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Abstract In this paper, a new unified kinematic
description, obtained from Bezier geometry using lin-
ear mapping and position vector gradients associ-
ated with three independent parameters, is used to
develop large displacement plate/shell finite elements
(FE). Contrary to the conventional FE method, in the
approach developed in this paper based on the absolute
nodal coordinate formulation (ANCF), no distinction
is made between plate and shell structures. The pro-
posed ANCF triangular plate/shell elements have 12
coordinates per node: three position coordinates and
nine position gradient coordinates that define vectors
tangent to coordinate lines at the nodes. The funda-
mental differences between the conventional FE and
the new ANCF parameterizations are highlighted. In
this investigation, twodifferent parameterizations, each
of which employs independent coordinates, are used.
In the first parameterization, called volume parame-
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terization, coordinate lines along the sides of the tri-
angular element in the straight (un-deformed) con-
figuration are used in order to facilitate the devel-
opment of closed-form cubic shape functions. In the
second parameterization, called Cartesian parameter-
ization, coordinate lines along the global axes of the
structure (body) coordinate system are used to facili-
tate the element assembly. The element transformation
between the volume and the Cartesian parameteriza-
tions is developed and used to define the structure iner-
tia and elastic forces. Three new fully parameterized
ANCF triangular plate/shell elements are developed in
this investigation: a four-node mixed-coordinate ele-
ment (FNMC) and two three-node elements (TN1 and
TN2). All the elements developed in this investigation
lead to a constant mass matrix and zero Coriolis and
centrifugal forces. A non-incremental total Lagrangian
procedure is used for the numerical solution of the non-
linear equations of motion. The performance of the
proposed ANCF triangular plate/shell elements is ana-
lyzed by comparison with the ANCF rectangular plate
element and conventional three-node linear (TNL) and
six-node quadratic (SNQ) triangular plate elements.

Keywords Flexible multibody system dynamics ·
Absolute nodal coordinate formulation · Isoparametric
ANCF finite elements · ANCF fully parameterized
triangular plate elements · Rotation, strain, and stress
continuity conditions

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-4008-x&domain=pdf


2172 C. M. Pappalardo et al.

1 Introduction

In this section, a brief literature review of conventional
plate and shell finite elements, the features of ANCF
plate/shell elements that distinguish them from conven-
tional elements, and the goal, scope, and contributions
of this investigation are discussed.

1.1 Literature review

In the conventional FE, structural mechanics, and
vibration theory formulations; plates and shells are
described using different geometric approaches and
different displacement fields [1–27]. Noor provided a
comprehensive survey of books and monographs on
plate and shell elements [1]. Reddy presented a unified
treatment of plates and shell elements commonly used
in aerospace, automotive, and civil engineering appli-
cations [2]. Armenakas et al. [3] used plate and shell
elements to study the vibration of thin-walled struc-
tures subjected to severe dynamic loading conditions.
Ashwell and Gallagher edited a series of conference
papers on the FE theory of plate and shell elements and
discussed the meshing algorithms for modeling curved
geometry [4]. Axelrad used a local approach for the
stability analysis of plate/shell large deformations [5].
Bieger used analytical methods based on series expan-
sions to investigate circular cylindrical shells subjected
to concentrated loads [6]. Billington studied complex
three-dimensional shell structures [7], while Brush et
al. [8] examined the buckling and stability of bar,
plate, and shell elements using energy methods. Calla-
dine investigated the coupling between the bending
and stretching of shell structures under static loading
[9]. Cox analyzed the buckling of plate and shell ele-
ments using continuum mechanics and energy meth-
ods [10]. Dym discussed important elasticity prob-
lems applicable to shell theory [11], while Flugge ana-
lyzed both plate and shell elements using modern ana-
lytical and computational methods [12]. Gould stud-
ied thin shell structures using a new FE approach for
modeling curved geometric shapes [13–15]. Heyman
investigated the static equilibrium of thin shell struc-
tures with complex curved geometry [16]. Hinton and
Owen developed a computer program for the FE solu-
tion of static and dynamic problems of thin plate and
shell structures considering elastoplastic and geomet-
rically nonlinear anisotropic effects [17]. Huang devel-

oped an FE software for the static and dynamic anal-
yses of plate and shell structures using an approach
designed for alleviating shear and membrane locking
that occurs in degenerated Mindlin curved elements
[18]. Hughes and Hinton discussed the plate and shell
element technology for developing efficient computa-
tional algorithms [19,20]. Kelkar and Sewell exam-
ined fundamental analysis and design issues related to
shell structures [21]. Kratzig and Onate edited a series
of conference papers on the nonlinear dynamics and
the computational mechanics of plate and shell struc-
tures [22]. Kraus studied the load-carrying capacity and
analyzed the dynamic behavior of thin shell structures
[23]. Kuhn examined the stresses of aircraft shell struc-
tures using analytical and computational methods [24].
Timoshenko andWoinowsky-Krieger made significant
contributions to the development of plate/shell theory
of elasticity [25]. Ugural studied the stresses in the case
of small and large deformations of plate and shell struc-
tures [26]. Werner investigated the complex vibration
behavior of plates, shells, curved membranes, rings,
and thin structures by using both classical and compu-
tational methods [27].

In the classical FE theory, distinction is alwaysmade
between plates and shells, and shell geometry cannot
be systematically obtained from conventional plate ele-
ment geometry because of the nature of the nodal coor-
dinates and/or polynomial interpolations used. Use of
infinitesimal rotations that impose restriction on the
magnitude of rotations, employing vector transforma-
tions that differ from the transformations used for the
gradients required to properly create accurate geom-
etry, and/or treatment of the slopes as vectors and not
strictly as gradients are among the reasons that arbitrary
initially curved shell geometry cannot be systemati-
cally obtained from conventional plate elements. These
geometric restrictions can be alleviated by using con-
trol points as in the case of computational geometry
methods or by using position vector gradients with the
proper gradient tensor transformation in order to cor-
rectly capture discontinuities.

