M/)ZM// + 7[1//(1}/)2 +2u'v'v"] 7Elu/”/} ds
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1
3
+ / v {Tv” +EAW"V +v"w') + EEA(U’)ZU”
0
EA
+7[v”(u')2 +20'u'u"] - EIvW} ds

I
+ / W {EAw” 4+ EAw'u” + EAv'v"} ds
0

(Tu"it + Tv"%) — (EL"it + E"')
+3EA@)2u"i + 3EAQW) "D

. +EAW"u’ + u"w' )i + EA(w" v +v"w')v
:/ +BApr w2 ds
0
200" i+ BA [ () + 20/ "0
+EBAww” +EA (u'u” +v'v") b
€29
Then, integrating Ay — A4 by parts, we can obtain
l
1
Ay = BEAw)iy; — EA/ ww”ds + SEA ()’ iy
0
3 ! 1
— ZEA / ()" ds+=EA (v])’ 0y
2 0 2
3 ! <0 IN2 ’os
— EEA v(v) v ds + BAwjuu
0
I
_ EA/ (w”u’ + u"w'yids + EAwjv);
0

I
1
- EA/ (w”v" +v"w)vds + EEA (u;)2 1')11)1/
0

1 l
_EEA/ [v”(u’)2 + 2u'u"v'] vds
0

N

1 1
- EEA/ [’ (W)?* + 20'v"u'] dkds
0
1
+5EA () iy
! "o 1 N2 .
—EA A u"u wds + EEA(UZ) wy

1
—EA/ v v ids (32)
0
l !
A3 = —ELiju] + EI / i ds — Elov]”
0

1
LEI / v ds (33)
0

Ay Tuglh + Tvl/ﬁl

1
- T/ Wi+ v"v)ds (34)
0

Noticing that (6)—(8) and combining A; — A4, we can
have

Vi(t) = (%EA () + EAujw, + %EA (v)” u,

—Elu” + Tup) iy
1
+ (EEA (o))} + EAvjuw)]
1
+ EEA (u;)2 vl/ — EIUIW + va) i

+ (EAw; + YEA () + LEA (v;)2> iy

2 2
= (Uy — miipuy + (Uy — mip)0y + (Uy — mig)iiy,
(35)
where
I
Va(t) = ,3,0/ sy’ + v + ww')ds (36)
0

The derivative of V; (t) is

1 . . .
Va(t) = ﬁp/ s(iiv’ + i’ + v + 00’ + Hw’ + ww)ds
0

= B1 + By + B3 + By, 37
where
l
B = /3,0/ siiu'ds (38)
0
1
B, = ﬂ,o/ svv'ds (39)
0
I
B3 = ﬂp/ stw'ds (40)
0
l . . .
By = /3,0/ s(uu’ 4+ v’ + ww')ds 41
0

Substituting (1) intoB;, we obtain
I
B = ﬂ/ su' (Tu” + BEAW"u’ + u”"w')
0

3 EA
+ EEA(M/)ZM// + 7[M//(v/)2 + ZM/U/U//]

—Elu"") ds
1 1
= ,BT/ su’u”ds+ﬂEA/ su'(w'u’ + u"w')ds
0 0

3 )
—l——ﬂEA/ su' (w))?u" ds
2 0
1 1
+ E'BEA/ su'[u” (V)% + 2u'v'v"]ds
0

1
— BEI / su'u"ds (42)
0
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Then, integrating B; by parts, we obtain

1 n2 1 ! "2
By = =TI (”1) — =BT (u)=ds
2 2 0
+ BEAL (u})* w]
1
—ﬂEA/ (u)*w'ds
0
1
_ﬂEA/ "ww'ds + ,BEAI (ul)
0

— %ﬂEA f (u')*ds

+ iﬂEAl (ulvl) ds

1
— —ﬁEA/ (u'v')%ds
4 0
1 1
—}——,BEA/ s(u')?v'v"ds
2 0
3 1
~ BEluju]’ — 3 BEI / u")2ds (43)
0

Similarly, substituting (2)—(3) into B, — B3, respec-
tively, and then integrating By — B3 by parts, we can
obtain

fﬂTl (v, ,BTf (v')2ds

+ BEAL (v))” w]

— BEA /0 : W)2w'ds

— BEA /0 : sv”v'w'ds + %ﬂEAl (v))*

3 !
— ZBEA / (v)*ds
8 0

1
+ ZﬂEAl(u}v[)zds

1 ! 1 !

