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Abstract This contribution proposes a numerical
procedure capable of performing nonsmooth modal
analysis (mode shapes and corresponding frequen-
cies) of the autonomous wave equation defined on
a finite one-dimensional domain with one end sub-
ject to a Dirichlet condition and the other end sub-
ject to a frictionless time-independent unilateral contact
condition. Nonsmooth modes of vibration are defined
as one-parameter continuous families of nonsmooth
periodic orbits satisfying the local equation together
with the linear and nonlinear boundary conditions.
The analysis is performed using the wave finite ele-
ment method, which is a shock-capturing finite vol-
ume method. As opposed to the traditional finite ele-
ment method with time-stepping schemes, potentially
discontinuous deformation, stress and velocity wave
fronts induced by the unilateral contact condition are
here accurately described, which is critical for seek-
ing periodic orbits. Additionally, the proposed strategy
introduces neither numerical dispersion nor artificial
dissipation of energy, as required for modal analysis.
As a consequence of the mixed time–space discretiza-
tion, no impact law is needed for the well-posedness of
the problem in linewith the continuous framework. The
frequency–energy dependency nonlinear spectrum of
vibration, shown in the form of backbone curves, pro-
vides valuable insight on the dynamics. In contrast to
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the linear system (without the unilateral contact condi-
tion) whose modes of vibration are standing harmonic
waves, the nonsmoothmodes of vibrations are traveling
waves stemming from the unilateral contact condition.
It is also shown that the vibratory resonances of the
periodically driven system with light structural damp-
ing are well predicted by nonsmooth modal analysis.
Furthermore, the initially unstressed and prestressed
configurations exhibit stiffening and softening behav-
iors, respectively, as expected.

Keywords Wave propagation ·Nonsmooth dynamics ·
Unilateral contact · Modal analysis · Nonlinear
vibration · Internal resonance

List of abbreviations and symbols

Abbreviations

WFEM Wave finite element method
FEM Finite element method
BC Boundary conditions
NNM Nonlinear normal mode
NSM Nonsmooth mode
COND Condition

Symbols

ρ Mass density per unit length
E Young’s modulus
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c Wave velocity
L Length of bar
S Cross-sectional area
r Contact force
g, g0 Gap function and initial gap
ε, σ, u, v Deformation, stress, displacement and

velocity
ε0, σ0, u0, v0 Initial deformation, stress, displace-

ment and velocity
u�
0, v

�
0 Periodic extensions of u0 and v0

q State vector
n, Δt Number of time steps and time interval
N , Δx Number of cells and length of cell
Q(n) Discrete state vector at time tn
Ci Discrete cell i
Q(n)

i Average of q over the i th cell at time
tn

σ
(n)
i , v

(n)
i Average of σ and v over the i th cell at

time tn
g(n), r (n) Gap function and contact force at time

tn
F(n)

i±1/2 Time-averaged fluxes at (xi±1/2, tn)

Q∗
i±1/2 Intermediate state at xi±1/2

W Propagating wave
T Period of solution
Ti Switching time
nT Number of steps for period T
ωk Linear natural frequencies for fixed–

free BC
Ωk Linear natural frequencies for fixed–

fixed BC

1 Introduction

Many industrial applications require the appropriate
prediction of the dynamics of colliding elastic bod-
ies in their design process [1]. Through unilateral
contact forces preventing inter-penetration of matter,
a collision initiates a disturbance in the form of a
stress wave. Analytical solutions to the initial value
problem are only known for simple cases such as
longitudinal collision of rods or transverse contact
of beams [2]. For more general configurations, the
solution should be approximated numerically. How-
ever, common numerical methods, such as finite ele-
ment methods (FEMs) combined with time-stepping
schemes, exhibit limitations that might be unaccept-
able [3–5]: spurious oscillations commonly known

as Gibb’s phenomenon, dispersion and dissipation
errors or chattering when constitutive impact laws are
implemented. Also, most energy-preserving numerical
schemes dedicated to contact dynamics feature numer-
ical dispersion issues [6].

In the framework of undamped linear continuous
systems, natural modes of vibration are characterized
by their natural frequencies (eigenvalues) and normal-
ized shapes (eigenfunctions) [7]. In the phase space,
linear modes can be seen as continuous families of
periodic orbits describing two-dimensional planes. For
nonlinear dynamical systems, the natural modes of
vibration are known to form two-dimensional mani-
folds in the phase space tangent to the previously men-
tioned planes at equilibrium points [8]. These mani-
folds are invariant, i.e., for any initial condition on
the manifold, the solution will remain on it as time
advances [9]. Additionally, the nonlinear natural fre-
quency of an orbit depends on the total energy of the
latter.

Most investigations and developments on nonlin-
ear modal analysis, conventionally within a finite-
dimensional framework or equivalent, have dealt with
smooth nonlinearities [8], i.e., nonlinear terms differ-
entiable with respect to the unknown of the problem,
mostly polynomial functions of the displacement and
velocity. The continuous mechanical system investi-
gated in this contribution involves a unilateral contact
condition stricto sensu. As a consequence, displace-
ments, velocities and accelerations are not differen-
tiable with respect to time and space in the usual sense.
Such systems are named nonsmooth systems [10]. Clas-
sical tools of nonlinear modal analysis rely on smooth-
ness and thus no longer apply. Accordingly, “nonlin-
ear normal modes” (NNMs) of vibration for nons-
mooth systems will be referred to as nonsmooth modes
(NSMs), defined as one-parameter continuous families
of periodic nonsmooth orbits.

The common method to approximate solutions
of continuous systems described by partial differ-
ential equations is to first obtain, through a semi-
discretization in space, a finite-dimensional nonlin-
ear ordinary differential equation solely depending on
time. Unilateral constraints can then be incorporated
via regularization to enable the use of classical non-
linear modal analysis [11–17]; the main issue lies in
the high computational effort induced by the con-
tact stiffness. Another strategy consists in preserving
the nonsmooth nature of the system. It can be han-
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Nonsmooth modal analysis of an elastic bar subject 2455

dled via appropriate time-stepping nonsmooth numer-
ical schemes [18] or semi-analytic derivations [19,
20] involving energy-preserving impact laws. A few
closed-form solutions in the form of periodic shock
waves of an elastic string vibrating against a point
obstacle are reported using the method of character-
istic lines [21,22]. This string system shares similar-
ities with the bar considered in the present work for
which a single continuous family of periodic solutions
was exhibited through analytical considerations [23].
In the remainder, this family will be shown to form the
first NSM of the system. The current work proposes an
approach to numerically approximate any NSM.

By definition of NSMs, their computation relies on
periodicity: the state of the system at time t0 must
be recovered at some t0 + T where T is the period,
requiring numerical methods that preserve total energy
and are not prone to numerical dispersion. A consider-
able amount of research has been devoted to this topic
with limited success [6,24,25]. In the present work,
the wave finite element method (WFEM) [26] is imple-
mented in order to numerically approximate the modes
of vibration of a one-dimensional finite elastic bar sub-
ject to frictionless unilateral contact constraints. The
WFEM is a shock-capturing method—similar to the
Godunov method [27] commonly used in computation
fluid dynamics—which consists in finding and tracking
waves propagating in amechanical system. Such shock
waves are expected because of the unilateral contact
condition. The proposed method does not introduce
artificial dissipation of energy nor numerical disper-
sion [26,28]. Multidimensional problems incorporat-
ing contact conditions are not targeted in this work due
to the expected intricate interaction of compressional
and shear waves.

The paper is organized as follows. The one-
dimensional system of interest is outlined in Sect. 2,
where three different configurations are detailed:
unstressed, prestressed and statically grazing. The
capability of the WFEM to handle unilateral contact
dynamics is illustrated in Sect. 3 through a benchmark
problem offering an exact solution. The overall strat-
egy capable of performing nonsmooth modal analysis
is described in Sects. 4 and 5. The approximate non-
smooth modes are then characterized in Sect. 6. Com-
parison with periodically forced responses is under-
taken in Sect. 7. The implementation ofWFEM is thor-
oughly detailed in “Appendix A” for a one-dimensional

Fig. 1 One-dimensional finite elastic bar subject to unilateral
contact constraints

problem.The enforcement of contact constraintswithin
WFEM is explained in “Appendix B”.