1.2 Plate/shell elements

It is the objective of this study to introduce a newunified
approach, based on the absolute nodal coordinate for-
mulation (ANCF), for modeling three-dimensional tri-
angular plate/shell structures using the samegeometric
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representation and same displacement field. The pro-
posed ANCF triangular plate/shell elements allow for
correctly capturing finite rotations, large deformations,
and complex geometry that cannot be easily captured
using the conventional FE methods; some of which
employ infinitesimal rotations as nodal coordinates.
Capturing large displacements and complex geometry
is necessary for accurate analysis of both structural
and multibody system (MBS) applications [28–43].
MBS computational challenges, in particular, can be
addressed usingANCFelements that impose no restric-
tions on the amount of rotation or deformation within
the element, lead to a constant mass matrix and zero
centrifugal and Coriolis forces, correctly account for
the dynamic coupling between the rigid-body motion
and the elastic deformation, and allow for using a non-
incremental procedure for the numerical solution of
the equations of motion [44]. In recent years, several
ANCFelements have been proposed, validated numeri-
cally and experimentally, and successfully used inmod-
eling complex MBS applications [45–57].

1.3 Conventional plate elements

Although a large number of quadrilateral plate and shell
elements have been proposed in the conventional FE
and ANCF literature [58–60], these rectangular ele-
ments are not suitable for meshing complex geometry
with irregular shapes, and therefore, the development
of triangular plate/shell elements becomes necessary.
Conventional planar and spatial triangular plate ele-
ments are widely used for solving static and dynamic
problems [61]. Furthermore, the availability of several
automatic meshing algorithms facilitates the develop-
ment of complex and high fidelity triangular meshes.
Another important reason for the popularity of the tri-
angular elements in the analysis of machines and struc-
tures is the possibility of performing mesh refinements
in regions of stress concentrations that are of particu-
lar interest in the FE durability analysis. In structural
mechanics, several types of triangular plate elements
having transversal gradients as extensible directors are
available [62]. While extensible directors are not often
treated as position vector gradients throughout the solu-
tion algorithms, two conventional triangular plate ele-
ments are of particular interest in this investigation and
can be distinguished according to their order of inter-
polation. These triangular plate elements are the three-

node linear (TNL) element and the six-node quadratic
(SNQ) element. The shape functions of the TNL and
SNQ triangular plate elements are presented in the
Appendix of the paper. An interesting property of the
triangular plate elements that are based on transver-
sal slopes is the fact that their kinematic description
allows using a complete set of polynomial functions for
the definition of the basis functions expressed in terms
of dependent dimensionless volume coordinates with
additional linear basis functions expressed in terms of
dimensionless thickness coordinate. For a given order
of interpolation, this important feature ensures the exis-
tence of a linear mapping between the Bezier triangu-
lar basis functions and the triangular element shape
functions. In this investigation, three new ANCF fully
parameterized plate/shell elements are developed using
the simple geometric concepts introduced in this sec-
tion.

1.4 ANCF plate elements

In recent years, several ANCF triangular plate elements
have been proposed. Using a set of basis functions
originally developed by Specht and Morley [63,64],
Dmitrochenko and Mikkola proposed two new ANCF
triangular plate elements by considering an incomplete
set of cubic shape functions [65]. The first triangular
plate element developedbyDmitrochenko andMikkola
is based on the basis functions proposed by Specht
and employs constant coefficients which depend on the
geometry of the particular triangular plate element con-
sidered [63]. This ANCF triangular plate element can
effectively describe large deformations but it can be
inefficient for large meshes because the pre-evaluation
of the element shape functions at the Gauss quadra-
ture nodes must be repeated for each element in the
triangular mesh, resulting in an increased computa-
tional cost. The second triangular plate element devel-
oped by Dmitrochenko and Mikkola is based on the
basis functions proposed by Morley and employs as
nodal coordinates absolute displacement vectors and
a particular set of slope vectors normal to the sides
of the triangular plate element leading to a set of non-
conformal shape functions [64]. Because this triangular
plate element produces meshes that are non-conformal
along the element sides, it can introduce significant
errors in predicting large deformations [66]. A new
fully parameterizedANCF triangular plate elementwas
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also proposed byMohamed in order to capture the plate
thickness deformation as well as the transversal shear
deformation [67]. In the ANCF triangular plate ele-
ment proposed by Mohamed, three additional shape
functions were added to the nine shape functions of
the ANCF thin triangular plate element proposed by
Dmitrochenko andMikkola [65]. Olshevskiy et al. [68]
proposed two new types of three- and four-node pla-
nar plate elements obtained from spatial ANCF plate
elements. Dmitrochenko and Pogorelov [69] proposed
a way to generate new ANCF rectangular and trian-
gular elements employing displacement fields of con-
ventional elements used in structural mechanics. How-
ever, all theANCF triangular plate elements cited above
were developed using a kinematic representation based
on the conventional triangular plate elements, and have
complex shape function expressions. Furthermore, the
shape functions of some of these elements are not
reported in a compact closed-formand numericalmeth-
ods were used for their evaluation [70].

In addition to the triangular plate elements obtained
from the conventional elements, Chang et al. [71]
proposed three new ANCF triangular shell elements
based on Bezier triangular patches. These ANCF tri-
angular elements were referred to as the thin tri-
angular shell element, the low-order thick triangu-
lar shell element, and the high-order thick triangular
shell element. Because, in this case, the basis func-
tions are independent of the nodal Cartesian coordi-
nates in the parametric domain, concise expressions
for the shape functions are obtained compared with
the triangular elements obtained from the conventional
finite elements. However, in the kinematic description
of the triangular plate elements proposed by Chang
et al. [71], the geometric interpretation of the gra-
dient vectors associated with the parametric coordi-
nates is not obvious. Furthermore, only geometric con-
tinuity associated with the tangential direction of the
element position field can be imposed at the element
interfaces, and consequently, the structural continuity
of the position vector gradients cannot be enforced
leading to discontinuous strains and stresses at the
mesh interface nodes. Recently, new types of planar
ANCF triangular elements and spatial ANCF tetrahe-
dral elements with closed-form shape function expres-
sions were developed starting with Bezier basis func-
tions [72,73]. Using a new approach, the geometric
interpretation of the ANCF position vector gradients
is utilized in order to facilitate the development of

closed-form shape function expressions for these new
elements.