- 75EA/ W'u')*ds + 7,8EA/ s()2u'u"ds
4 o 2 0

3 l
— BEllvv)” — ~BEL / (v")*ds (44)
0
1 "2 1 ! "2
B3 = —BEAl(w))” — -BEA | (w')"ds
2 2 )

l
+B / (BAsu'u"w" + EAsv'v"w')ds (45)
0

@ Springer

Then, integrating B4by parts, we obtain
1 L, 1 Lo,

By = S Bpl(u))” — pp | (u)°ds
2 2 0

1., 1 Loy
+ 5 Bpl(0r) —Eﬂpf (0)"ds
0

2
1 o1 Loy
+ 5 Bpl(w)” — - Bp | (w)7ds (46)
2 2 0
Noticing that

1 ! 1 !
E'BEA/ su)?v'v"ds + EﬂEA/ s(V)2u'u"ds
0

!
- —,BEAI (u] ,) — iﬁEA /0 Wv)ds  @7)

Combining B; — B4 and noticing that (6)—(8), we have

) 1 ! 1 !
Vate) = ~ 260 / (@02ds — 36 / (5)%ds
0 0
1 ! 1 !
— = Bp / (w)*ds — = BEA / (w)*ds
277 2 o
3 ! 3 !
— ZBEA / (u")*ds — =BEA / (v)*ds
8 0 8 0
1 1
—ﬁEA/ (u')?w'ds — ,BEA/ (v)>w'ds
0 0

3 ! 3 !
— ZBEA / (u'v)*ds — S PEI / (u'")?ds
0 0

4

E El I( //)Zd l T l( /)Zd
—2,3 /Ov s—2,3 /0 u s
Lar : Nads + Lol (i)
_Eﬁ /O(U) S+5/3,0 ()

1 Lo 1 o
+§ﬁpl(vz) + Eﬂpl(wz)
+ BI[(Uy — miip)u; + (U,
+(Uy — m{[)l)wl/]

1 ! 1 /
- 5’3” (”1)2 - 5/3” (U1)2

— mip)y;

2
- %,BEAI [% () + % (v)” + wf} (48)
Noting that (6)—(8), the derivative of (24) is
Vo1 (t) = mdy1dyy + mdindya
+mdzdyz + Vi (1) + Va(t)
=d (miil + mﬁlu'/l) +di2 (mi)'l + mﬂll;’l)
+di3 (mi; +mBlw';) + Vi (1) + Va(t)

1
= di1(Uy — Tuj — JEA (u))’ — EAujw,
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N %EAu; (v))> + Elu)’ + mplu})
+di2(Uy = Tv] - %EA (v1) ~ EAvju;
_ %EAU; (u))* +Elv)” + mBI'y)
+di3(Uy — EAw; — %EA (“;)2

_ %EA (Ul’)2 + mpBlw'y) + (U, — miip)iy
+ Uy — mi) 0 + (Uy — mi))wy

- fl('zd—1 /l'zd
RPo | @7ds = 5pp | (©)°ds

1 ! 1 !
- —ﬂpf ()*ds — —ﬂEAf (w')?ds
2 0 2 0

3 1
— ZBEA / (u)*ds
8 0

3 l 1
— ZBEA / (v)*ds — BEA / (u')?w'ds
8 0 0

1
— BEA / )*w'ds
0
3 ! 7. \2 3 ! 1IN2
——ﬁEA/ ") ds——ﬁEI/ (u")“ds
4 0 2 0
3 1
— ZBEI / (v")2ds
2 0
— 25 /0 u s — 2,3 /0 (v s
1 1 1
+ 5 BplGn) + 5 Bpl(0)* + 2 ol ()
+ BL[(Uy — miipu; + (Uy — mipv;
1
+ (U — miip)ui] = ZpTI (u))?
1 , 1
— BT (v))” — SPEAI
1