2 System of interest

The system of interest is a homogeneous elastic bar
of length L and constant cross-sectional area S rigidly
fixed to the ground at its left endwhose right end is sub-
ject to a conservative unilateral constraint as shown in
Fig. 1. Within the framework of infinitely small trans-
formations, the unknown displacement, velocity, strain
and stress fields are denoted by u(x, t), v(x, t), ε(x, t)
and σ(x, t), respectively, where x ∈ [0 ; L] is the coor-
dinate of a point of the bar along its longitudinal axis
in the initial configuration and t denotes time. The
quantity r(t) is the unilateral contact force emerging
at x = L . The mass per unit volume is denoted by
ρ > 0, and E > 0 stands for Young’s modulus which
are both by assumption, space and time independent.
Any elastic wave traveling within the bar thus propa-
gates at constant velocity c = √

E/ρ. The signed dis-
tance between the right end of the bar and the obstacle,
orgap function, is defined as g(u(L , t)) = g0−u(L , t),
where g0 is the signed distance between the uncon-
strained resting position and the obstacle. In linear
elasticity, the stresses read σ = Eε where the axial
strains ε = u,x should be physically admissible, that is
u,x > −1. Stresses are related to the contact force by
σ(L , t) = Eu,x (L , t) = r(t)/S. Unless stated other-
wise, there is no other external force acting on the sys-
tem, either per unit length or pointwise at the boundary.
The full formulation reads:

– Local equation:

ρu,t t − Eu,xx = 0, ∀x ∈ ]0 ; L[, ∀t > 0 (1)

where (•),t t stands for the second derivative in time
and (•),xx for the second derivative in space.
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– Homogeneousfixed (Dirichlet) boundary condition
(BC) at x = 0 and ∀t > 0:

u(0, t) = 0 (2)

– Signorini complementarity condition at x = L and
∀t > 0:

g(u(L , t)) ≥ 0, r(t) ≤ 0, r(t)g(u(L , t)) = 0

(3)

– Initial conditions ∀x ∈ ]0 ; L[:

u(x, 0) = u0(x), v(x, 0) = v0(x) (4)

where u0 and v0 are prescribed functions.

This problem has a unique solution which conserves
the total energy [29]. The local equation is the wave
equation defined on a finite domain. D’Alembert’s
exact solution is the sum of backward and forward
traveling waves propagating with velocity c and reads
∀x ∈ [0 ; L] and ∀t > 0 [2]:

2u(x, t) = u�
0(x+ct)+u�

0(x−ct)+1

c

∫ x+ct

x−ct
v�
0(s) ds (5)

where u�
0 and v�

0 are periodic extensions on the real axis
of u0 and v0 defined on [0 ; L] only. The period of u�

0
and v�

0 depends on the boundary conditions considered.
Nontrivial periodic solutions of the contact prob-

lem described by Eqs. (1)–(4) are successions of free
phases (open gap) and contact phases (closed gap).
They can therefore be understood as the combination
of solutions to an hyperbolic partial differential equa-
tion with a switching boundary condition at x = L
between vanishing stress when the gap is open to pre-
scribed displacement when the gap is closed. The non-
linearity in the formulation comes from the fact that
the time of switch depends on the solution. There is
also a subtlety in the BC switch at x = L: an open
gap implies u,x (L , ·) = 0 while a closed gap implies a
nonhomogeneous prescribed displacement of the form
u(L , ·) = g0. Accordingly, when the gap is open, BCs
at x = 0 and x = L are homogeneous and will be
referred to as fixed–free BCs in the remainder. For a
closed gap, the BC at x = 0 is homogeneous while the
BC at x = L is nonhomogeneous: they will be referred
as fixed–fixed BCs.

The question is now to find the two functions u0 and
v0 generating a time periodic state of the system which
satisfies local Eq. (1) and properly switches between
fixed–free and fixed–fixed BCs to comply with the uni-
lateral contact conditions (3). This is achieved using
the wave finite element method.

3 Illustration of the capabilities of WFEM

The WFEM is detailed, including a readily imple-
mentable algorithm, in “Appendices A” (the WFEM
method itself) and “B” (unilateral contact conditions
in WFEM). In the sequel, governing Eqs. (1)–(4) are
equivalently recast in terms of stresses and velocities
stacked in a state vector q. The system is discretized
simultaneously in space and time with mesh sizes
Δx = L/N and Δt = Δx/c, respectively, where N is
the number of cells used for space discretization. The
overall dynamics is approximated by Q(n) = AQ(n−1)

where Q(n) = [Q(n)
1 . . .Q(n)

N ] and Q(n)
i stands for the

averaged state q in cell Ci at time tn = nΔt . The matrix
A encompasses stiffness and inertial terms as well as
the appropriate boundary conditions. Two matrices are
constructed: A = Af for free–free BCs (open gap) and
A = Ac for fixed–free BCs (closed gap).

In this section, the capabilities of theWFEMare suc-
cinctly illustrated on a unilaterally constrained linearly
elastic finite bar benchmark, for which analytical solu-
tions are known [3]. It can be compared to other time
integration schemes based on a semi-discretization in
space through the commonly used FEM[28]. The prob-
lem consists in an unclamped homogeneous elastic
rod of length L and constant cross-sectional area S
bouncing against an obstacle due to a distributed inter-
nal force, as shown in Fig. 2. Parameters reported
in [3] are considered and listed in Table 1. The dis-
placement (retrieved from stress via an integration in
space), velocity, contact force and total energy are
depicted for an isolated periodic solution in Fig. 3, for
N = 100 cells. Total energy and periodicity are accu-
rately preserved, and the nonsmooth behavior is well
recovered. Curves in Fig. 3 and the exact curves are
undistinguishable [28]. In contrast, traditional numer-
ical schemes dedicated to contact dynamics and com-
monly based on the standard FEM show spurious oscil-
lations on the contact displacement and stress [5].
Moreover, these oscillations do not disappear when the
time step decreases and might increase instead. Var-
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Nonsmooth modal analysis of an elastic bar subject 2457

Fig. 2 Benchmark bouncing homogeneous elastic bar (used in
Sect. 3)

Table 1 Simulation parameters for the considered benchmark,
from [3]

Parameter Value

Young’s modulus, E 900Pa

Density, ρ 1kgm−2

Rod length, L 10m

Initial gap, g0 5m

External body force, F0 10Nm−1

Wave velocity, c = √
E/ρ 30ms−1

ious solutions have been proposed to alleviate these
difficulties, mainly by adapting the time-domain dis-
cretization. They all fail by either adding nonphysi-
cal damping, or not strictly respecting the contact con-
straint. This is partly explained by the inability of stan-
dard finite elements to properly propagate informa-
tion. Also, the implementation of an impact law yields
unavoidable drawbacks, such as chattering if energy
conservation is targeted [4]. None of these issues are
present with WFEM that produces accurate approxi-
mations with a reasonable number of cells. This can be
partly explained by the fact that shock wave propaga-
tion is accurately captured by this scheme.

4 Periodic solutions

NSMs are regarded as continuous families of periodic
solutions satisfying the local equations and the bound-
ary conditions including the unilateral contact condi-
tions. Finding a periodic solution translates into finding
initial conditions u0(x) and v0(x) and a period T which
generate a solution satisfying Eqs. (1)–(4) in conjunc-
tion with the periodicity conditions

{
u(x, t + T ) = u(x, t)

v(x, t + T ) = v(x, t)
, ∀x ∈ [0 ; L], ∀t > 0.

(6)

Fig. 3 Periodic motion of the bouncing bar obtained by WFEM

Without loss of generality, it is assumed that a period
starts with a free phase at t = 0 and ends with a con-
tact phase at t = T . In the general case, a pattern of
free and contact phases will arise within one period.
The k successive transition instants between free and
contact phases are denoted by Ti with 0 < T1 < · · · <

Tk−1 < Tk = T and are unknown. The sought solu-
tion is then an unknown combination of functions of
the form (5) where u�

0 and v�
0 switch between fixed–

free BCs over [0 ; T1], [T2 ; T3], etc. and fixed–fixed
BCs over [T1 ; T2], [T3 ; T4], etc., which must be peri-
odic in time. Connecting these portions of D’Alembert
solutions in order to form a periodic solution is quite a
formidable task.
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The WFEM approximately solves the above prob-
lem by building two matrices,Af for the fixed–free BC
andAc for thefixed–fixedBC, so thatmapping an initial
state to the current state after a succession of free and
contact phases is straightforward via Eq. (40). In con-
trast to more commonly used time integration schemes
based on FEM, the WFEM perfectly preserves energy
(in this one-dimensional configuration at least), which
is crucial for the computation of periodic solutions.
Additionally, for the problem at hand, this scheme is
not prone to numerical dispersion and does not suffer
from the well-known Gibb’s phenomenon commonly
observed in unilateral contact dynamics [3].

The FEM framework without regularization of the
complementarity conditions in continuous time is used
for the calculation of nonsmooth modes in [19,20,30].
However, the formulation relies on a space discretiza-
tion and hence requires the incorporation of an impact
law—for instance,Newton’s impact law—to ensure the
well-posedness of the problem. Since energy conser-
vation is necessary to find nonsmooth modes, a per-
fectly elastic impact law should be considered, from
which would emanate impulsive dynamics and chatter-
ing. This excludes periodicmotionswith “lasting” non-
impulsive contact phases similar to those of the period-
ically bouncing elastic bar exposed earlier. “Lasting”
contact phases can only be obtained with a dissipative
inelastic impact law. By simultaneously discretizing
the governing equations in space and time in accor-
dance with the characteristic lines, the WFEM accu-
rately propagates shock waves. This probably explains
why no impact law is needed in this framework; how-
ever, the authors are not aware of a formal proof of this
assertion.