1.5 Scope of this investigation

The main goal of this paper is to address challenges
associated with the geometric description of the three-
dimensional triangular plate elements, propose new
ANCF triangular plate/shell elements that differ from
the ones presented in the literature, and evaluate the
performance of these new elements by comparing with
existing conventional and ANCF elements. As shown
in this paper, complete cubic polynomials of the tri-
angular plate elements have thirty-nine coefficients, or
equivalently thirteen Bezier control points. Therefore,
in addition to the position and gradient coordinates, the
use of internal middle surface nodes and/or curvature
coordinates is required to formulate an ANCF triangu-
lar plate element based on a complete set of polynomial
basis functions. On the other hand, a lower-order tri-
angular plate element with position and gradient nodal
coordinates can be systematically developed by apply-
ing linear constraint equations. These constraint equa-
tions allow identifying dependent variables and reduc-
ing the number of the element coordinates. Alterna-
tively, an incomplete cubic polynomial representation
can be employed from the outset for obtaining a lower-
order triangular plate element that employs only posi-
tion and gradient coordinates as nodal coordinates. In
this study, these two systematic approaches are used
for developing two new lower-order ANCF triangular
plate elements and a new high-order ANCF triangular
plate element based on Bezier geometry. Specifically,
three new ANCF fully parameterized triangular plate
elements are developed in this investigation; an ANCF
four-node mixed-coordinate triangular plate element
(FNMC), a three-node triangular plate element (TN1)
obtained from the FNMC element by imposing a set of
linear algebraic equations, and another three-node tri-
angular plate element (TN2) obtained by using incom-
plete polynomials from the outset. All the proposed
ANCF triangular plate elements are based on a full
parameterization; have global nodal positions and gra-
dient coordinates; ensure continuity of displacement,
gradient, and rotation fields at the nodes; allow for eas-
ily creating arbitrary shell geometry by simply chang-
ing the values of the nodal coordinates in the refer-
ence stress-free configuration; and have geometry that
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is related to B-spline and NURBS (non-uniform ratio-
nal B-splines) by a linear mapping [74]. The perfor-
mance of the elements developed in this investigation
is also evaluated by comparing their results and con-
vergence characteristics with those of the previously
developed conventional linear and quadratic triangular
plate elements and the ANCF fully parameterized rect-
angular plate element available in the general purpose
MBS software SIGMA/SAMS.

The structure and organization of this paper are as
follows. In Sect. 2, the volume and Cartesian parame-
terizations used in this investigation to obtain compact
and closed-form shape function expressions and to sys-
tematically assemble themesh elements are introduced.
The coordinate transformation between the volume and
Cartesian gradients is developed in Sect. 3. In Sect. 4,
the position field of the new ANCF/FNMC triangular
plate element is obtained from a complete cubic Bezier
interpolation. In Sect. 5, the lower-order ANCF/TN1
element shape functions are derived by imposing linear
constraints on the center node of theANCF/FNMCele-
ment. In Sect. 6, the lower-order ANCF/TN2 element
shape functions are directly obtained from an incom-
plete set of cubic basis functions. The isoparametric
properties of the proposed ANCF triangular plate ele-
ments are discussed in Sect. 7. In Sect. 8, the proce-
dure for developing the equations of motion of the pro-
posed ANCF elements is described. In Sect. 9, numer-
ical results obtained using different types of triangular
plate elements are analyzed and compared in order to
evaluate the performance and convergence of the pro-
posed elements. In Sect. 10, summary and conclusions
of this investigation are provided.

2 Element parameterization

The continuum mechanics position vector gradients,
defined by differentiation of the position vector field
with respect to parameters (fibers or coordinate lines),
play a fundamental role in the developments presented
in this paper. In order to understand the fundamental
differences between the triangular plate and shell ele-
ments used in the conventional FE literature and the
ANCF fully parameterized triangular plate elements
developed in this study, the conventional FE coordinate
parameterization is analyzed in details in this section.
To this end, a set of coordinate lines associated with the
material fibers of a continuum defined by theCartesian

Fig. 1 Triangular plate element geometry

parameters x = [
x y z

]T
is considered. One can show

that the position field of a three-dimensional continuum

r (x, t) =[
r1 r2 r3

]T
can be written as follows:

r=r(x, y, z)=[
r1(x, y, z) r2(x, y, z) r3(x, y, z)

]T

(1)

The use of the Cartesian parameterization is necessary
to assemble triangular plate elements having gradient
vectors as nodal coordinates. On the other hand, it is
more convenient to use other dimensionless parameters
for describing the element geometry. For this purpose,
consider an arbitrary triangular plate element whose
corner nodes are ordered counterclockwise and labeled
1, 2, and 3, as shown in Fig. 1. The positions of the ele-
ment vertices, located on the element mid-surface, are
defined in the global coordinate system by the vectors

vk = [
xk yk zk

]T
, k = 1, 2, 3, with xk, yk , and zk

are the Cartesian coordinates at vertex k of the triangu-
lar plate element. The Cartesian coordinates x and the
element corner node position vectors vk, k = 1, 2, 3
are defined in the same global coordinate system. The
vector x can be written in terms of four dimensionless
volume coordinates ξ= [

ξ η ζ χ
]T

as

x=x(ξ)=[
x(ξ, η, ζ, χ) y(ξ, η, ζ, χ) z(ξ, η, ζ, χ)

]T

(2)

As shown in Fig. 1, while the first three dimensionless
volumecoordinates ξ, η, and ζ define the coordinates of
an arbitrary point on the plate mid-surface, the fourth
dimensionless volume coordinate χ defines the loca-
tion of an arbitrary plate surface from the mid-surface.
It should be noted that the volume coordinates ξ, η, and
ζ , associated with the continuum coordinate lines, are
not independent parameters. The dimensionless coor-
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Fig. 2 Triangular plate element coordinate lines. a Triangular plate element coordinate lines ξ . b Triangular plate element coordinate
lines η. c Triangular plate element coordinate lines ζ . d Triangular plate element coordinate lines χ

dinates are related by the following algebraic equation
[58,61,62]:

ξ + η + ζ = 1 (3)

As shown in Fig. 2, each of the dimensionless volume
coordinates ξ, η, and ζ ranges from zero to one, while
the dimensionless volume coordinate χ ranges from
−1 to +1. The coordinates ξ, η, and ζ form straight
lines normal to the sides of the triangular plate element,
whereas the coordinate χ forms straight lines orthog-
onal to the mid-surface of the element. Furthermore,
for a general triangular plate element, the contour lines
(isolines) are normal to the coordinate lines ξ, η, and
ζ , while a set of contour planes (isoplanes) is associ-
atedwith the dimensionless coordinateχ . The equation
ξ = c, for example, describes a set of straight lines par-
allel to the triangular plate side identified by the vertices
2 and 3. Similar comments applies to the dimension-

less volume coordinates η and ζ , as shown in Fig. 3.
On the other hand, χ = c can be geometrically inter-
preted as a set of straight planes called contour planes
(isoplanes) parallel to the triangular plate mid-surface
identified by the vertices 1, 2, and 3, as shown in Fig. 3.
Let P be an arbitrary point inside the triangular plate
whose vertices are relabeled for convenience as A, B,
and C , which correspond to the vertex numbers 1, 2,
and 3, respectively, as shown in Fig. 4, where � is the
volume of the triangular plate element, and �1,�2,
and �3 represent the volumes of the three triangular
plates PBC, PCA, and PAB. The first three volume
coordinates ξ, η, and ζ can be written, respectively, as
ξ = �1/�, η = �2/�, and ζ = �3/�. Furthermore,
considering a triangular plate element of thickness W ,
one can define a transversal director vector w orthog-
onal to the triangular plate mid-surface in the straight
(un-deformed) configuration as follows:
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Fig. 3 Triangular plate element isolines and isoplanes. a Triangular plate element isolines ξ . b Triangular plate element isolines η. c
Triangular plate element isolines ζ . d Triangular plate element isoplanes χ