1 / / / :
<[ereseree] @

By combining (49), we can get

Vi (1) = di1 (Uy +mplu')) + diz (Uy + mplv'y)

. 1 L
+dis (Un +mplw's) = o / (i) ds
0

Yoo [ ras— Lo [ v
o [ et [ e
1 ! 3 l
— —_BEA / (w')’ds — ZBEA / (u')*ds
2 0 8 0

! 1
- §ﬂEA / (v)*ds — BEA / (u)?w'ds
8 0 0
1 1
— BEA /O W)2w'ds — %ﬂEA /0 (u'v)%ds
3 ! 3 !
— ZBEI / (u")?ds — = BEI / (v")?ds
2 0 2 0
1 ! 1 !
——ﬂT/ (u')*ds — ,ﬂT/ (v')%ds
2 0 2 0
1 IR R 5
+ 5,3,01(141) + Eﬂpl(vz) + Eﬁpl(wl)
1 2 1 2
—5ATI (up)” — FBTI (v7)
1 1, ,2 1,,2 , 2
Noting that (18)—(20), we can obtain

Vi1 (1) = di1 (da1 + a1 + mBlu'))
+dy2 (d + az + mBlv')
+di3 (do3 + a3 + mﬂlu}/l) + D, (51)

where
1 Lo 1 Lo
D= —Eﬂp/ (i)ds - Eﬁp/ ()2ds
0 0
1 ! 1 !
- —ﬁpf (w)*ds — —ﬂEA/ (w')?ds
2" 2 0
3 1
— ZBEA f (u)*ds
8 0
3 1
— ZBEA / (w)*ds
8 0
1
—ﬂEAf (u)>w'ds
0
1
— BEA / W)*w'ds
0
3 1
— ZBEA / (u'v)*ds
4 0
3 1
— ZBEI / (u”)?ds
2 0
3 1
— ZBEI / W")2ds
2 0
Lot / iy
— = u S
2 0
Lot / Ly
—_ = v S
2 0

1 12 1 Ieon2
+ 5/3,0 (@)™ + Eﬂp (v1)
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1 1 ,
+ E,Bpl(wl)2 — 3BT (u))?

1 /
—5BT! (”1)2

1 1,0 1,0 7
—E,BEAZ [5 (u) +§(vl) +w,} (52)

Choosing the virtual control laws as

a; = —mﬂllftf —2ciuy (53)
ay = —mplo; — 220, (54)
ay = —m,Blu'); — 2c3wy (55)

where ¢; > 0, ¢ > 0, ¢c3 > 0,we have
Vp1(t) = di1day — 2dyicriy + dindan
—2d12¢20; + di3doz — 2di3c3wy + D
(56)

Step 2 Then, we consider a Lyapunov function candi-
date

1 2 1 2 1 2
Vb2(t) = Vb] (t) + EdeI + Emd22 + Emd23 (57)

Then, we design the auxiliary system as

. 3gu\ !

”1=(a ) 2o(v1) (58)
up

. 3gu\ !