5 Nonsmooth modal analysis

Nonsmooth modal analysis characterizes vibratory
mechanical systemswith nonsmoothnonlinearities [18,
19,30] by searching for one-parameter continuous fam-
ilies of periodic trajectories forming manifolds in the
phase space. In this work, the targeted solutions are
assumed to comprise free phases (open gap) as well
as contact phases (closed gap), as described in Sect. 4.
An example of an admissible periodic solution with
two free phases and two contact phases is depicted in
Fig. 4.

Fig. 4 Admissible periodic bar end displacement with closed
and open gap switches

5.1 Problem formulation

As stated previously, themotion is uniquely determined
by the initial conditions. The aim is to find such ini-
tial conditions which generate a periodic motion in
the spirit of shooting methods [31]. If such periodic
solutions exist, the formulation reduces to finding their
period T and the appropriate initial conditions satisfy-
ing

q(x, T ) = q(x, 0), ∀x ∈ [0 ; L]. (7)

In the discrete setting of the WFEM, this reduces to
finding nT and the vector of initial conditions Q(0)

such thatQ(nT ) = Q(0) where nT is the number of steps
required to cover the periodT . In their simplest incarna-
tion, the sought periodic solutions are only composed
of one free phase and one contact phase per period1

even though more complicated patterns are expected
to exist. Accordingly, the solution is assumed to be
in open contact (free phase) for m consecutive steps
and in closed contact (contact phase) for p consecutive
steps. Invoking Eq. (40), the state of the system after
nT = m + p time steps emanating from initial state
Q(0) reads

Q(nT ) = Ap
cA

m
f Q

(0), (8)

with the origin of time taken at the beginning of the
free phase. Both matrices Ac and Af are known, see
“Appendix A”. The duration of free and contact phases
corresponding to periodic motions is not known a pri-
ori, so the integers m and p leading to acceptable solu-
tions are unknowns of the problem. By enforcing the
periodicity conditions, Eq. (8) simplifies to

1 With this assumption, the solution features one gap closure and
one gap opening per period.
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(Ap
cA

m
f − I)Q(0) = 0. (9)

An initial condition Q(0) satisfying Eq. (9) is called
a potential solution for given p andm. Indeed, potential
solutionsmay not be actual solutions of the initial prob-
lem: nothing prevents them from penetrating the rigid
foundation during free phase and/or the corresponding
contact force could be nonnegative: these conditions
cannot be enforced in Eq. (9). Consequently, potential
solutions are called admissible solutions if they satisfy
the following additional conditions:

COND1 Free phase: u(n)
N+1/2 � g0 and r (n) = 0 for

n = 0, 1, . . . , m.
COND2 Contact phase: u(n)

N+1/2 = g0 and r (n) � 0
for n = m + 1, m + 2, . . . , m + p.

COND3 Material impenetrability: ε(n)
i > −1 for n =

0, 1, . . . , m + p and i = 1, . . . , N .

where u(n)
N+1/2 ≈ u(L , T ) and ε

(n)
i is the discretized

strain field, both retrieved from discretized stresses.
To summarize, periodic solutions satisfying contact
conditions are obtained by solving the problem: Find
m ∈ N

∗, p ∈ N
∗, and initial condition Q(0) ∈ R

2N

such that Eq. (9) together with COND1, COND2 and
COND3 is simultaneously satisfied.

5.2 Solution procedure

For specified m and p, a periodic motion necessarily
corresponds to an initial condition which is in the ker-
nel of the operator ST = Ap

cAm
f − I as highlighted

in Eq. (9), that is Q(0) ∈ ker ST . The dimension
h of ker ST depends on the doublet (m, p). A non-
trivial solution may exist only if h > 0. If h > 0
and {e1, e2, . . . , eh} is a basis of ker ST , then Q(0) =
α1e1 + α2e2 + . . . + αheh for some α1, α2, . . . , αh .
The state Q(n) is completely determined by Q(0) via
Eq. (46). Accordingly, Q(n) can be expressed in terms
of the coefficients α1, α2, . . . , αh only and it suffices
to find appropriate values such that COND1, COND2
and COND3 are satisfied.

Findingm, p such that h > 0 is achieved by system-
atically computing h for every combination of m and
p within a given range. Once an admissible solution
is known, other admissible solutions can be straight-
forwardly found in its vicinity. As soon as a family of
periodic orbits—involving one contact phase and one
free phase—emerges, it defines a nonsmooth mode of
vibration.

6 Results and discussion

Nonsmoothmodes of vibration of the system described
in Sect. 2 are now constructed. The parameters E , ρ

and L are arbitrarily chosen to be unity and units are
discarded. The results are obtained for 1000 cells and
time step is calculated accordingly, i.e., Δt = Δx/c =
1/1000.

In the linear framework (that is without the con-
tact conditions), linear natural frequencies of vibration
denoted ωk for fixed–free boundary conditions and Ωk

for fixed–fixed boundary conditions are

ωk = (2k − 1)πc

2L
= (2k − 1)ω1, k ∈ N

∗

Ωk = kπc

L
= kΩ1, k ∈ N

∗.
(10)

It is expected that the slightly damped linear system
under consideration periodically forced in a neighbor-
hood of these frequencies will resonate. Conversely, in
the nonlinear framework (that is with contact condi-
tions), such frequencies do not have the same physi-
cal interpretation anymore: the nonlinear system will
resonate close to other unknown frequencies which are
calculated by the nonsmoothmodal analysis, for a given
level of energy. The nonlinear system can also feature
internal resonances where two or more NSMs inter-
act [32]; for instance, driving the system in the neigh-
borhood of a high-frequency NSMmay activate a large
amplitude low-frequency NSM [8]. Note that the sys-
tem of interest satisfies a complete internal resonance
condition in the sense that ωk and Ωk , k = 2, . . . ,∞
are allmultiples ofω1 andΩ1, respectively.Moreover, a
nonlinear system may exhibit subharmonic and super-
harmonic resonances in the vicinity of (pωk)/q, for
p, q positive integers such that 0 < p/q < 1 and
1 < p/q, respectively [8].

In this work, frequency–energy plots are preferably
used, quoting [8]: “a nonlinear modal motion is rep-
resented by a point in such plots, which are drawn
at a frequency corresponding to the minimal period
of the periodic motion and at an energy equal to the
conserved total energy during the periodic motion. A
branch, represented by a solid line, is a family of non-
linear modal motions possessing the same qualitative
features.” The terminologies “branch” and “backbone
curve” are used interchangeably in the remainder. The
reported frequencies are normalized with respect toω1,
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and the energy is normalized with respect to the energy
of the first linear mode grazing orbit satisfying

max
t∈R u(L , t) = g0. (11)

When the calculated periodic solutions have one free
phase and one contact phase, admissible solutions are
only found when h = 1 for various (m, p). For
h � 2, potential solutions failed to satisfy COND1
and COND2 simultaneously and hence the distinction
between potential and admissible. Admissible solu-
tions were found only when h equals the number of
contact phases. Additionally, recent developments, out
of the scope of the present paper, have shown that if
a periodic trajectory belongs to a continuum parame-
terized by T , then the displacement must be piecewise
linear with respect to time and space. Thus, if a peri-
odic solution does not satisfy this property, it is either
isolated or part of a continuum of orbits sharing the
same period.

A previous investigation on the first main NSM [23]
showed that the duration of the contact phase pΔt
is related linearly to the duration of free phase mΔt
when a solution belongs to a family of periodic orbits.
Numerical experiments suggest that other branches
could present similar relations, which are employed to
bound the range where m and p are iterated for each
potential backbone curve. Once a solution is found, a
point in a NSM branch is defined by the total energy
of the admissible periodic motion and the respective
frequency ω = 2π/T , see Fig. 5.