Fig. 4 Triangular plate element volume coordinates

w = W

2

v2,1 × v3,1∣
∣v2,1 × v3,1

∣
∣ (4)

where v2,1 = v2 − v1, v3,1 = v3 − v1, and vk, k =
1, 2, 3 are the global position vectors of the triangu-
lar plate corner nodes. It is important to note that

transversal directors used in the FE literature do not
always represent position vector gradients, and the
cross product of two position vector gradients does
not in general lead to another position vector gradi-

ent. The Cartesian coordinates x = [
x y z

]T
and the

volume coordinates ξ = [
ξ η ζ χ

]T
are related by

x = ξv1 + ηv2 + ζv3 + χw, or equivalently:

x = x1ξ + x2η + x3ζ + w1χ

y = y1ξ + y2η + y3ζ + w2χ

z = z1ξ + z2η + z3ζ + w3χ

⎫
⎬

⎭
(5)

where xk, yk , and zk represent the Cartesian coordi-
nates of the triangular plate vertex k and wi , i =
1, 2, 3 are the Cartesian components of the transver-
sal director vector w. One can show, using Eq. 5, that
the mid-surface triangular plate element corner nodes
(x1, y1, z1) , (x2, y2, z2), and (x3, y3, z3) correspond
to the volume coordinates (1, 0, 0, 0) , (0, 1, 0, 0), and
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(0, 0, 1, 0), respectively. Using Eqs. 3 and 5, one can
write
⎡

⎢⎢
⎣

1
x
y
z

⎤

⎥⎥
⎦ = x̄ =

⎡

⎢⎢
⎣

1 1 1 0
x1 x2 x3 w1

y1 y2 y3 w2

z1 z2 z3 w3

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

ξ

η

ζ

χ

⎤

⎥⎥
⎦ = Vξ (6)

where x̄ = [
1 x y z

]T
, while V is the 4 × 4 matrix

V =

⎡

⎢⎢
⎣

1 1 1 0
x1 x2 x3 w1

y1 y2 y3 w2

z1 z2 z3 w3

⎤

⎥⎥
⎦ (7)

The inverse representation is ξ = V−1x̄, where

V−1 = 1

V

⎡

⎢⎢
⎣

C1 L1,1 L1,2 L1,3

C2 L2,1 L2,2 L2,3

C3 L3,1 L3,2 L3,3

C4 L4,1 L4,2 L4,3

⎤

⎥⎥
⎦ , (8)

V denotes the volume of the triangular plate ele-
ment, which is equal to the determinant of the vertex
matrixV, and the constant coefficientsC1,C2,C3,C4,

L1,1, L1,2, L1,3, L2,1, L2,2, L2,3, L3,1, L3,2, L3,3, L4,1,

L4,2, and L4,3 are the cofactors of the vertex matrix V.
The equation ξ = V−1x̄ leads to

ξ = 1
V

(
C1 + L1,1x + L1,2y + L1,3z

)
,

η = 1
V

(
C2 + L2,1x + L2,2y + L2,3z

)
,

ζ = 1
V

(
C3 + L3,1x + L3,2y + L3,3z

)
,

χ = 1
V

(
C4 + L4,1x + L4,2y + L4,3z

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(9)

It follows that

rx = ∂r
∂x = ∂r

∂ξ
∂ξ
∂x + ∂r

∂η
∂η
∂x + ∂r

∂ζ
∂ζ
∂x + ∂r

∂χ
∂χ
∂x

= 1
V

(
rξ L1,1 + rηL2,1 + rζ L3,1 + rχ L4,1

)

ry = ∂r
∂y = ∂r

∂ξ
∂ξ
∂y + ∂r

∂η
∂η
∂y + ∂r

∂ζ
∂ζ
∂y + ∂r

∂χ
∂χ
∂y

= 1
V

(
rξ L1,2 + rηL2,2 + rζ L3,2 + rχ L4,2

)

rz = ∂r
∂z = ∂r

∂ξ
∂ξ
∂z + ∂r

∂η
∂η
∂z + ∂r

∂ζ
∂ζ
∂z + ∂r

∂χ
∂χ
∂z

= 1
V

(
rξ L1,3 + rηL2,3 + rζ L3,3 + rχ L4,3

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

This equation can be written compactly as
[
rx ry rz

] = 1

V

[
rξ rη rζ rχ

]

×

⎡

⎢⎢
⎣

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

L4,1 L4,2 L4,3

⎤

⎥⎥
⎦ = 1

V

[
rξ rη rζ rχ

]
N (11)

In this equation N is

N =

⎡

⎢
⎢
⎣

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

L4,1 L4,2 L4,3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

nT1
nT2
nT3
nT4

⎤

⎥
⎥
⎦ (12)

In the straight (un-deformed) configuration, it can be

shown that the vectors n1 = [
L1,1 L1,2 L1,3

]T
,n2 =

[
L2,1 L2,2 L2,3

]T
, and n3 = [

L3,1 L3,2 L3,3
]T

are
normal to the triangular plate sides opposite to the
triangular plate vertices 1, 2, and 3, respectively,

while the vector n4 = [
L4,1 L4,2 L4,3

]T
is a vec-

tor normal to the triangular plate mid-surface. As
mentioned before, the dependent volume coordinate
lines ξ, η, and ζ are normal to the element sides,
while the independent volume parameter χ is nor-
mal to the plate mid-surface, as it is clear from
Eq. 9. For example, using Eq. 9, one can write dξ =(
L1,1dx + L1,2dy + L1,3dz