M2=(8 ) g(v2) (59)
7
9g,\ !

u3=(ag) g(v3) (60)
u3

Noting that (18)—(20) and (58)—(60), the derivative of
(57) is
Via (1) = Vi1 (t) + mdaiday + mdydy + mdazdos
= Vp1(1) + da1 (mgy (v1) — may)
+daa(mgy(v2) — maz)
+da3(mgy(v3) — mas)
= di1da1 — 2dy1 11y + didy
—2d12¢20; + di3dys — 2d13c3w; + D
+da1 (mgy(v1) — may)
+daa(mgy(v2) — maz)
+d3(mgy(v3) — mas) (61)

Applying (21)—(23) into (61), we can obtain
Vi (1) = Vp1(t) + mdayday + mdadyy + mdyzdas
= Vp1(t) + da1(mgy(v1) — may)
+dyp(mgy(v2) —may)
+ dx3(mgy(v3) — mas)

@ Springer

= dy1dy1 — 2dy1c1i; + dipdy
— 2d12¢20; + dy3dy3 — 2dy3c3w; + D
+dy1 (md3 + mag — may)
+ dy(mdzy + mas — may)

+ dr3(mds3 + mag — maz) (62)
Then, we choose the virtual control laws as
1 1 .
ay = — —di) — —cady + (63)
m m
1 1 .
as = — —djp — —csdy + az (64)
m m
1 1 .
ag = — —di3 — —ceda3 + a3 (65)
m m

where ¢4 > 0, ¢5s > 0, cg > 0, we can obtain
Vi (t) = — 2dy1cyity — 2dyacaty — 2dyzezi + D
— C4d22] — C5d222 — C6d223 + md>1d3q
+ mdydsy + mdyzdsz (66)

Step 3 Then, we consider a Lyapunov function candi-
date

1
Vp(t) = Vo (1) + Emd321

Then, we design the another auxiliary system as
3 -1

b1 = <ﬁ> Uy (68)
31)1
3 -1

iy = <ﬁ> Us (69)
31)2
3 -1

b3 = <ﬁ> Us (70)
31)3

Noting that (21)—(23) and (68)—(70), the derivative of
(67) is
V(1) = Vi (t) + mds1d31 + mdxdsy + mdszdss
= —2dy1criy — 2d1ac20; — 2dy13c31
+ D — c4d3| — c5d3, — cedyy + mdads
+mdxdsy + mdysdsz + d3 (mUy — may)
+ d3p(mUy — mas) + d3z(mUs — mag)

(71)
Then, we choose the virtual control laws as
1 .
Uy =— Z67d31 —dy +ay (72)
1 .
Uy =— ZCsdaz —dy +as (73)
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1 )
Us = — Zc9d33 —dy3 + ag (74)
where ¢7 > 0, cg > 0, c9 > 0, we can obtain
Vi (t) = Vo (t) + mds1ds1 + mdzpds + mdszdss
= —2dycru; — 2dypcov; — 2d13¢30)
+ D — c4d3) — c5d3, — cody
—c7d3y — cgdsy, — cod3, (75)

Substituting d11, d12, d13, da21, d2z, d23, d31, d32, d33,
D into (75), we can get

Vi (t) = Vi (t) + mdsidz) + mdspds + mdszdss
= —2 (i + Bluy) crig — 2 (07 + Blvy) c2ty
-2 (11)1 + ,BZwl/) c3wW;
— C4d221 — 65d222 — c6d223 — C7d321
— csd3, — cod3y

1 ! g ] ! 24
—Eﬂp/o(u) S—Eﬁp/(;(v) s

1 1,2d
—Eﬂp/O(w) s

1 ! 3 !
— —BEA / (w)?ds — =BEA / (u')*ds
2 o 8 0

3 1
— ZBEA / (v)*ds
8 0

l 1
— BEA / (u')*w'ds — BEA / W)2w'ds
; 0 . 0
— ZBEA / (u'v')*ds
4 0

3 ! 3 !
— ZBEI / (u”)>ds — ZBEI / (v")2ds
2 0 2 0

1T : 24
—Eﬂfo(u)s

= T/lﬂ)zd + Loty
Zﬂ | (©)7ds 2,3/0 i

1 1
+ 5ﬂpl<vz>2 + 5ﬁpl<wz>2

1 2 1 2
— 3BT ()" = 3BT (v])
~Lmar| L@+ L w i (76)
Noticing that d1| = 117 + ﬁlu;, dip =v; + /311)1/, diz =
w; + Blw;, we have
V(1) = —c1d}y — cad}y — cadiy — cad3y