Fig. 5 Frequency–energy plot in the range [ω1,Ω1] for g0 >

0 [ ], g0 = 0 [ ] and g0 < 0 [ ] with a few subhar-
monics of linear modes [ ]. (Color figure online)

Fig. 6 Frequency–energy plot in the range [ω2,Ω2] for g0 >

0 [ ], g0 = 0 [ ] and g0 < 0 [ ] with a few subhar-
monics of linear modes [ ]. (Color figure online)

If the initial gap is positive g0 > 0 (unstressed bar
at rest), NSM branches arise in the vicinity of the lin-
ear natural frequencies ωk and subharmonics pωk/q
for p, q ∈ N

∗, and present a hardening behavior. For
a “negative” gap g0 < 0 (prestressed bar at rest), the
NSM branches start in the vicinity of the linear nat-
ural frequencies Ωk and display a softening behavior.
Finally, if the bar is statically grazing with the rigid
foundation (grazing bar at rest, that is g0 = 0), then the
NSM branches are the vertical asymptotes common to
the previous backbone curves, as shown in Figs. 5 and 6
for the first and second NSM, respectively. Internal res-
onance branches, explored in Sect. 6.3, are omitted in
these figures. Identical results were already computed
for the first main NSMonly [23]. Also, a similar behav-
ior has been observed in the frequency–energy plot of
simplified discrete models for the unstressed case with
penalized contact constraints [11,12] and with a nons-
mooth formulation [18].

The frequency–energy dependence exhibited by
NSM is a typical feature of nonlinear systems [8].
Interestingly, when g0 = 0 the system mimics a lin-
ear behavior where the frequency and the shape of
the orbits do not depend on their energy. However, the
behavior remains globally nonlinear because of the BC
switches.

Though the behavior and ranges of frequencies of
the NSM branches depend on the sign of g0, they “con-
verge” to the branches of g0 = 0 when g0 → 0, as
shown in Fig. 7 for the main NSM branch in [ω1,Ω1].
In other words, there is no difference between NSMs
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Fig. 7 First NSM branch as a function of g0. Energy is not
normalized. The backbone curves for g0 > 0 [ ] and g0 <

0 [ ] slowly “approach” the backbone curve for g0 = 0 [ ]
when g0 → 0. (Color figure online)

with very small positive initial gap, zero initial gap or
very small initial negative gap. Moreover, the normal-
ized shape of the backbone curves depend only on the
sign of g0.Without loss of generality and for illustration
purposes, g0 = ± 10−3 or g0 = 0 in the remainder.

In the following sections, a detailed study of the
NSM branches is presented. It should be noted that all
the results were obtained numerically. The proposed
results have to be understood as conjectures.

6.1 Main backbone curves

The main backbone curves are defined as the NSM
branches, in the frequency–energy plot, starting in the
vicinity of:

– ωk , the k-th linear natural frequency for fixed–free
BC, for positive initial gap g0 > 0,

– Ωk , the k-th linear natural frequency for fixed–fixed
BC, for negative initial gap g0 < 0.

– For g0 = 0, the main backbone curve is a ver-
tical line asymptotic to its two above counter-
parts. Such asymptotes are located at ω1(ωk/ω1 +
1)2/(ωk/ω1 + 2).

Periodic motions corresponding to the main backbone
curves in the range [ω1,Ω1] are depicted in Fig. 8. Such
piecewise linear displacements were already observed
as isolated periodic solutions,without describing a con-
tinuum [21,22]. However, previous numerical investi-
gations to locate families of periodic orbits were inac-

Fig. 8 Periodic motions on the main NSM in the range
[ω1 ; Ω1] for one contact phase per period, corresponding to
points “a” [ ], “b” [ ] and “c” [ ] in Fig 5: unstressed
(top), initially grazing (center) and prestressed (bottom). (Color
figure online)

curate because of numerical dispersion stemming from
the space semi-discretization [12,18].

A generic space–time plot of the displacement of
the bar is provided in Fig. 9. The solution is the com-
bination of interacting forward and backward traveling
waves which propagate along the characteristic lines
(t = ± x/c), as opposed to the linear counterpartmodal
motions which are sinusoidal standing waves as shown
in Fig. 10 [2].

Every periodic solution corresponding to the main
backbone curve comprises exactly one free phase and
one contact phase. For a positive as well as negative
initial gap, the contact phase duration increases while
the free phase duration decreases as the frequency of
vibration increases. When the initial gap is zero, peri-
odic motions have constant period equal to T = 3L/c
and the duration of contact closure is L/c while the
free phase time is 2L/c. It should also be noted that the
contact force associated with all the depicted motions
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Fig. 9 Generic space–time displacement field of the main NSM
in the range [ω1 ; Ω1] for g0 > 0
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Fig. 10 Generic space–time displacement field of the first linear
mode (linear fixed–free bar without contact constraints) at ω1

vN + 1/2 N + 1/2

3/2u 

u 

Fig. 11 Invariant manifold corresponding the main back-
bone curve in the vicinity of ω1 plotted in the cross section
(uN+1/2, vN+1/2, u3/2). Gray surface: Poincaré cross section
uN+1/2 = g0. Periodic orbit [ ]. Intersections between NSM
and the Poincaré cross section [ ]. (Color figure online)

is piecewise constant on a period. The invariant man-
ifold in the unstressed case is plotted in the cross sec-
tion (uN+1/2, vN+1/2, u3/2)—i.e., (displacement of the

Fig. 12 Grazing displacement of the contacting end at ω1. First
linear mode [ ] and first main NSM [ ]. (Color figure
online)

contacting end, velocity of the contacting end, displace-
ment of the right-hand side interface of cell C1)—of
the state space in Fig. 11. The linear portion of the
first mode corresponds to an ellipse (like essentially
all linear modes). The linear and nonlinear portions of
the manifold are not continuously connected because
of the internal resonance property. This is visualized
in Fig. 12 which shows the grazing periodic displace-
ments for the first linear mode and first main NSM,
both having frequency ω1. It should be understood
that any autonomous solution of frequency ω1 shall
be expressed as an infinite Fourier sequence separated
in space and time of the form

u(x, t) =
∞∑

k=1

sin(ωk x/c)(ak cos(ωk t) + bk sin(ωk t))

(12)

where ωk = (2k − 1)πc/(2L) = (2k − 1)ω1, k ∈ N
∗,

are the linear natural frequencies; the coefficients ak

and bk are computed from the initial conditions [2]
and are not of interest here. In other words, the full
internal resonance condition enjoyed by the system is
such that the latter exhibits infinitely many solutions
of frequency ω1, the piecewise linear grazing solution
being one of them. Accordingly, a discontinuity in the
manifold is made possible.

The above internal resonance condition can be anni-
hilated by changing theBCat x = 0 fromDirichlet type
to Robin type saying that the bar is attached to a spring
of stiffness δ at x = 0: E Su,x (0, t) − δu(0, t) = 0.
The solution can still be expressed as an infinite Fourier
sequence

u(x, t) =
∞∑

k=1

φk(x)(ak cos(ωk t) + bk sin(ωk t)) (13)
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similar to Eq. (12) with φk(x) = pk cos(ωk x/c) +
sin(ωk x/c) where pk = cot(ωk L/c). The ωk are
now solutions to the transcendental equation E Sω =
cδ cot(ωL/c) and are no longer commensurate [7].
Assuming that the grazing solution of the first NSM
has frequency ω1 (this should be proven!), it will nec-
essarily see the sole contribution of the first linear
mode, which is the only motion of frequency ω1 in
sequence (13), that is:

u(x, t) = φ1(x)(a1 cos(ω1t) + b1 sin(ω1t)). (14)

This necessarily induces a continuous connection
between linear and nonlinear grazing trajectories. To
summarize, the above argument stipulates that the inter-
nal resonance condition is necessary to see a discon-
tinuity in the modal manifold between the linear and
the nonlinear portions. However, this is not a sufficient
condition.

Figure 13 depicts the generic space–time plot (irre-
spective of g0) of the second main backbone curve in
the range [ω2,Ω2] showing that the periodic solutions
have one “node of vibration” along x—similar to the
second linear mode of the fixed–free bar [2], depicted
in Fig. 14. The displacement u(L , ·) also features one
contact phase per period, by assumption. Furthermore,
for g0 = 0, the period is 5L/(4c) comprising one con-
tact phase of duration L/(4c) and one free phase of
duration L/c, irrespective of the energy of the system.

For illustration purposes, only the first two main
NSMs are shown in this section. However, the pre-
sented approach can be also used to find higher fre-
quencyNSMwhich requires a smaller time stepΔt and
therefore higher computational effort. Periodic solu-
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Fig. 13 Generic space–timedisplacement field of themainNSM
in the range [ω2 ; Ω2]. Node of vibration [ ]. (Color figure
online)
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Fig. 14 Generic space–time displacement field of the second
linear mode (linear fixed–free bar without contact constraints) at
ω2. Node of vibration [ ]. (Color figure online)

tions corresponding to the main backbone curves for
higher frequencies display a similar structure: one free
phase, one contact phase and nodes of vibration along
x .