)
/V = nT1 dx/V , which

represents an infinitesimal change of the dimension-
less volume parameter ξ . Since an infinitesimal change
of ξ can be expressed as dξ = nT1 dx/V , the pro-

jection of the Cartesian vector dx = [
dx dy dz

]T

along the vector n1 = [
L1,1 L1,2 L1,3

]T
is given

by dξ and is orthogonal to the element side defined
by the vertices 2 and 3. Similar comments apply to
the dimensionless volume coordinates η and ζ . On
the other hand, using Eq. 9 one can write dχ =(
L4,1dx + L4,2dy + L4,3dz

)
/V = nT4 dx/V , which

represents an infinitesimal change of the volume
parameter χ . Since one can write χ in terms of the
vectors n4 and dx as dχ = nT4 dx/V , the projection

of the Cartesian vector dx = [
dx dy dz

]T
along the

vector n4 = [
L4,1 L4,2 L4,3

]T
is given by dχ and is

orthogonal to the element middle surface. Therefore,
using Eqs. 9 and 12, one can write dξ = Ndx/V ,
which demonstrates that the infinitesimal change dξ
can be defined using the product of N and dx. Because
the vectors n1,n2, and n3 that form the rows of N are
normal to the element faces, n4 is normal to the ele-
ment mid-surface, the volume coordinate lines ξ, η,
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Use of independent volume parameters 2179

and ζ are normal to the element sides, and χ is along a
direction normal to the element mid-surface; the gradi-
ents rξ , rη, rζ , and rχ , tangent to the coordinate lines
ξ, η, ζ , and χ , are normal to the element sides associ-
ated with ξ, η, and ζ , and to the element mid-surface
associated with χ , respectively. As will be discussed in
Sect. 3, special definitions of the corner node coordinate
lines will be used to facilitate the element assembly.

3 Position vector gradient transformations

In order to be able to use a standard FE assembly pro-
cedure with the proposed ANCF triangular plate mesh,
a new set of volume parameters must be used to define
volume gradient vectors parallel to the triangular plate
sides. To be able to develop these position vector gra-
dients, a different geometric definition of the volume
coordinate lines is obtained by using the algebraic con-
straint equation ξ +η+ζ = 1 to eliminate a dependent
volume parameter at each of the three element nodes.

3.1 Node parameterization

Consider the first triangular element node, denoted as
node 1 and shown in Fig. 1. The first dimensionless
volume coordinate ξ can be written as a linear function
of the other two independent volume coordinates ηi
and ζi as ξ = 1 − ηi − ζi , where the subscript i refers
to independent parameters. The volume parameter χ ,
on the other hand, is always considered an independent
parameter denoted as χi . Eliminating ξ from Eq. 5, one
obtains

x = v1+ηi (v2 − v1) +ζi (v3 − v1)+ χiw

= v1+ηiv2,1+ζiv3,1+χiw (13)

where v2,1 = v2−v1 and v3,1 = v3−v1. Equivalently,
the preceding equation can be written as

x = x1 + ηi a2,1 + ζi a3,1 + χiw1

y = y1 + ηi b2,1 + ζi b3,1 + χiw2

z = z1 + ηi c2,1 + ζi c3,1 + χiw3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(14)

where
a2,1 = x2 − x1, a3,1 = x3 − x1,
b2,1 = y2 − y1,
b3,1 = y3 − y1, c2,1 = z2 − z1,
c3,1 = z3 − z1

⎫
⎪⎪⎬

⎪⎪⎭
(15)

It is important to observe the change of the geomet-
ric meaning of the volume parameters as the result of
substituting Eq. 3 into Eq. 5. For instance, as shown
in Fig. 5, when ξ is eliminated because of the con-
straint equations between the element volume coordi-
nates, the geometric interpretation of the independent
volume parameters ηi and ζi changes. This important
geometric concept is also described by the equation
x = v1 + ηiv2,1 + ζiv3,1 + χiw. In this case, ηi coor-
dinate lines are a set of straight lines parallel to the
element side defined by the vertices 2 and 1 (2–1 side),
whereas the ζi coordinate lines are straight lines paral-
lel to the 3 - 1 side. On the other hand, the χi coordi-
nate lines are always a set of straight lines orthogonal to
themid-surface of the plate. Therefore, an infinitesimal
change in the Cartesian parameter vector x is the result
of infinitesimal changes in the independent ηi , ζi , and
χi volume parameters along, respectively, the vectors
v2,1, v3,1, and w, which can also be made unit vectors.
At the first node, a constant transformation between
the volume gradient vectors rηi , rζi , and rχi , and the
Cartesian gradient vectors rx , ry , and rz can be written
as

rηi = ∂r
∂ηi

= ∂r
∂x

∂x
∂ηi

+ ∂r
∂y

∂y
∂ηi

+ ∂r
∂z

∂z
∂ηi

= rxa2,1 + ryb2,1 + rzc2,1

rζi = ∂r
∂ζi

= ∂r
∂x

∂x
∂ζi

+ ∂r
∂y

∂y
∂ζi

+ ∂r
∂z

∂z
∂ζi

= rxa3,1 + ryb3,1 + rzc3,1

rχi = ∂r
∂χi

= ∂r
∂x

∂x
∂χi

+ ∂r
∂y

∂y
∂χi

+ ∂r
∂z

∂z
∂χi

= rxw1 + ryw2 + rzw3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

By including the position coordinates, the preceding
equation can be written as

r = r

rηi = rxa2,1 + ryb2,1 + rzc2,1

rζi = rxa3,1 + ryb3,1 + rzc3,1

rχi = rxw1 + ryw2 + rzw3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(17)

The nodal coordinates at the first node in terms of
the volume and Cartesian gradients given by ē1 =[(
r1

)T (
r1ηi

)T (
r1ζi

)T (
r1χi

)T ]T
, and p̄1 =

[(
r1

)T

(
r1x

)T (
r1y

)T (
r1z

)T ]T
, respectively, are related by ē1 =

T̄1p̄1. In this equation, T̄1 is a 12× 12 square transfor-
mation matrix defined as
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2180 C. M. Pappalardo et al.

