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Abstract We consider a system of two masses con-
nected by linear springs and in contact with a belt
moving at a constant velocity. One of the masses can
collide with a fixed rigid obstacle. The contact forces
between themasses and the belt are givenbyCoulomb’s
laws. Moreover, when the colliding mass is in con-
tact with the obstacle, we assume that a perfect elastic
impact occurs. Several periodic orbits including con-
tact against the fixed obstacle followed by slip and stick
phases are obtained in analytical form.

Keywords Coupled oscillators ·Dry friction · Impact ·
Periodic motions · Stick–slip motions

1 Introduction

Non-smooth dynamical systems are related to force or
motion characteristics which are non-continuous. One
example of them is dry friction oscillators. Another
kind of non-smooth systems is vibrating systems with
clearance between themoving parts. Inmany industrial
applications like brake systems, machine tools or turbo
machines, the combined actions of dry friction and
impact induce some undesirable effects. Non-smooth
systems are very complex and they are usuallymodeled
as spring mass oscillators. In the past, such systems
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have been the subject of several investigations, mainly
in the case of one-degree-of-freedom systems [1–8].
For multidegrees-of-freedom systems, very often, only
numericalmethods have been used [9–12]. However, in
[13], a two-degree-of-freedom oscillator with a collid-
ing component is considered and several results about
the existence of periodic motions are obtained in ana-
lytical form. On the other hand, double dry friction
oscillators have been considered in [14,15]. Assum-
ing that the friction forces are modeled by Coulomb’s
laws, closed-form solutions including stick–slip phases
are presented. More recently, in [16], a two-degree-of-
freedom vibro-impact systemwithmultiple constraints
has been investigated by using the flow switch abil-
ity theory of discontinuous systems, while in [17,18],
mathematical investigation of a dry friction oscillator
in contact with a speed-varying traveling belt or sub-
mitted to a switching control law has been performed.

In this paper, a two-degree-of-freedom oscillator
excited by dry friction and in the presence of a rigid
obstacle is considered. The existence of periodic orbits
including an impact with the fixed obstacle and several
phases of stick and slip motions is proved.

2 Description of the model

The system (Fig. 1) consists of twomassesm1,m2 con-
nected by linear springs of stiffness k1, k2. The two
masses are in contact with a driving belt moving at a
constant velocity ν0. Friction forces F1, F2 act between
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Fig. 1 Description of the model

the masses and the belt. Moreover, the secondmass can
collide with a fixed rigid obstacle.

Two different cases will be considered:

2.1 Motion impact-less case

This case has been investigated in [14]. The motion
equations are given by:

Mÿ + Ky = F, y = (y1, y2)
t , F = (F1, F2)

t

M =
(
m1 0
0 m2

)
, K =

(
k1 + k2 −k2
−k2 −k2

)
,

y2 < e, ÿ = d2y

dt ′2
(1)

Here (y1, y2) are the displacements of the masses,
e is the clearance ,and (F1, F2) are the contact friction
forces obtained from Coulomb’s laws:

• ν0 − ẏi �= 0, Fi = Fsisign(ν0 − ẏi ) (i = 1, 2)
• ν0 − ẏ1 = 0

F1 =
{

(k1+k2)y1− k2y2 if |(k1+k2)y1−k2y2|<Fr1
εFs1 if ε[(k1 + k2)y1 − k2y2] > Fr1(ε = ± 1)

(2)

• ν0 − ẏ2 = 0

F2 =
{
k2(y2 − y1) if |k2(y2 − y1)| < Fr2
εFs2 if εk2(y2 − y1) > Fr2(ε = ± 1)

Fs1, Fs2 are the friction forceswhen slipmotion occurs,
while Fr1, Fr2 are the static friction forces (Fsi < Fri ).