6.2 Subharmonic backbone curves

For g0 > 0, it was observed empirically that a subhar-
monic backbone curve emanates in the right vicinity
of a fixed–free BCs linear subharmonic resonance fre-
quency (vertical dashed lines in Figs. 5 and 6):

ω = 2k(n + 1) − 1

n + 1
ω1, n, k ∈ N

∗. (15)

For g0 < 0, a subharmonic backbone curve starts in the
left vicinity ofΩk and shares an asymptotewith the sub-
harmonic backbone curve for positive initial gap. Fur-
thermore, for g0 = 0, a subharmonic backbone curve
is asymptotic to its above counterparts. Several numer-
ical experiments suggest that the asymptotes (vertical
brown lines in Figs. 5, 6) are located at

ω = ω1(n + 1)(ωk/ω1 + 1)2

ωk/ω1(n + 1) + n + 2
, n, k ∈ N

∗. (16)

The number of computable subharmonics is deter-
mined by the discretization time step; for example,
Figs. 5 and 6 display only six branches while the time
step was Δt = 10−3. Four periodic solutions corre-
sponding to subharmonic backbone curves are depicted
in Fig. 15 for g0 > 0.

These plots suggests that the periodic motions
present n grazing instants together with one contact
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Fig. 15 Periodic motions in the vicinity ofω2/2 = 3ω1/2 (top),
ω3/3 = 5ω1/3 (top center), ω4/4 = 7ω1/4 (bottom center) and
ω4/2 = 7ω1/2 (bottom) corresponding, respectively, to points
“d,” “e,” “ f ” and “g” in Figs. 5 and 6

phase, when the NSM branch starts in the vicinity of
the n-th subharmonic of ωk , as inferred from Eq. (15).
The displacement of the contacting end for points “d”
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Fig. 16 Periodicmotions with same frequency for g0 < 0 corre-
sponding to points “h” in Fig. 6: low energy (top) to high energy
(bottom)

and “g” (see Fig. 6) is similar; however, the latter has
higher frequency. Such feature is also expected in peri-
odic motions around subharmonics of higher NSM.

Moreover, periodic solutions belonging to distinct
NSM branches coexist when the bar is prestressed
(g0 < 0), see point “h” in Fig. 6. The correspond-
ing periodic displacements of the contacting end are
plotted in Fig. 16 where the period of vibration is
the same. Here, the solutions have longer free phases
and increasing number of grazing instants with higher
energy. These grazing instants coincide with the BC
switching time of lower energy solutions.

Interestingly, extensive numerical experiments show
that NSM branches do not appear in the range of fre-
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Fig. 17 Main NSM branch around ω1 with additional internal
resonance branches

quencies [Ωk, ωk+1], k ∈ N
∗; the reason for this is

unknown.

6.3 Internal resonance branches

The intrinsic discrete nature of the employed numer-
ical algorithm is such that WFEM cannot capture an
actual continuum of solutions (see Sect. 5). However,
the periodic solutions previously presented all belong
to numerically “apparent” continua parametrized by
the energy where the solutions possess similar qualita-
tive and quantitative features. The proposed approach
also leads to sparse periodic solutions, see clouds of
points in Fig. 17. Presumably, these points are also part
of a complicated network of backbone curves stem-
ming from main and subharmonic branches; however,
they are much more challenging to capture numeri-
cally because of the high-frequency content in the cor-
responding mode shapes, see Fig. 18. These points
seem to be organized on internal resonances backbone
curves [8] emanating from the main one in the vicinity
of the frequencies

ω = 2kω1/(2k − 1), k = 2, 3, . . . (17)

Moreover, Fig. 17 shows that there are no internal
resonance branches in the frequency ranges [(2k −
1)ω1/(2k − 2); 2kω1/(2k − 1)], k = 3, 4, . . . This
is not further explored in this work. Periodic motions
featuring an internal resonance in the vicinity of (ω3 +
ω1)/5 = 6ω1/5 are displayed in Fig. 18. These solu-
tions present two grazing instants and appear to corre-
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Fig. 18 Internal resonances for g0 > 0 in the vicinity of (ω3 +
ω1)/5 = 6ω1/5: points “a” (top) and “b” (bottom) in Fig. 17

spond to a modal interaction between the first and third
NSM. In contrast to solutions on the main and subhar-
monic backbone curves for g0 > 0, the contact duration
of internally resonant periodic motions decreases with
increasing frequency: they exhibit a softening behavior.

It is difficult to compute the occurrence of inter-
nal resonances in systems involving unilateral contact.
However, the data obtained byWFEMgive suggestions
about the existence of these NSM branches. The char-
acterization of the periodic motions associated with
internal resonances is helpful to predict the possible
sudden resonance of real life applications, when vibrat-
ing around frequencies defined in Eq. (17).

6.4 Periodic solutions with two contact phases per
period

The previous sections were devoted to solutions with
one contact phase and one free phase per period, as
expressed in Eq. (8). In this section, solutions with
more than one contact phase per period are explored.
The methodology is unchanged, but two additional
unknowns (duration of second contact phase Δt and
duration of second free phase mΔt ,  and m ∈ N

∗)
arise in the new equation
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(Ap
cA

k
fA


cA

m
f − I)Q(0) = 0, (18)

to be compared with Eq. (9). It appears that non trivial
solutions Q(0) can be found only if the contact phases
have the same duration, that is p = . This might
be the consequence of the symmetry with respect to
time and space of the wave equation. For the matrix
ST = Ap

cAk
fA

p
cAm

f − I, families of periodic solutions
satisfying contact conditions were found only when
h = dim(ker ST ) = 2 suggesting that dim(ker ST )

should equal the number of contact phases for periodic
solutions to exist.

The solution procedure explained in Sect. 5.2 leads
to a one-dimensional continuum of periodic orbits
emerging in the vicinity of ω2/5 = 3ω1/5, where
ω2 = 3ω1, defining a subharmonic backbone curve
with two contact phases, as illustrated in Fig. 19. This
family of periodic orbits appears only for g0 > 0
and presents hardening behavior. The corresponding
space–timedisplacement field is shown inFig. 20 for an
arbitrary frequency. The asymptote of this NSMbranch
appears to be located at 2ω1/3.

The contacting end shown in Fig. 20 features one
free phase with two grazing instants similar to the first
subharmonic of the third NSM at ω3/3. Also, as in the
casewith one contact phase per period, the amplitude of
the displacements and thedurationof the contact phases
get larger with the frequency of vibration. Interestingly,
it resembles the two impact-per-period trajectories of a
serial spring–mass system constrained by an obstacle
with a purely elastic contact law [20]. In particular, the
solutions have two axes of symmetry per period along

Fig. 19 NSM branch with two closed contacts per period in
the vicinity of ω2/5 = 3ω1/5 [ ]. First main NSM with one
closed contact per period [ ]; g0 > 0. (Color figure online)
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Fig. 20 Generic space–time displacement field with two contact
phases per period of the NSM branch around ω2/5

the time axis, which are located in the middle of each
free phase.

A finer discretization is required to obtain additional
NSM branches with higher number of contact phases.
These branchesmight be of interest for the prediction of
vibratory responses where the elastic bar resonates for
excitation frequencies much lower than the first linear
natural frequency ω1.

6.5 Stability analysis of periodic solutions

Due to the space–time coupled discretization and the
conditional switching of boundary conditions, a rig-
orous stability analysis of the periodic orbits is a chal-
lenging task and remains an open problem left to future
investigations. However, as a preliminary insight, the
effects of a small sinusoidal perturbation on the ini-
tial conditions corresponding to the first main NSM
were investigated by comparing the unperturbed and
perturbed solutions time-integrated via WFEM over
1000 periods of the unperturbed solution. We found
that the perturbed motion remains in the vicinity of the
periodic motion, thus suggesting that a fraction of first
main NSM motions are orbitally stable. This is illus-
trated in Fig. 21 which compares the unperturbed and
perturbed motions, over the last period of integration
t ∈ [999Ta; 1000Ta], corresponding to point “a” and
g0 > 0 in Fig. 5.

7 Forced response of a mechanical system subject
to contact constraints

One important purpose of performing nonsmooth
modal analysis of a mechanical system is to predict
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Fig. 21 Displacement of the contacting end after 1000Ta for
point “a” in Fig. 5: unperturbed [ ] and perturbed [ ].
(Color figure online)

Fig. 22 Elastic bar excited by a distributed harmonic force
and/or a moving rigid wall

its behavior when periodically forced [12,30]. Accord-
ingly, the frequency response of the previously inves-
tigated elastic bar with periodic external excitation
is now compared to the NSM spectrum. The excita-
tion consists in an external distributed harmonic force
or a harmonically moving rigid wall that compresses
the bar, see Fig. 22. The force acting on the bar is
f (x, t) = f0(x) sin(ωt), and the displacement of the
moving wall is w(t) = w0 sin(ωt) where ω is the fre-
quency of excitation and w0 > g0. The gap function is
now defined as g(u(L , t), w(t)) = g0+w(t)−u(L , t).
The system has been slightly damped by adding a
velocity-dependent term with a small viscous damp-
ing coefficient in the left-hand side of Eq. (1). The
forced response of this system is obtained for vari-
ous amounts of damping and was computed using the
WFEM version detailed in Algorithm 2 using a time-
stepping approach not specifically targeting periodic
motions.