Fig. 5 Triangular plate element gradients. a Volume and Carte-
sian gradients of the triangular plate element first node. bVolume
and Cartesian gradients of the triangular plate element second

node. c Volume and Cartesian gradients of the triangular plate
element third node

T̄1 =

⎡

⎢⎢
⎣

I O O O
O a2,1I b2,1I c2,1I
O a3,1I b3,1I c3,1I
O w1I w2I w3I

⎤

⎥⎥
⎦ , (18)

and I is the 3 × 3 identity matrix. Using the Carte-
sian nodal coordinates allows performing a standard FE
assembly.On the other hand, using the independent vol-
ume parameterization, the vector of Cartesian coordi-
nates can bewritten as x = v1+ηiv2,1+ζiv3,1+χiw =
v1 + η̄i v̂2,1 + ζ̄i v̂3,1 + χ̄i ŵ, where η̄i = ηi

∣∣v2,1
∣∣ , ζ̄i =

ζi
∣∣v3,1

∣∣ , χ̄i = χi |w| , v̂2,1 = v2,1/
∣∣v2,1

∣∣, v̂3,1 =
v3,1/

∣∣v3,1
∣∣, and ŵ = w/|w|. Therefore, an infinites-

imal change in the Cartesian coordinates x is due to
infinitesimal changes in the independent volume coor-
dinates η̄i , ζ̄i , and χ̄i . These independent infinitesimal
changes are, respectively, along the three unit vectors
v̂2,1, v̂3,1, and ŵ which are not necessarily orthogo-
nal unit vectors. The Cartesian gradients associated
with the element straight (un-deformed) configura-

tion are rx = [
1 0 0

]T
, ry = [

0 1 0
]T
, and rz =

[
0 0 1

]T
. Therefore, one can write

[
rη̄i rζ̄i

rχ̄i

] =[
∂x/∂η̄i ∂x/∂ζ̄i ∂x/∂χ̄i

] = [
v̂2,1 v̂3,1 ŵ

]
since it

can be shown that rη̄i = v̂2,1, rζ̄i
= v̂3,1, and rχ̄i = ŵ.

This equation demonstrates that, in the straight (un-
deformed) configuration, the volume gradients are tan-
gent to the element sides that intersect at node 1 and
to the normal of the plate mid-surface, respectively, as
shown in Fig. 5. As previously discussed, the dimen-
sionless coordinates ηi and ζi are independent volume
parameters which can be geometrically interpreted as
coordinate lines associated with straight lines parallel
to the element sides. Therefore, the geometric mean-
ing of the independent volume parameters used in this
investigation is different from the geometric interpre-
tation of the redundant parameters used in the con-
ventional FE literature. Applying the same procedure
for nodes 2 and 3, by writing η = 1 − ζi − ξi and
ζ = 1 − ξi − ηi , respectively, one can define, as
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shown in Fig. 5, the transformation matrices at nodes 2
and 3

T̄2 =

⎡

⎢⎢
⎣

I O O O
O a3,2I b3,2I c3,2I
O a1,2I b1,2I c1,2I
O w1I w2I w3I

⎤

⎥⎥
⎦ ,

T̄3 =

⎡

⎢⎢
⎣

I O O O
O a1,3I b1,3I c1,3I
O a2,3I b2,3I c2,3I
O w1I w2I w3I

⎤

⎥⎥
⎦ (19)

where ai, j = xi − x j , bi, j = yi − y j , ci, j =
zi − z j , i = 1, 2, . . . , 3, j = 1, 2, . . . , 3, i �= j .
The transformations obtained in this section,whichwill
facilitate the derivation of closed-form shape functions
for the ANCF triangular plate element, also make the
geometric interpretation of the gradient vectors used
more obvious.

3.2 Element transformation matrix

Using the three transformation matrices developed
in this section, and denoting the total vector of
volume and Cartesian nodal coordinates as ē =[(
ē1

)T (
ē2

)T (
ē3

)T ]T
, and p̄ =

[(
p̄1

)T (
p̄2

)T (
p̄3

)T ]T
,

respectively, one canwrite a linear relationship between
the vectors of nodal coordinates as ē = T̄p̄. In this
equation, the transformation matrix T̄ has dimensions
36 × 36 and is defined in a block diagonal form as

T̄ =
⎡

⎣
T̄1 O O
O T̄2 O
O O T̄3

⎤

⎦ (20)

In the following section, a kinematic description based
on Bezier geometry and a set of cubic basis functions
are used in the development of the shape functions of
the four-node mixed-coordinate (FNMC) ANCF trian-
gular plate element. Using the FNMC shape functions,
the shape functions of the three-node ANCF element
(TN1) can be derived by using a set of linear con-
straint equations. Another three-node ANCF triangu-
lar plate element (TN2) is developed by using incom-
plete polynomials from the outset. It can be shown that
the proposed FNMC and TN triangular elements are
isoparametric, lead to exact representation of the rigid-
body motion, define a constant mass matrix, and define
complex shell geometry by simply changing the values
of the nodal coordinates in the reference configuration
thereby eliminating the distinction between plate and
shell geometries as it is the case when conventional FE
formulations are used.

4 Complete cubic polynomial four-node element

In this section, the shape functions of theANCF/FNMC
triangular plate element shown in Fig. 6 are devel-
oped using a special type of a cubic Bezier triangle
on which the global position of an arbitrary point can
be written as r = ∑m

k=1 gkq
k , where m = 13, gk are

Fig. 6 ANCF triangular plate elements. a ANCF/FNMC element. b ANCF/TN element
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2182 C. M. Pappalardo et al.

the Bezier triangle basis functions defined in terms of
the volume coordinates ξ, η, ζ , and χ , and qk are the
Bezier control points. The Bezier polynomial terms
gk, k = 1, 2, . . . , 10, are the terms which appear in
the expansion of (ξ + η + ζ )3, while the Bezier poly-
nomial terms gk, k = 11, 12, 13, are the product of
ξ, η, and ζ with χ . The cubic Bezier basis functions
used in this investigation are

g1 = ξ3, g2 = η3, g3 = ζ 3,

g4 = 3ξ2η, g5 = 3ξη2,

g6 = 3η2ζ, g7 = 3ηζ 2,

g8 = 3ξ2ζ, g9 = 3ξζ 2,

g10 = 6ξηζ, g11 = ξχ,

g12 = ηχ, g13 = ζχ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

The cubicBezier triangle description can be usedwith a
constant coordinate transformation to define the FNMC
element assumed displacement field. The relationship
between the cubic Bezier control points and the FNMC
element nodal coordinates can be expressed as

r1 = q1, r1ηi = 3
(
q4 − q1

)
,

r1ζi = 3
(
q8 − q1

)
, r1χi

= q11,

r2 = q2, r2ζi = 3
(
q6 − q2

)
,

r2ξi = 3
(
q5 − q2

)
, r2χi

= q12,

r3 = q3, r3ξi = 3
(
q9 − q3

)
,

r3ηi = 3
(
q7 − q3

)
, r3χi

= q13,

r4 = 1
27

(
q1 + q2 + q3 + 3q4 + 3q5

+ 3q6 + 3q7 + 3q8 + 3q9 + 6q10
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