2 2 2 2
= ¢sdy — cedyy — c7d3) — cgds)

1 1
~oodts = 5 [ (@las = 3p0 [ 02as
2 0 2 0
1 ! 1 !
Lo / (i)2ds — » pEA / (w)?ds
2 0 2 0
3 1 3 1
— ZBEA / (u')*ds — = BEA / (W)*ds
8 0 8 0

! 1
— BEA / (u')*w'ds — BEA / W) w'ds
0 0

3 ! 3 !
— ZBEA / (u'v")*ds — = BEI / (u")?ds
4 0 2 0
3 ! 1 !
— ZBEI / ")%ds — =BT / (u')?ds
2 0 2 0

1 ! 1
- EﬂT/O (v')%ds — (Cl - 5/3,01> (t)?

1 1
- <c2 - E/3pl) (0)?* — <c3 — Eﬁﬂ) (y)?
Yori - 01,3212> (u])?

)
)

= N

BTI — C2,3212> (v))” + e3B21% (w))’

2
BEAI [% ()’ + % (v)” + w;] (77)

0| —

Applying the inequality 2 [w'(s, t)]2 < [, t)]z,
2 [w'(s, t)]2 < [V, t)]2 in [27], we can get
Vb(t) < — Cldlzl — Czd122 — C3d123
— cad3) — esdy — cedss
— C7d§1 — ch%Z — ng§3
1 ! N2 1 ! ©\2
—=Bp | @)ds—=Bp [ (V)ds
27 Jo 27 Jo

1 ! 1 !
- —ﬂp/ (w)?ds — —ﬂEAf (w')*ds
2" Jo 2 0
3 ! 3 !
— ZBEA f (u')*ds — =BEA / (v)*ds
8 0 8 0
I 1
—BEA / (u')?w'ds — BEA / W)2w'ds
0 0

3 ! 3 !
— ZBEA / (u'v)*ds — = BEI f W")*ds
4 0 2 0

3 I
— ZBEI / (v")%ds

2 0

1T ! /2d lT ! /2d

—5h fo(u) s —3p /O(v) $
1 l N

—<61—§ﬂp)(uz)
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<C2 1 W) (o2 + ) + ) + @) + @)
? —}-(M/U/)z + (u//)Z + (v//)z:l ds (81)
c3 — =Bpl | (ip)?
( ’ 2/3,0 ) () Let 6 satisfy T — EA > 0 and 1—8 > 0, we can obtain
1 1
(2 BTI - 12 ZC3/9212) ()2 0 % M) £ Vi) < oM (82)
where

1 2
- <§ﬁﬂ — e BA? — ZC3,3212> (v))” (78)
3.2 Stability analysis

Rewritten (25) as
)
Vi) = 35 fo [@)? + (0)® + ()] ds
1
+1T/ [(u/)2 + (v/)Z] ds
2 Jo
1 1
+ —EA / (w')?ds
2
—EA / (u')*ds + EA / (v)*ds
EA/ (u')?w'ds + EA/ )?w'ds
! 2
EA/ (u'v’) ds
0
1

l
+5El / [@")? + (")?]ds (79)
0

+

I N\— 0| —

Applying the inequality 2 [w'(s, t)]2 < [u'Gs. t)]z,
2 [w'(s, z‘)]2 < [V, z‘)]2 in [27] and lemma 2, we
have

/ (u )st—(s/ (u')*ds

< 25/ (u )zds+sf W)hds
-2 fo (v)2ds — § /0 (w)*ds
1
§f W)*w'ds
0

l l
< L / (W)2ds + 6 / (v)*ds, (80)
28 Jo 0

where § is a constant.