7.1 Periodically moving wall

The first tested configuration is f0 = 0 and w0 �= 0.
The total energy of the steady-state solution averaged
over one forcing period for increasing frequencies of
excitation and various amounts of damping is shown
in Figs. 23, 24 and 25 (top) for a positive, zero and
negative initial gap, respectively.

Fig. 23 Periodically forced responses of the bar for various
damping coefficients and g0 > 0: harmonically moving wall
(top) and harmonic distributed force (bottom)

In the frequency ranges where NSM branches do
not exist, WFEM could not find externally forced peri-
odic steady states. Instead, quasiperiodic or chaotic
forced responses were detected. Calculating steady
state for each frequency requires long computational
times which complicates the construction of a detailed
forced response.

7.2 Periodic distributed force

The second tested configuration is f0 �= 0 andw0 = 0,
corresponding to the elastic bar excited by a distributed
force. The results for a positive, zero and negative ini-
tial gap are depicted in Figs. 23, 24 and 25 (bottom),
respectively.

For a positive gap and high frequencies, large damp-
ing confines the system to linear operating conditions.
This is one of the reasons why the corresponding plots
differ greatly.Moreover, similarly to the first configura-
tion, quasiperiodic and chaotic solutions are observed
in the frequency intervals where NSM branches do
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Fig. 24 Periodically forced responses of the bar for various
damping coefficients and g0 = 0: harmonically moving wall
(top) and harmonic distributed force (bottom)

not exist. Presumably, there exist infinitely many back-
bones curves and corresponding “in-between” regions
with no periodic solutions; only a few are plotted in
Figs. 23, 24 and 25.

More importantly, the backbone curves obtained
with the nonsmooth modal analysis provide an excel-
lent approximation of the response resonances. In addi-
tion, the internal resonances of the system produce
small protuberances in the forced response that coin-
cide with the main resonance and subharmonic back-
bone curves.

The main advantage of the nonsmooth modal anal-
ysis is the characterization of the vibratory response
without relying on very expensive numerical time inte-
gration procedures: via NSM as presented, the predic-
tion of frequencies of excitation at which the system
will vibrate with high energy is straightforward.

8 Conclusions

Families of periodic orbits (known as nonsmooth
modes of vibration) of an autonomous finite elas-

Fig. 25 Periodically forced responses of the bar for various
damping coefficients and g0 < 0: harmonically moving wall
(top) and harmonic distributed force (bottom)

tic bar subject to frictionless unilateral contact are
investigated in this work. Three cases were explored:
unstressed (g0 > 0), prestressed (g0 < 0) and zero
initial gap (g0 = 0). The computation of periodic
solutions was achieved using the wave finite element
method (WFEM), chosen because it preserves energy
and avoids numerical dispersion. This method con-
sists in discretizing simultaneously in time and space
the governing dynamic equations, resulting in a sim-
ple matrix form. Then, the problem of finding peri-
odic solutions was formulated as finding a vector in
the kernel of a matrix supplemented by complementar-
ity conditions enforcing unilateral contact constraints.
The presented methodology can be adapted to multi-
ple contact phases per period or to systems coupled by
unilateral contact conditions. However, it is presently
limited to simplified one-dimensional problems with a
single point of contact on the contact boundary.

It is shown that the elastic bar with unilateral contact
has a rich dynamical behavior involving subharmonic
resonances and internal resonances. Similar results are
already reported in the literature [11,12]. However, the
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proposedmethodology does not necessitate regularized
contact conditions. In this work, the unilateral contact
conditions are treated as a switch between Dirichlet
and Neumann-type boundary conditions when the gap
opens or closes: from fixed–free BCs (no contact) to
fixed–fixed BCs (contact) and vice-versa. The found
nonlinear periodic solutions lying on a NSM are com-
binations of traveling waves with discontinuous wave
fronts, as opposed to their linear counterpart (with-
out contact conditions) which are standing harmonic
waves. Also, the behavior of the NSMs depends on the
gap at rest: hardening branches for g0 > 0, softening
branches for g0 < 0 and discrete spectrum for g0 = 0.
Such behavior was already observed only for the first
NSM [23]. Moreover, the frequency ranges at which
NSM branches exist are conjectured.

Quasi-closed-form solutions can be extracted from
the provided results. They could act as benchmark
solutions for researchers designing advanced numer-
ical schemes in unilateral contact dynamics. NSMs
stability and the role of coexisting periodic solutions
(same energy and frequency) need be further explored.
The relevance of nonsmooth modal analysis was illus-
trated by the accurate prediction of periodically forced
responses, irrespective of the way the external force is
applied.

Extension of the proposed approach to multidi-
mensional settings with several points of contact
is a remarkable challenge as the nondispersive and
energy-preserving properties of the WFEM in the
one-dimensional context will then be lost. However,
such extension seems feasible with Godunov-type dis-
cretization and shooting techniques by slightly relaxing
the imposed periodicity conditions.
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Appendix A: Description of the wave finite element
method

In this section, the WFEM, introduced by Shorr for the
simulation of shock wave propagation in solids [26], is
thoroughly described.

A.1 Hyperbolic system of conservation laws

Local Eq. (1) can be equivalently written as a system
of two first-order partial differential equations in terms
of velocities v(x, t) and stresses σ(x, t)

σ,t − Ev,x = 0

ρv,t − σ,x = 0

}
, ∀x ∈ ]0 ; L[, ∀t > 0 (19)

where (•),t is the derivation in time and (•),x is the
derivation in space of quantity (•) [33]. Recall that
axial strains ε = u,x are bounded by nonphysical
inter-penetration, which translates into u,x > − 1,
see Sect. 2. Displacements can be straightforwardly
recovered by space integration of the strains u(x, · ) =∫ x
0 u,s(s, · ) ds −u(0, · ), where u(0, · ) = 0. By posing
q = [σ v]�, Eq. (19) can be recast as

q,t + Bq,x = 0 where B =
[

0 −E
−1/ρ 0

]
. (20)

The eigenvalues of matrix B are λ1 = −√
E/ρ and

λ2 = √
E/ρ, coinciding with the algebraic propaga-

tion velocity of the elastic wave: positive and negative
for the two waves propagating in opposite directions.
Since both eigenvalues are distinct and real, Eq. (20) is
also referred to as a hyperbolic system of conservation
laws [33].

Equation (20) involves time and space derivatives of
q. However, observing that q,t + Bq,x = 0 is a local
form of the conservation law of q (implying q( · , t)
can only change due to fluxes at the boundaries) corre-
sponding to the following integral form

d

dt

(∫ x2

x1
q(x, t) dx

)
= B

(
q(x1, t) − q(x2, t)

)
, (21)

it appears that the condition on the smoothness of q is
no longer required. Therefore, q is allowed to exhibit
discontinuities in time and space [34].

A.2 Discretization

The WFEM consists in dividing the spatial and tempo-
ral domain into grid cells of equal size andkeeping track
of an approximation to the integral of q within every
single cell. As depicted in Fig. 26, the bar is discretized
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Fig. 26 Discretization of the spatial domain in grid cells at time
tn

using a uniform grid of N cells. Each i th cell, denoted
by Ci , is delimited by the interval (xi−1/2, xi+1/2). Sim-
ilarly, time is discretized into intervals of equal length
Δt = tn+1− tn . The average of q( · , t) over the i th cell
at time tn is

Q(n)
i = 1

Δx

∫ xi+1/2

xi−1/2

q(x, tn) dx = 1

Δx

∫
Ci

q(x, tn) dx

(22)

whereΔx = xi+1/2− xi−1/2 is the length of cell i . The
integral form of conservation law (21) applied to cell
Ci reads

d

dt

∫
Ci

q(x, t) dx = B
(
q(xi−1/2, t) − q(xi+1/2, t)

)
.

(23)

This expression is now employed to develop an explicit
time-stepping algorithmwhereQ(n+1)

i is approximated

by a function of Q(n)
i . Equation (23) is integrated

between tn and tn+1 yielding

∫
Ci

(
q(x, tn+1) − q(x, tn)

)
dx

=
∫ tn+1

tn

(
B

(
q(xi−1/2, t) − q(xi+1/2, t)

))
dt.

(24)

Rearranging and dividing by Δx leads to

1

Δx

∫
Ci

q(x, tn+1) dx = 1

Δx

(∫
Ci

q(x, tn) dx

−
∫ tn+1

tn
Bq(xi+1/2, t) dt

+
∫ tn+1

tn
Bq(xi−1/2, t) dt

)
.