Using these linear algebraic equations, the FNMCposi-
tion field is defined as r = Se, where S and e are,
respectively, the FNMC shape functionmatrix and vec-
tor of nodal coordinates defined as

S =
[
s1I s2I s3I s4I s5I s6I s7I s8I

s9I s10I s11I s12I s13I
]

(23)

and

e =
[

(
r1

)T (
r1ηi

)T (
r1ζi

)T (
r1χi

)T (
r2

)T (
r2ζi

)T (
r2ξi

)T

(
r2χi

)T (
r3

)T (
r3ξi

)T (
r3ηi

)T (
r3χi

)T (
r4

)T
]T

(24)

where I is the 3 × 3 identity matrix, and rξi =
∂r/∂ξi , rηi = ∂r/∂ηi , rζi = ∂r/∂ζi , and rχi =
∂r/∂χi are the nodal gradients defined by differenti-
ation with respect to the independent volume param-
eters along the element sides and along the normal to
the element mid-surface. The FNMC shape functions
sk, k = 1, 2, . . . , 13, are

s1 = ξ
(
ξ2 + 3ξ (η + ζ ) − 7ηζ

)
,

s2 = ξη (ξ − ζ ) ,

s3 = ξζ (ξ − η) ,

s4 = ξχ, s5 = η
(
η2 + 3η (ζ + ξ) − 7ζ ξ

)
,

s6 = ηζ (η − ξ) ,

s7 = ηξ (η − ζ ) , s8 = ηχ,

s9 = ζ
(
ζ 2 + 3ζ (ξ + η) − 7ξη

)
,

s10 = ζ ξ (ζ − η) , s11 = ζη (ζ − ξ) ,

s12 = ζχ, s13 = 27ξηζ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

The superscripts 1, 2, and 3 refer to corner nodes in the
definition of the nodal coordinate vector, while super-
script 4 refers to the FNMC center node as shown in
Fig. 6. The element corner nodes are ordered counter-
clockwise in a manner that follows the right-hand rule.
The FNMC nodal coordinates are defined as

r1 = r(1, 0, 0, 0), r1ηi = rη

∣∣
ξ=1−η−ζ

(1, 0, 0, 0),

r1ζi = rζ

∣∣
ξ=1−η−ζ

(1, 0, 0, 0), r1χi
= rχ

∣∣
ξ=1−η−ζ

(1, 0, 0, 0)

r2 = r(0, 1, 0, 0), r2ζi = rζ

∣∣
η=1−ζ−ξ

(0, 1, 0, 0),

r2ξi = rξ

∣∣
η=1−ζ−ξ

(0, 1, 0, 0), r2χi
= rχ

∣∣
ξ=1−η−ζ

(0, 1, 0, 0)

r3 = r(0, 0, 1, 0), r3ξi = rξ

∣∣
ζ=1−ξ−η

(0, 0, 1, 0),

r3ηi = rη

∣∣
ζ=1−ξ−η

(0, 0, 1, 0), r3χi
= rχ

∣∣
ξ=1−η−ζ

(0, 0, 1, 0)

r4 = r(1/3, 1/3, 1/3, 0)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

In this equation, the volume gradient partial deriva-
tives are performed using the volume coordinate con-
straint equation in the Bezier displacement field. The
proposed FNMC element is an isoparametric finite ele-
ment, describes correctly rigid-bodymotion, and canbe
used to develop shell geometry by using an appropriate
value for the vector e in the reference configuration.

123



Use of independent volume parameters 2183

The linear transformations between the cubic Bezier
basis functions gk, k = 1, 2, . . . , 13, and the FNMC
shape functions sk, k = 1, 2, . . . , 13, are given by

s1 = g1 + g4 + g8 − 7
6g10,

s2 = 1
3g4 − 1

6g10,

s3 = 1
3g8 − 1

6g10, s4 = g11,

s5 = g2 + g5 + g6 − 7
6g10,

s6 = 1
3g6 − 1

6g10,

s7 = 1
3g5 − 1

6g10, s8 = g12,

s9 = g3 + g7 + g9 − 7
6g10,

s10 = 1
3g9 − 1

6g10,

s11 = 1
3g7 − 1

6g10, s12 = g13,

s13 = 9
6g10

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

The FNMC element has 39 nodal coordinates which
consist of 12 position coordinates and 27 gradient coor-
dinates. A linear transformation can be used towrite the
nodal coordinate vector e in terms of the coordinates p,
whose elements contain the Cartesian gradients rx , ry ,
and rz , as e = Tp, where T is a 39×39 block diagonal
constant transformation defined as

T =

⎡

⎢
⎢
⎣

T1 O O O
O T2 O O
O O T3 O
O O O T4

⎤

⎥
⎥
⎦ (28)

The matrices on the diagonal of this transformation are
T1 = T̄1,T2 = T̄2,T3 = T̄3,T4 = I, where I is the
3 × 3 identity matrix.

5 Elimination of the internal node

As discussed in the preceding section, the FNMC com-
plete cubic polynomials have 39 coefficients, or equiv-
alently 13 control points. For this reason, an internal
node was introduced to allow for the use of a complete
polynomial representation. Nonetheless, a lower-order
three-node element can be systematically obtained by

writing the position coordinates of the internal node
in terms of the coordinates of a set of material point
located on the sides of the element. This procedure
leads to linear constraint equations that can be writ-
ten as r10 = 1

9

∑9
i=1 r

i , where ri , i = 1, 2, . . . , 9 are
global positions of material points distributed on the
sides of the FNMC element and are defined as

r1 = r (1, 0, 0, 0) ,

r2 = r (0, 1, 0, 0) ,

r3 = r (0, 0, 1, 0)

r4 = r (2/3, 1/3, 0, 0) ,

r5 = r (1/3, 2/3, 0, 0) ,

r6 = r (2/3, 0, 1/3, 0) ,

r7 = r (1/3, 0, 2/3, 0) ,

r8 = r (0, 2/3, 1/3, 0) ,

r9 = r (0, 1/3, 2/3, 0)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

Using the resulting algebraic constraint equations, a lin-
ear transformation can be developed and used to define
theTN1 shape functions and positionfieldwhich can be
written as r̄ = S̄ē, where S̄ and ē are, respectively, the
shape function matrix and vector of nodal coordinates
defined as

S̄=[
s̄1I s̄2I s̄3I s̄4I s̄5I s̄6I s̄7I s̄8I s̄9I s̄10I s̄11I s̄12I

]