[
M = [ @7+ @+ @+ @)
0

@ Springer

EA 1

1
—EA,EA(-—6),EI
282 (4 ) }

! T + EA EA, EA ! +46),EI
= —max 3 Ao ? 3 - 3
275 P 25 4
(83)

1
=—min|p, T —
(op] ) |:/0

Similarly, we can obtain
I
V201 < i [ [? + '
0+ )+ () + )7 ] ds
< BplM(1) (84)

Let B8 satisfy Bpl < o1, we have 0 < Bpl < m. Let
— Bpl, my = 07 + Bpl, we can get

0=mM@) < Vi@t) + Va(t) < maM(1) (85)

m) = 0]

We conclude

1
H:Emd + md + md 3+ md21

1 1
+ Emdzz + Emd23 + Emd31

1 2 1 2
Vi) + Va(t) + H = V(1) (87)

Therefore, we can further obtain
O0<AMWM@)+H) < Vp(®) <loM(@)+ H) (33)

where Ay = min(m, 1) = m, A = max(mo, 1) =
my are two positive constants.
From (78), we can obtain

y 2
V(1) < _Cldll
2 2 2 2

—¢s5dy — codyy — c7dy) — csdsy

— cod?y — 1,3 : (i)*ds — 1,3 l (v)%ds
9d33 ) 1Y 3 14
0 0

2 2 2
— cadiy — c3diz — cady)

l l
~ 360 [ e - pea [ w)ies
27 Jo 2 0

3 1
— <—ﬁEA—8ﬁEA) f (u')*ds
8 0
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_ E BEA — SBEA ‘We further obtain
8 .
I 3 I Vp(t) < —=AVp(1), (93)
N4 - 7. \2
x/o(v)ds 4,3EA/O (u'v')ds Wherek=%>0.

3
2

1T 1EA l/zd
—(55 —%,3 )/O(M)S

1T 1EA l’zd
—<§ﬂ —%5 )/O(U)S

= —A(H + M) (89)

I l
BEI / (u'")?ds — §ﬂEI / (v")?ds
0 2 0

Therefore,
Vp(t) < —A3(H + M (1)), (90)

where

1 3 1
A3 = min {Eﬂp ) g,BEA — 3BEA, E,BEA,

3,3131 1,3T lﬁEA
2P 280

2c1 2¢p 2c¢3 2c¢4 2c5 2c6

m’ ' m’ > m m’ m’ m
2¢7 2cg 2c9

_s_s_} (91)

m m m

The parameters are selected to satisfy the following
conditions

1
— —Bpl >0
cl Zﬂp_
1ﬁl>0
C—_
2 2,0_
1ﬂl>0
c3 = 5Ppl =

1 1

SBTL - B’ — ZC3,32[2 >0
1 1

ST = e p? — ZC35212 >0
3

gPEA — 8FEA > 0

1 1
BT = 5sPEA =0 (92)

Then, multiplying (93) by e* and integrating the
inequality, we can get

Vp(t) < Vp(0)e ™ (94)

Applying Lemma 1 in (81), we can obtain
l

L P = [ [0l = Mo) < S0
1
0
(95)
1 l 1
G 0P = / [, 0] ds = M) = Vo)
1
0
(96)
1
TGP < / [w's, 0] ds = M@) = Vo0
1
0
©7)

Through clear up the above three inequalities, we can
obtain

A

(s, 1)) < ,/% 98)
A

(s, D] < ,/% 99)
Y

(s, 1) < ,/% (100)

Furthermore, considering (98)—(100), we can further
obtain

Iim u(s,t) — 0, lim v(s,t) — 0,

—00 —>00

Iim w(s,t) — 0 (101)
—00

Moreover, considering (9)—(11), we obtain

U (6)] = 184 (1)| = up |tanh (ﬂ) <uy (102)
umpm

|Uy(t)| = |gu(u2)| = up |tanh (£> <upy (103)
Uy

us3

|[Uw (@) = |gu(u3)| = up |tanh (—) <upy (104)
Uy
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and
. 0 .
0.0)] = |22y | = |gu 1)
duq
— vy |tanh (;’—1) <y (105)
M
. 0 .
0,()| = aguuz = |gu(v2)]
us
— vy |tanh (:—2) <y (106)
M
. 08u .
U, (0)| = ‘auzlm = g, (v3)]