The systems (1), (2) are normalized using:

t = ω3t
′, ω3 =

√
k1 + k2
m1

, (o′) = d(o)

dt
,

xi = yi
e

, (i = 1, 2), V = ν0

eω3
(3)

From (1), it follows:

x ′′ + K̃ x = R, x = (x1, x2)
t , x2 < 1

K̃ =
(
1 −χ

−χη χη

)
, R = (u1, ηu2)

t

χ = k2
k1 + k2

, η = m1

m2
,

ui = Fi
(k1 + k2)e

(i = 1, 2) (4)

For each mass, three kinds of motions occur: slip
motion with a velocity less than the belt velocity, over-
shootmotionwith a velocity greater than the belt veloc-
ity and stick motion with a velocity equal to the belt
one. For each kind of motion, the closed-form solu-
tion is available [14]. In the following, instead of the
parameters (x, x ′), a new set of variables is introduced:

Z =
(
z
z′

)
, z = x − d0, d0 = (d01, d02)

t

z′ = x ′, d01 = us1 + us2
1 − χ

,

d02 = χus1 + us2
χ(1 − χ)

. (5)

2.2 Rigid impact

In the case of a contact of the secondmass with the stop
at t = τ , i.e., x2(τ ) = 1, the positions and the veloci-
ties x−(τ ), x ′−(τ ) of the system before the impact and
the positions and the velocities x+(τ ), x ′+(τ ) after the
impact are related by:

x+(τ ) = x−(τ ), x ′+(τ ) = Ex′−(τ ), E =
(
1 0
0 − 1

)

(6)

Several transitions between all these kinds of regi-
mes (i.e., slip motion, overshooting motion, stick
motion and contact) can occur. In [7,8], a more sim-
ple system, with only one-degree-of-freedom has been
investigated. Several periodic motions including a
shock have been obtained. In the following, we show
that a similar investigation can be performed for this
more complex system.

3 First example of periodic orbits with impact
(symmetric solution)

Let us assume the following initial conditions:

x10, x20 = 1, x ′
10, 0 < x ′

20 < V (7)
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Fig. 2 Phase portrait of the non-colliding mass

At t = 0 an impact occurs. After the impact, the
positions and the velocities of the system are obtained
by the formula:

Z+
0 = H0Z0, H0 =

(
I 0
0 E

)
,

I =
(
1 0
0 1

)
, Z0 = Z(0) (8)

For 0 < t < T , the system undergoes a slip–slip
motion given by

Z(t) = H(t)Z+
0 , H(t) =

(
H1(t) H2(t)
H3(t) H1(t)

)
(9)

The two-by-two matrices Hi (t), (i = 1, 2, 3) are
obtained [14] from a modal analysis of system (4). A
periodic solution of period T is obtained if

Z0 = H(T )Z+
0 = H(T )H0Z0 (10)

From (10), we deduce:

(H1 − I )z0 − H2z
′
0 = 0, −H3z0 + (H1 − E)z′0 = 0

Hi = Hi (T ), (i = 1, 2, 3) (11)

Taking into account the following properties [13] of
the Hi matrices:

H2
1 − H2H3 = I, Hi Hj = Hj Hi , (i, j = 1, 2, 3)

(12)

(11) gives the relation:

H2(E + I )z′0 = 0, if det(H2) �= 0, (E + I )z′0 = 0

(13)

From (13), as in Ref. [13], we deduce the initial
conditions for this orbit:

z′10 = 0, z0 = (H1 − I )−1H2z
′
0 (14)

This periodic orbit depends on 3 parameters (z10,
z′20, T ) defined by 2 scalar equations deduced from
(14). As in Ref. [13], the period T can be chosen, and
the two parameters (z10, z′20) are obtained from (14) in
term of the period. Moreover, as in [14], an interest-
ing property of symmetry for the phase portraits of the
system is obtained (see “Appendix”).

Example: For

η = 4, χ = .3, T = 2, us1 = 0.5, us2 = 0.3,

V = 2, ur1 = 0.6, ur2 = 0.4 (15)

we obtain:

z10 = − 0.5058, z20 = − 1.1429, z′20 = 1.3837

(16)

The phase portraits of (m1,m2) are shown in Figs. 2
and 3.
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Fig. 3 Phase portrait of the colliding mass

4 Second kind of periodic solutions with impact

Let us consider the following initial conditions:

x10, x20 < 1, x ′
10 < V, x ′

20 = V, |χ(x20 − x10| < ur2

(17)

For 0 < t < τ , the system performs a slip–stick
motion [14] given by

Z(t) = Γ (t)Z0, Γ (t) =
(

Γ1(t) Γ2(t)
Γ3(t) Γ1(t)

)
(18)

This motion ends at t = τ if at this time

x2B ≡ x2(τ ) = 1 (19)

At t = τ , an impact occurs and we have:

Z+
B = H0ZB, ZB ≡ Z(τ ) = Γ (τ)Z0 (20)

For 0 < t−τ < τ1, the system undergoes a slip–slip
motion. A periodic motion of period

T = τ + τ1 is obtained if Z0 = H(τ1)Z
+
B

= H(τ1)H0Γ (τ)Z0 (21)

This motion depends on 5 parameters (z10, z20,
z′10, τ, τ1). From (19), (21), we obtain 5 scalar equa-
tions for the determination of these parameters.