(25)

This equation describes how the cell average should be
updated within a time step in order to satisfy the con-
servation of q. In general, the two integrals involving

Bq on the right-hand side of the equation cannot be
evaluated exactly. Following [35], we pose

F(n)
i±1/2 ≈ 1

Δt

∫ tn+1

tn
Bq(xi±1/2, t) dt (26)

and Eq. (25) simply becomes

Q(n+1)
i = Q(n)

i − Δt

Δx

(
F(n)

i+1/2 − F(n)
i−1/2

)
. (27)

The next subsection is dedicated to the computation
of F(n)

i±1/2, which are the time-averaged fluxes at x =
xi±1/2.

A.3 Approximation of the time–averaged fluxes

To approximate the fluxes at the interfaces defined by
Eq. (26), the state q(x, tn) at time tn is assumed to be
a piecewise constant function defined for all x , con-
structed from the cell averages Q(n)

i as depicted in
Fig. 27. This piecewise reconstruction of the function
q(x, tn) is identical to the Godunov’s approach widely
employed in computational fluid dynamics [36]. A suit-
able approximation of the flux F(n)

i+1/2 can be obtained
by solving the problem, either numerically or exactly,
of conservation law Eq. (20) together with the follow-
ing discontinuous conditions at time tn [36]:

σ(x, tn) =
{

σ
(n)
i if x � xi+1/2

σ
(n)
i+1 if x > xi+1/2

v(x, tn) =
{

v
(n)
i if x � xi+1/2

v
(n)
i+1 if x > xi+1/2

(28)

Fig. 27 Reconstruction of q(x, tn) from the average fluxesQ(n)
i
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Fig. 28 Structure of the solution to the Riemann problem
depicted in a space–time plot

which constitutes a Riemann problem centered at
xi+1/2 between cells Ci and Ci+1 [36]. The solution
to this Riemann problem consists of two shock waves
propagating along the characteristic lines x = ±ct ,
one moving to the left into cell Ci and one moving to
the right into cell Ci+1 as depicted in a space–time plot
in Fig. 28. The shock wave traveling to the left, indi-
cated byW1, propagates at velocity s1 and connects the
state Q(n)

i and the interior state Q∗
i generated by such

shock wave. Moreover, the solution t → q(xi+1/2, t)
is constant over the time interval [tn, tn+1].

The Rankine–Hugoniot jump condition is proven to
hold across any propagating discontinuity [37] which
can be written for the left wave W1 propagating at
velocity s1 and the right waveW2 propagating at veloc-
ity s2:

W1 →
{

s1
(
σ ∗

i − σ
(n)
i

) = −E
(
v∗

i − v
(n)
i

)
,

ρs1
(
v∗

i − v
(n)
i

) = −(
σ ∗

i − σ
(n)
i

)

W2 →
{

s2
(
σ

(n)
i+1 − σ ∗

i+1

) = −E
(
v

(n)
i+1 − v∗

i+1

)
,

ρs2
(
v

(n)
i+1 − v∗

i+1

) = −(
σ

(n)
i+1 − σ ∗

i+1

)
.

(29)

Because ofmaterial continuity, cells Ci and Ci+1 cannot
separate. This requires that the interior states must be
equal across the material interface, Q∗

i+1/2 = Q∗
i+1 =

Q∗
i . By knowing that the shock speeds s1 = −s2 =

−√
E/ρ = −c are known and constants, the interme-

diate state is approximated with q(xi+1/2, t) ≈ Q∗
i+1/2

such that tn � t � tn+1 and can be calculated from
Eq. (29):

Q∗
i+1/2 =

[
σ ∗

i+1/2
v∗

i+1/2

]

= 1

2

[
σ

(n)
i+1+σ

(n)
i + ρc

(
v

(n)
i+1 − v

(n)
i

)
v

(n)
i+1+v

(n)
i + 1

ρc

(
σ

(n)
i+1 − σ

(n)
i

)
]
. (30)

Equation (30) is regarded as the exact solution of
the Riemann problem involving linear elastodynam-
ics [35,38]. The flux approximation in Eq. (26) can be
calculated with the solution of a Riemann problem at
the cell interface as

F(n)
i+1/2 ≈ B

Δt

∫ tn+1

tn
Q∗

i+1/2 dt ≈ BQ∗
i+1/2. (31)

In a nonlinear framework for the local equation, a solu-
tion to the Riemann problem should be approximated
numerically using Riemann solvers [39].

A. 4 Formulation for inner grid cells

Inserting Eq. (31) into Eq. (27) produces the iterative
scheme

Q(n+1)
i = Q(n)

i − Δt

Δx

(
BQ∗

i+1/2 − BQ∗
i−1/2

)
. (32)

Equation (32) describes the evolution in time of the
states of the grid cells Ci . This subsection provides the
formulation for the inner cells, where i = 2, . . . , N −
1. The boundary cells C1 and CN require a different
treatment explained in the next subsection. Expressing
the flux approximation, employing Eq. (31) on the right
side of an inner cell yields

BQ∗
i+1/2=

1

2

[
−E

(
v

(n)
i+1 + v

(n)
i + 1

ρc

(
σ

(n)
i+1 − σ

(n)
i

))
− 1

ρ

(
σ

(n)
i+1 + σ

(n)
i + ρc

(
v

(n)
i+1 − v

(n)
i

))
]

.

(33)

Performing the same operation on the left side of the
cell reads

BQ∗
i−1/2=

1

2

[
−E

(
v

(n)
i + v

(n)
i−1 + 1

ρc

(
σ

(n)
i − σ

(n)
i−1

))
− 1

ρ

(
σ

(n)
i + σ

(n)
i−1 + ρc

(
v

(n)
i − v

(n)
i−1

))
]

.

(34)

Accordingly, the total flux within an inner cell is the
quantity BQ∗

i+1/2 − BQ∗
i−1/2 which when substituted

into Eq. (32) yields
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[
σ

(n+1)
i

v
(n+1)
i

]

=
[
σ

(n)
i

v
(n)
i

]
+ Δt

2Δx

×
[

E
(
v

(n)
i+1 − v

(n)
i−1

) + c
(
σ

(n)
i+1 − 2σ (n)

i + σ
(n)
i−1

)
1
ρc

(
σ

(n)
i+1 − σ

(n)
i−1

) + c
(
v

(n)
i+1 − 2v(n)

i + v
(n)
i−1

)
]

.

(35)

Since the exact solution of a Riemann problem is being
used, WFEM incorporates an appropriate time step
Δt = Δx/c. Then, the stress and velocity of a grid
cell Ci at time tn+1 are calculated as

[
σ

(n+1)
i

v
(n+1)
i

]
= 1

2

[
σ

(n)
i+1 + σ

(n)
i−1 + ρc

(
v

(n)
i+1 − v

(n)
i−1

)
v

(n)
i+1 + v

(n)
i−1 + 1

ρc

(
σ

(n)
i+1 − σ

(n)
i−1

)
]

.

(36)

The above strong assumption is suitable only for 1D
elastodynamics problems, since the wave velocity and
the direction of the propagation is known. Also, such
assumption enforces energy conservation and elimi-
nates numerical dissipation [26]. In the multidimen-
sional framework, even though the waves velocities are
known, thewaves could propagate in various directions
throughout the physical domain.

Equation (36) provides the main equation of the
WFEM and characterizes how the average value Q(n)

i
of q in an inner cell Ci is updated at each time step.
As required by the local conservation law (21) result-
ing from the absence of body forces, the evolution of
the state of the inner cells depends only on the values
of the adjacent cells. WFEM can be seen as the trans-
ference of the whole information embedded in cell Ci

to its adjacent cells at each time step. Employing the
latter approach to obtain the evolution of cell states,
involving discontinuities such as shock and rarefaction
waves, is well known by the Fluid Mechanics commu-
nity employing finite volume methods [36].

A.5 Formulation for boundary grid cells

To compute the state of the boundary grid cells,
the computational domain is extended by including
additional cells on both boundaries, known as ghost
cells [35], whose average values depend on the bound-
ary conditions. This concept is taken from the finite

Fig. 29 Computational space domain with ghost cells

volume methods. Figure 29 depicts ghost cells for a
system discretized using N cells.

Equation (36) can then be used to update the average
value on the boundary cells, which have now become
inner cells. Only a single ghost cell is required at
each boundary because the computation of the aver-
age value depends only on the states of the adjacent
cells. For instance, the fixed–free elastic bar without
the complementarity conditions of contact satisfies the
two boundary conditions u(0, t) = v(0, t) = 0 and
Eu,x (L , t) = σ(L , t) = 0. These conditions are used
to define the average values within the ghost cells as
follows:

At ghost cell C0 :
{

σ0 = σ1

v0 = −v1,

At ghost cell CN+1 :
{

σN+1 = −σN

vN+1 = vN .