=um (107)

I
<
S

4 Numerical simulations

In this section, in order to demonstrate the effective-
ness of the proposed model-based boundary control
laws (9)—(11), we choose the finite difference method to
carry out the numerical simulation. The current method
to realize the simulation of PDE model is to discretize
the PDE model. In the discretization process, the sam-
pling time At = T and the x axis spacing Ax = dx
should satisfy the certain relationship Ar < %sz
in [28]. The parameters of the Euler—Bernoulli beam
in the three-dimensional space are listed in Table 1.
Let upr > 0, vyy > 0 be the given constants. The
constraints on the input signals U,, U,, U,, are given
by |Uy| < upy, Uyl < up, |Uy| < up. The input
rate constraints are given by ‘U,,| < vy, U,,| < vy,
|Uw] < vy. The input constraints are uy; = 8. The
input rate constraints are vy = 25. The initial condi-
tions are chosen as u(s, 0) = v(s,0) = w(s,0) = %,
(s, 0) = v(s,0) = w(s,0) =0.

Table 1 Parameters of the nonlinear three-dimensional Euler—
Bernoulli beam

Parameter Description Value
The length of the beam 1m

o Uniform mass per unit length of the beam 0.1kg/m

m The mass of the tip payload 1kg

EI The bending rigidity of the beam 8 Nm?

EA The axial stiffness of the beam 14 Nm?

T The tension of the beam 10N

@ Springer

For analyzing and verifying the control perfor-
mance, the dynamic responses of the system are simu-
lated in the following three cases:

Case 1: Without control input.

Case 2: With the proposed control: We choose the
control parameters as f§ = 0.05,¢; = 10,cr =
10,c3 = 8.2,¢c4 = 3,¢5 = 3,¢c6 = 3,¢7 = 3,¢c3 =
3,c9 = 3.

Case 3: With the control method in [24]:

uy = —mpliy — sgn (it + Bluy) dy, — 2kyiy

(108)
uy = —mplo; — sgn (v + Blv]) dy — 2krv

(109)
y = —mpliy — sgn (i + Blw;) dy — k3

(110)
and the control parameters are chosen as: k1 = 15,
ko =15, k3 =5.

The simulation results are presented in Figs. 3, 4,
5,6,7,8,9, 10, 11, 12, 13, 14, and 15. Figs. 3,
4, and 5 show the displacements of the beam in U,
V, W direction for case 1, and the displacements
of the beam for case 2 are shown in Figs. 6, 7,
and 8. The displacements of the beam at the length
of [ for case 1 and case 2 are shown in Figs. 9, 10,
and 11. We can clearly see that the proposed con-
trol scheme for case 2 can regulate the displacements
for the nonlinear three-dimensional Euler—Bernoulli
beam.

Control inputs for case 2 and case 3 are shown in
Figs. 12 and 13, respectively. From Figs. 12 and 13, we
can see that the input amplitude for case 2 is smaller
than the input amplitude for case 3, and the input value
for case 3 is larger than the input constraints. Control
input rates for case 2 and case 3 are shown in Figs. 14
and 15, respectively. From Fig. 14, we can clearly see
that the control input rates can be confined in vy =
25.

From above analysis, we can conclude that the
control system proposed in this paper can satisfy
the input magnitude and rate constraints, respec-
tively.

5 Conclusions

In this paper, boundary control systems are pro-
posed to suppress the vibration of the nonlinear three-
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Displacement of the beam in U direction without control

[w] (s)n

Fig. 3 Displacement of the
Euler-Bernoulli beam in U

direction in case 1

Time [s]

s [m]

Displacement of the beam in V direction without control

Fig. 4 Displacement of the
Euler-Bernoulli beam in V

direction in case 1

[w] (')A

Time [s]

s [m]

pringer
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Displacement of the beam in W direction without control

Euler-Bernoulli beam in W

Fig. 5 Displacement of the
direction in case 1

Time [s]

s [m]