Example: For

η = 4, χ = 0.3, V = 1, ur1 = 0.5,

us1 = 0.1, ur2 = 0.4, us2 = 0.0225 (22)

we obtain:

τ = 2, τ1 = 2.5075, z10 = 0.1015, z20

= − 1.2502, z′10 = − 0.2532 (23)

Thephase portraits ofm1 andm2 are shown inFigs. 4
and 5, and the curves

f1 = χ(z2−z1)+ us2 − ur2,

f2 = χ(z2 − z1)+ us2 + ur2 (24)

connected to the constraints ( f1 ≤ 0, f2 > 0) during
the sticking motion of m2 are shown in Fig. 6.

5 Third kind of periodic solutions with impact

Let us assume the following initial conditions:

x ′
10 = x ′

20 = V, x10 − χx20 = ur1,

χ(x20 − x10) < −ur2 (25)

For 0 < t < τ , the systemperforms a slip–overshoot
motion:

(x ′
1 < V, x ′

2 > V, u1 = us1, u2 = −us2) given by
[14]:
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Fig. 4 Phase portrait of the non-colliding mass

Fig. 5 Phase portrait of the colliding mass

Z(t) = H(t)Z0 + 2us2(H(t) − I4)A0

A0 =
(

α0

0

)
, α0 =

(
1/(1 − χ)

1/χ(1 − χ)

)
, I4 =

[
I 0
0 I

]

(26)

This motion ends at t = τ , if

x ′
1B < V, x ′

2B = V, −ur2 < χ(x2B − x1B) < ur2,

xi B ≡ xi (τ ), x ′
i B ≡ x ′

i (τ ), (i = 1, 2) (27)

At this time, we have:

ZB = HZ0 + 2us2(H − I4)A0, ZB

≡ Z(τ ), H ≡ H(τ ) (28)

For 0 < t−τ < τ1, the system performs a slip–stick
motion (x ′

1 < V, x ′
2 = V, u1 = us1).

This motion ends at t = τ + τ1 if at this time:

x2C ≡ x2(τ + τ1) = 1, χ |x2C − x1C | < ur2 (29)
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Fig. 6 Constraints during
the sticking motion of m2

After the impact, the positions and the velocities of
the system are obtained from:

Z+
C = H0ZC , ZC = Γ ZB, Γ ≡ Γ (τ1) (30)

For 0 < t−τ−τ1 < τ2, the systemundergoes a slip–
slip motion (x ′

1 < V, x ′
2 < V, u1 = us1, u2 = us2)

This motion ends at t = τ + τ1 + τ2 if at this time
we have:

x ′
1D ≡ x ′

1(τ + τ1 + τ2) = V, |x1D − χx2D| < ur1

ZD ≡ Z(τ + τ1 + τ2) = hZ+
C , h ≡ H(τ2) (31)

For 0 < t − τ − τ1 − τ2 < τ3, the system performs
a stick–slip motion (x ′

1 = V, x ′
2 < V, u2 = us2) given

by [14]:

Z(t − τ − τ1 − τ2) = C(t)ZD,

C(t) =
(
C1(t) C2(t)
C3(t) C1(t)

)
(32)

A periodic solution of period T = τ + τ1 + τ2 + τ3
is obtained if

ZD = C(−τ3)Z0, ZD = QZ0 + 2us2(Q − hH0)A0

Q = hH0Γ H (33)

This solution depends on 6 parameters (x10, x20,
τ, τ1, τ2, τ3). Taking into account that the condition
(31) is included in the periodicity conditions (33), these
parameters are linked by 7 scalar equations deduced
from (25), (27), (29), (33).

We solve a semi-inverse problem, assuming that ur1
is defined by (25). The solution is obtained by solving
the 6 scalar equations deduced from (27), (29), (33)
with respect to (x10, x20, τ, τ1, τ2, τ3).