(37)

Such average values coincide with the theory of reflec-
tion of elastic waves fromfixed and free boundaries [2],
which states that stress waves reflect from a fixed
boundary with the same sign and from a free boundary
with the changed sign; similarly, velocity waves reflect
from a fixed boundary with an opposite sign and from
a free boundary with the same sign. The evolution of
the average values of the boundary cells, C1 and CN ,
can be calculated by introducing the average values of
Eq. (37) into Eq. (36), yielding for C1:

Q(n+1)
1 = 1

2

[
σ

(n)
2 + σ

(n)
1 + ρc

(
v

(n)
2 + v

(n)
1

)
v

(n)
2 − v

(n)
1 + 1

ρc

(
σ

(n)
2 − σ

(n)
1

)
]

(38)

and for CN :

Q(n+1)
N = 1

2

[
σ

(n)
N−1 − σ

(n)
N + ρc

(
v

(n)
N + v

(n)
N−1

)
v

(n)
N + v

(n)
N−1 − 1

ρc

(
σ

(n)
N + σ

(n)
N−1

)
]

.

(39)
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A.6 WFEM generic algorithm

Altogether, the previous derivations lead to a set of
equations that describe how q is updated in time for
every cell. The different steps are summarized in Algo-
rithm 1. Using Δt = Δx/c it computes, in the frame-
work of linear elastodynamics, the propagation at finite
speed c of a wave and accounts for the reflection con-
ditions at the boundaries. By definition of Δt , the
CFL condition Δt ≤ Δx/c is always satisfied, so the
method is always stable [35,40]. Additionally, because
the global error is proportional to the discretization
steps, the WFEM is first-order accurate in both space
and time [26].

Input: number of elements N , total number of steps nT ,
boundary conditions, initial conditions, density ρ,
wave velocity c

for n = 0 to nT [Time Loop] do
Update time instant: tn = nΔt ;
Compute stress and velocity at cell C1 via Eq. (38);
for i = 2 to N − 1 [Cell Loop] do

Compute stress and velocity in cell Ci via Eq. (36);
end
Compute stress and velocity in cell CN via Eq. (39);

end
Output: stresses, velocities at instants t0, . . . , tnT

Algorithm 1: WFEM Computation procedure

A.7 Matrix formulation

Similar to other numerical methods applied on linear
systems, the WFEM can be rewritten in a convenient
matrix form which facilitates the process of finding
nonsmooth modes of vibration. More specifically, the
state vector of the system Q(n) = [

Q(n)
1 . . .Q(n)

N

]� ∈
R
2N at time tn satisfies the identity2

Q(n) = AQ(n−1), ∀n ≥ 1 (40)

and Q(0) is the initial state. The matrix A gathers stiff-
ness and inertial terms as well as the type of boundary
conditions. It is now derived for the fixed–free BC. In
a matrix form, Eq. (36), which governs the evolution
of inner cells, reads

2 For readability purposes, the transpose signs within brack-
ets are dropped in the definitions of vectors and Q(n) =[
Q(n)�

1 . . .Q(n)�
N

]� is replaced by Q(n) = [
Q(n)

1 . . .Q(n)
N

]�, for
instance.

[
σ

(n+1)
i

v
(n+1)
i

]
= 1

2

[
1 0 1 −ρc 0 ρc

− 1
ρc 0 1

ρc 1 0 1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(n)
i−1

σ
(n)
i

σ
(n)
i+1

v
(n)
i−1

v
(n)
i

v
(n)
i+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(41)

For the boundary cells in Eqs. (38) and (39), the matrix
form follows as

[
σ

(n+1)
1

v
(n+1)
1

]
= 1

2

[
1 1 ρc ρc

− 1
ρc

1
ρc −1 1

]
⎡
⎢⎢⎢⎣

σ
(n)
1

σ
(n)
2

v
(n)
1

v
(n)
2

⎤
⎥⎥⎥⎦ (42)

and

[
σ

(n+1)
N

v
(n+1)
N

]
= 1

2

[
1 −1 ρc ρc

− 1
ρc − 1

ρc 1 1

]
⎡
⎢⎢⎢⎣

σ
(n)
N−1

σ
(n)
N

v
(n)
N−1

v
(n)
N

⎤
⎥⎥⎥⎦ . (43)

Then, the block matrix A ∈ R
2N×2N can be con-

structed using four N × N matrices A1,A2,A3,A4

whose expression can be derived from

AG(a, b, c, d) = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b 0 . . . 0 0 0
c 0 b 0 0 0
0 c 0 0 0 0
...

. . .
. . .

. . .
...

0 0 0 0 b 0
0 0 0 c 0 b
0 0 0 . . . 0 c d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

withA1=AG(−1, 1, 1, 1),A2=ρcAG(−1, 1,−1,−1),
A3 = AG(1, 1,−1, 1)/ρc, and A4 = AG(1, 1, 1,−1).
Then, block matrix A is written as

A =
[
A1 A2

A3 A4

]
. (45)

Another matrix A can be constructed in the same way
for the fixed–fixed BC. Finally, the unknown Q(n) can
be directly expressed in terms of the initial conditions
Q(0) from Eq. (40) by
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Q(n) = AnQ(0) (46)

where An is known for each type of BC.

Appendix B: Treatment of unilateral contact in
WFEM

The unilateral contact constraints involved in the for-
mulation are enforced using the concept of floating
boundary conditions [26] which can be regarded as
a conditional switch between fixed–free and fixed–
fixed boundary conditions [41] when a penetration is
detected during a time iteration, as illustrated in Fig. 30.
In the continuous framework, these two boundary con-
ditions are

– Fixed–free BC (inactive contact)

u(0, t) = v(0, t) = 0, Eu,x (L , t) = σ(L , t) = 0

(47)

– Fixed–fixed BC (active contact)

u(0, t) = v(0, t) = 0, u(L , t) = g0 → v(L , t) = 0.

(48)

The gap function g(u(L , t)), which is a function of the
displacement u(L , t), but not an explicit function of t ,
is discretized in time to calculate a possible penetration
of the bar as

g(n) = g0 − u(n)
N+1/2 (49)

(a)

(b)

Fig. 30 Conditional switch for contact treatment in WFEM. a
Inactive contact. b Active contact

where u(n)
N+1/2 is the displacement of the contacting

interface which can be calculated by numerically inte-
grating strains of the bar u(n)

,x at time tn . This equality is
used at each time step to checkwhether contact is active
during the next iteration: if g(n) > 0, a free boundary
condition is enforced while if g(n) � 0, a fixed bound-
ary condition is considered via the change of matrix
A.

Based on the theory of reflection of elastic waves
from boundaries [2], the state of the ghost cell CN+1 is
updated as follows

– Active contact [g(n) � 0]

{
σN+1 = σN

vN+1 = −vN
(50)

– Inactive contact [g(n) > 0]

{
σN+1 = −σN

vN+1 = vN
(51)

Equation (36) is subsequently used to calculate the evo-
lution of the average values inside the boundary cellCN ,
as detailed in Sect. 1. Additionally, the contact force
r (n) is calculated by employing Eq. (30):

r (n) = S(
σ

(n)
N − ρcv(n)

N

)
. (52)

The sign of this quantity is tracked to locate the time
of release, when the bar returns to free condition at
x = L . Algorithm 1 is modified to include the floating
boundary conditions as described in Algorithm 2.

From the matrix formulation of the WFEM in
Eq. (40), twomatricesA shall then be distinguished:Af

for the fixed–free condition (no contact) andAc for the
fixed–fixed condition (contact). Both matrices embed
the same stiffness and inertial terms of the system of
interest; the only unshared information are the bound-
ary conditions. To summarize, the developed WFEM
with floating boundary conditions is a numerically con-
servative and stable scheme able to properly propagate
shock waves induced by a switch in the boundary con-
ditions, the latter being governed by complementarity
constraints.
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Input: number of elements N , number of steps nT ,
boundary and initial conditions, density ρ, wave
velocity c

for n = 0 to nT [Time Loop] do
Discrete time instant, tn = nΔt ;
Compute stress and velocity at cell C1 via Eq. (38);
for i = 2 to N − 1 [Element Loop] do

Compute stress and velocity at cell Ci via Eq. (36);
end
— floating boundary conditions —
if g(n) = 0 then

Switch to fixed boundary condition at xN+1/2;
Compute contact stress r (n) via Eq. (52);
if r (n) > 0 then

Switch to free boundary condition at xN+1/2;
Compute gap g(n+1);
Compute stress and velocity in cell CN via
Eq. (39);

else
Keep fixed boundary condition at xN+1/2;
Compute stress and velocity in cell CN via
Eq. (39);

end
else

Keep free boundary condition at xN+1/2;
Compute gap g(n+1) and stress and velocity at cell
CN via Eq. (39);

end
— end of floating boundary conditions —

end
Output: stresses, velocities, contact force at instants

t0, . . . , tnT

Algorithm 2: Procedure with unilateral contact con-
ditions
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