Displacement of the beam in U direction with model-based boundary control

Fig. 6 Displacement of the
Euler-Bernoulli beam in U

direction in case 2

s [m]

pringer

A's
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Displacement of the beam in V direction with model-based boundary control

Fig. 7 Displacement of the
Euler-Bernoulli beam in V

direction in case 2

s [m]

Displacement of the beam in W direction with model-based boundary control

Fig. 8 Displacement of the
Euler-Bernoulli beam in W

direction in case 2
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Fig. 9 Displacement of the End-point deflection u(l,t) of the beam system
Euler—Bernoulli beam at the 0.6 : T T
length of / in U direction in without control
case land case 2 .
with model-based control
E
5
Fig. 10 Displacement of End-point deflection v(l,t) of the beam system
the Euler—Bernoulli beam at 0.6 ; . : : : : T
the length of / in V direction without control
in case land case 2 .
with model-based control

v(l,t) [m]
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Fig. 11 Displacement of End-point deflection w(l,t) of the beamsystem
the Euler—Bernoulli beam at 0.8 ; . . : : T T

the length of / in W without control
direction in case land case 2 )
with model-based control H

0.6

0.4

0.2

w(l,t) [m]

0 1 2 3 4 5 6 7 8 9 10
t[s]
Fig. 12 Control input when Control input u, (t) of model-based boundary control

upy = 8 for case 2

u, 0 IN]

_5 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time [s]
Control input uv(t) of model-based boundary control
5

u, 1) [N]

Time [s]
Control input u, (t) of model-based boundary control

u,, () [N

Time [s]
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Fig. 13 Control inputs for
case 3

Control input Uu(t) of model-based boundary control

_ 10
Z
= 5 B
v:)
o)
O 1 1 1 1 T T . 4
0 1 2 3 4 5 6 7 8 9 10
Time [s]
Control input Uv(t) of model-based boundary control
_ 10
=
= 5 1
v>
o
0 | | | 1 I I | 4
0 1 2 3 4 5 6 7 8 9 10
Time [s]
Control input UW (t) of model-based boundary control
_. 10
2
£ 0F
E
D _10 1 1 1 1 | | | | 1
0 1 2 3 4 5 6 7 8 9 10
Time [s]
Fig. 14 Control input rate Control input rate dUu(t) of model-based boundary control
constraints when vy, = 25
—_— 50 T T T T T T T T T
for case 2 =
s o]
=}
)
© -50 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Time [s]
Control input rate de(t) of model-based boundary control
— 50 T T T T T T T T T
Z
z o]
>
)
© 50
0 1 2 3 4 5 6 7 8 9 10
Time [s]
Control input rate dUW (t) of model-based boundary control
— 50 T T T T T T T T T
=3
z
)
© 50 :
0 1 2 3 4 5 6 7 8 9 10
Time [s]
dimensional Euler-Bernoulli beam with input magni- stepping method with smooth hyperbolic tangent func-
tude and rate constraints. To suppress the vibration tion is developed. In the controller design, two auxil-
of the nonlinear three-dimensional Euler—Bernoulli iary systems are used to handle the impacts of the con-
beam with constrained inputs and input rates, back- strained input and input rates. Boundary control laws
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Fig. 15 Control input rates

for case 3 100 ‘ ‘

Control input rate dUu(t) of model-based boundary control

-100 ‘ :

du,(t) [N]
o {

Time [s]

Control input rate dUV(t) of model-based boundary control

100 \ \

-100 ‘ ‘

du, (t) [N]
o {

Time [s]

Control input rate v, (t) of model-based boundary control

100 \ \

-100 ‘ ‘

are designed using Lyapunov’s direct method. In addi-
tion, the proposed control laws have been illustrated
to stabilize the beam under input magnitude and rate
constraints. The closed-loop system finally has a good
control performance. We can see that the control sys-
tem with boundary control works well when the input
magnitude and rate constraints are relatively small from
simulation results.
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