Example: For

η = 1, χ = 0.2, V = 0.556, us1 = 0.0535,

ur1 = 1.2018, us2 = 0.2161, ur2 = 0.28 (34)

we obtain:

τ = 1.5775, τ1 = 1, τ2 = 1.5, τ3 = 3.281,

z10 = 0.7653, z20 = − 1.9152 (35)

Thephase portraits ofm1 andm2 are shown inFigs. 7
and 8. Moreover, the constraints during the sticking
motion of m2(0 < t − τ < τ1) and the constraints
during the sticking motion ofm1(0 < t−τ −τ1−τ2 <

τ3) are fulfilled.

6 Fourth kind of periodic solutions with impact

Let us consider the following initial conditions:

x ′
10 = x ′

20 = V, x20 = 1, x10 − χx20

< −ur1, χ |x20 − x10| < ur2 (36)

At t = 0, an impact of the second mass occurs with
the post-impact rule:

Z+
0 = H0Z0 (37)
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Fig. 7 Phase portrait of the non-colliding mass

Fig. 8 Phase portrait of the colliding mass

For 0 < t < τ , the system performs an overshoot–
slip motion (x ′

1 > V, x ′
2 < V ). This motion ends at

t = τ if at this time, we have:

x ′
1B ≡ x ′

1(τ ) = V (38)

The positions and the velocities at t = τ are obtained
from the formula [14]:

ZB ≡ Z(τ ) = H(τ )Z+
0 + 2us1(H(τ ) − I4)B0

B0 =
(

β0

0

)
, β0 =

(
1/(1 − χ)

1/(1 − χ)

)
(39)

Let us assume the following properties:

|x1B − χx2B | < ur1, x
′
2B < V (40)

For 0 < t − τ < τ1, the system undergoes a stick–
slip motion (x ′

1 = V, x ′
2 < V )
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Fig. 9 Phase portrait of the non-colliding mass

This motion ends at t = τ + τ1 if at this time, we
have:

x1C − χx2C = ur1 where ZC ≡ Z(τ+τ1) = C(τ1)ZB

(41)

For 0 < t − τ − τ1 < τ2, the system performs a
slip–slip motion (x ′

1 < V, x ′
2 < V ). This motion ends

at t = τ + τ1 + τ2 if at this time, we have:

x ′
2D = V where ZD ≡ Z(τ + τ1 + τ2) = H(τ2)ZC

(42)

Let us assume that at this time, we have:

x ′
1D < V, χ |x2D − x1D| < ur2 (43)

For 0 < t − τ − τ1 − τ2 < τ3, the system undergoes
a slip–stick motion (x ′

1 < V, x ′
2 = V ). A periodic

motion of period T = τ + τ1 + τ2 + τ3 is obtained if
we have:

Z0 = Γ (τ3)ZD (44)

This motion depends on 5 parameters (x10, τ, τ1,
τ2, τ3). Assuming that ur1 is defined by (41), these
parameters are subjected to 5 scalar conditions related
to (38) and (44), taking into account that (42) is
included in (44).

Example: For

η = 4.2, χ = 0.8, V = 0.2186, us1

= 0.1278, us2 = 0.0219, ur2 = 0.4 (45)

we obtain:

τ = 0.4845, τ1 = 0.2, τ2 = 0.78, τ3 = 2.809, ur1

= 0.1921, z10 = − 0.2134, z20 = 0.2243 (46)

Thephase portraits of the systemare shown inFigs. 9
and 10.

Moreover, the constraints during the stickingmotion
of m1(0 < t − τ < τ1) and the constraints during the
sticking motion of m2(0 < t − τ − τ1 − τ2 < τ3) are
fulfilled.

7 Concluding remarks

In this work, a two-degree-of-freedom oscillator exci-
ted by a moving base with constant velocity and col-
liding with a rigid obstacle is considered. This system
is strongly nonlinear; however, assuming that the dry
friction forces are given by the Coulomb’s laws and
assuming perfect elastic impact when a collision with
the obstacle occurs, several sets of periodic motions
including some phases of slip motion, overshooting
motion, sticking motion and impact are found in ana-
lytic form.
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Fig. 10 Phase portrait of the colliding mass

Appendix: Symmetry of the solution

For T/2 < t < T , the motion is defined by

Z(t) = H(t)H0Z0, Z0 =
(
z0
z′0

)

z′0 =
(
0
z′20

)
, Z(T ) = H(T )H0Z0 = Z0 (47)

From (47) it results

Z(T − t) = H(T − t)H0Z0 (48)

From the following properties [13] of the matrix
H(t):

H(T − t) = H(−t)H(T )

H(−t) = FH(t)F, F =
(
I 0
0 −I

)
(49)

we deduce

Z(T − t) = FH(t)FZ0 (50)

Taking into account that z′10 = 0, FZ0 = H0Z0. It
results:

Z(T − t) = FZ(t) (51)

The phase portrait of the firstmass is symmetricwith
respect to the line

z′1 = 0 and the phase portrait of the second mass is
symmetric with the line z′2 = 0.

References

1. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise
linear oscillator. J. Sound Vib. 90(1), 129–155 (1983)

2. Hindmarsh, M.B., Jeffries, D.J.: On the motions of the
impact oscillator. J. Phys. A 17, 1791–1803 (1984)

3. Hong, H.K., Liu, C.S.: Non-sticking formulae for Coulomb
friction under harmonic loading. J. Sound Vib. 244(5), 883–
898 (2001)

4. Csernak, G., Stepan, G.: On the periodic response of a
harmonically excited dry friction oscillator. J. Sound Vib.
295(4), 649–658 (2006)

5. Andreaus, U.: Sliding-uplifting response of rigid blocks to
base excitation. Earthq. Eng. Struct. Dyn. 19(8), 1181–1196
(1990)

6. Andreaus U., Casini P.: Forced response of a SDOF friction
oscillator colliding with a hysteretic obstacle. In: Proceed-
ings of DETC’01 ASME 2001 Design Engineering Techni-
cal Conferences and Computers and Information in Engi-
neering Conference. Pittsburgh, Pennsylvania, September
9–12 (2001)

7. Andreaus, U., Casini, P.: Forced motion of friction oscilla-
tors limited by a rigid or deformable obstacle. Mech. Struct.
Mach. 29(2), 177–198 (2001)

8. Andreaus, U., Casini, P.: Friction oscillator excited by mov-
ing base and colliding with a rigid or deformable obstacle.
Int. J. Non Linear Mech. 37, 117–133 (2002)

9. Aidanpan, J.O., Gupta, R.D.: Periodic and chaotic behav-
ior of a threshold-limited two degree of freedom system. J.
Sound Vib. 165(2), 305–327 (1993)

123



2550 M. Pascal

10. Valente, A.X., McClamroch, N.H., Mezie, I.: Hybrid impact
of two coupled oscillators that can impact a fixed stop. Int.
J. Non Linear Mech. 38, 677–689 (2003)

11. Galvanetto, U., Bishop, S.R.: Stick–slip vibrations of a 2-
degree-of-freedom geophysical fault model. Int. J. Mech.
Sci. 36(8), 683–698 (1994)

12. Khizgiyayev, S.V.: Self-excited oscillations of a two-mass
oscillator with dry stick–slip friction. J. Appl. Math. Mech.
71, 905–913 (2007)

13. Pascal, M.: Dynamics and stability of a two degree of free-
dom oscillator with an elastic stop. J. Comput. Nonlinear
Dyn. 1(1), 94–102 (2006)

14. Pascal, M.: Dynamics of coupled oscillators excited by dry
friction. ASME J. Comput. Nonlinear Dyn. 3(3), 20–26
(2008)

15. Pascal, M.: New events in stick–slip oscillators behaviour.
J. Appl. Math. Mech. 75(3), 402–409 (2011)

16. Xue, S., Fan, J.: Discontinuous dynamical behaviors in a
vibro-impact system with multiple constraints. Int. J. Non
Linear Mech. 98, 75–101 (2018)

17. Fan, J., Li, S., Chen,G.: On dynamical behavior of a friction-
induced oscillator with 2-DOF on a speed-varying traveling
belt. In: Mathematical Problems in Engineering, 2017, Arti-
cle ID 1208563 (2017)

18. Fan, J., Xue, S., Li, S.: Analysis of dynamical behaviors
of a friction-induced oscillator with switching control law.
Chaos Solitons Fractals 103, 513–531 (2017)

123


	A new model of dry friction oscillator colliding with a rigid obstacle
	Abstract
	1 Introduction
	2 Description of the model
	2.1 Motion impact-less case
	2.2 Rigid impact

	3 First example of periodic orbits with impact (symmetric solution)
	4 Second kind of periodic solutions with impact
	5 Third kind of periodic solutions with impact
	6 Fourth kind of periodic solutions with impact
	7 Concluding remarks
	Appendix: Symmetry of the solution
	References