(30)

and

ē =
[

(
r1

)T (
r1ηi

)T (
r1ζi

)T (
r1χi

)T (
r2

)T (
r2ζi

)T (
r2ξi

)T (
r2χi

)T

(
r3

)T (
r3ξi

)T (
r3ηi

)T (
r3χi

)T
]T

(31)

where I is the 3 × 3 identity matrix, and rξi =
∂r/∂ξi , rηi = ∂r/∂ηi , rζi = ∂r/∂ζi , and rχi =
∂r/∂χi are the element nodal gradients associated
with independent volume parameters along the ele-
ment sides and along the normal to the element mid-
surface, as previously discussed. The shape functions
s̄k, k = 1, 2, . . . , 12, of the TN1 element are defined
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in as

s̄1 = ξ
(
ξ2 + 3ξ (η + ζ ) + 2ηζ

)
,

s̄2 = ξη
(
ξ − 1

3ζ
)
,

s̄3 = ξζ
(
ξ − 1

3η
)
,

s̄4 = ξχ, s̄5 = η
(
η2 + 3η (ζ + ξ) + 2ζ ξ

)
,

s̄6 = ηζ
(
η − 1

3ξ
)
,

s̄7 = ηξ
(
η − 1

3ζ
)
,

s̄8 = ηχ,

s̄9 = ζ
(
ζ 2 + 3ζ (ξ + η) + 2ξη

)
,

s̄10 = ζ ξ
(
ζ − 1

3η
)
,

s̄11 = ζη
(
ζ − 1

3ξ
)
, s̄12 = ζχ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

The TN1 triangular plate element has 36 nodal coordi-
nates which consist of 9 position coordinates and 27
gradient coordinates. The vector of element coordi-
nates ē which has the volume gradients is related to the
vector of structural coordinates p̄ which has the Carte-
sian gradients by the constant transformation ē = T̄p̄,
where the transformation T̄ is defined in Sect. 3.

The procedure described in this section, in which
algebraic equations are used to eliminate the internal
node, allows for systematically obtaining a symmetric
incomplete polynomial representationwithout the need
for using a trial and error process to identify the appro-
priate basis functions. As demonstrated in the follow-
ing section, an alternate set of incomplete cubic Bezier
basis functions can be used to obtain directly the shape
functions using a linear mapping.

6 Use of incomplete cubic polynomial
representation

In order to develop the shape functions of the TN2
element shown in Fig. 6, a special type of Bezier
basis functions and a set of control points are used to
define the global position vector of an arbitrary point
as r = ∑12

k=1 hkq
k , where hk are the Bezier basis or

blending functions defined in terms of the volume coor-
dinates ξ, η, ζ , and χ , and qk are the control points.
The incomplete cubic Bezier basis functions used in
this investigation are

h1 = ξ, h2 = η, h3 = ζ, h4 = 3ξ2η,

h5 = 3ξη2, h6 = 3η2ζ,

h7 = 3ηζ 2, h8 = 3ξ2ζ, h9 = 3ξζ 2,

h10 = ξχ, h11 = ηχ, h12 = ζχ

⎫
⎪⎪⎬

⎪⎪⎭
(33)

In this case, the relationship between the incomplete
cubic Bezier control points and the TN2 element nodal
coordinates can be written as

r1 = q1, r1ηi = 3q4 + q2 − q1,

r1ζi = 3q8 + q3 − q1, r1χi
= q10,

r2 = q2, r2ζi = 3q6 + q3 − q2,

r2ξi = 3q5 + q1 − q2, r2χi
= q11,

r3 = q3, r3ξi = 3q9 + q1 − q3,

r3ηi = 3q7 + q2 − q3, r3χi
= q12

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(34)

Using these linear algebraic equations, the TN2 posi-

tion field can be expressed as r = ¯̄S ¯̄e, where ¯̄S and ¯̄e
are the TN2 shape function matrix and vector of nodal
coordinates given, respectively, by

¯̄S=[ ¯̄s1I ¯̄s2I ¯̄s3I ¯̄s4I ¯̄s5I ¯̄s6I ¯̄s7I ¯̄s8I ¯̄s9I ¯̄s10I ¯̄s11I ¯̄s12I
]

(35)

and

¯̄e =
[ (

r1
)T (

r1ηi

)T (
r1ζi

)T (
r1χi

)T (
r2

)T (
r2ζi

)T (
r2ξi

)T (
r2χi

)T

(
r3

)T (
r3ξi

)T (
r3ηi

)T (
r3χi

)T
]T

(36)

where the nodal gradients have the same interpretation
as in the case of the TN1 element. The TN2 shape
functions ¯̄sk, k = 1, 2, . . . , 12, are

¯̄s1 = ξ2 (η + ζ ) + ξ
(
1 − η2 − ζ 2

)
,

¯̄s2 = ξ2η, ¯̄s3 = ξ2ζ, ¯̄s4 = ξχ,

¯̄s5 = η2 (ζ + ξ) + η
(
1 − ζ 2 − ξ2

)
,

¯̄s6 = η2ζ, ¯̄s7 = η2ξ, ¯̄s8 = ηχ,

¯̄s9 = ζ 2 (ξ + η) + ζ
(
1 − ξ2 − η2

)
,

¯̄s10 = ζ 2ξ, ¯̄s11 = ζ 2η, ¯̄s12 = ζχ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(37)

The linear transformations between the incomplete
cubic Bezier basis functions hk, k = 1, 2, . . . , 12, and
the shape functions of the TN2 triangular plate element
¯̄sk, k = 1, 2, . . . , 12, are given by

¯̄s1 = h1 + 1
3 (h4 + h8 − h5 − h9) , ¯̄s2 = 1

3h4,¯̄s3 = 1
3h8,

¯̄s4 = h10,
¯̄s5 = h2 + 1

3 (h5 + h6 − h4 − h7) , ¯̄s6 = 1
3h6,¯̄s7 = 1

3h5,
¯̄s8 = h11,

¯̄s9 = h3 + 1
3 (h7 + h9 − h6 − h8) ,

¯̄s10 = 1
3h9,

¯̄s11 = 1
3h7,

¯̄s12 = h12

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(38)
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Fig. 7 Continuum
configurations

The TN2 triangular plate element has 36 nodal coor-
dinates; 9 position and 27 gradient coordinates. As in
the case of the TN1 element, the coordinate vector ¯̄e is
related to the vector of structural coordinates ¯̄p by the

linear equation ¯̄e = ¯̄T ¯̄p, where ¯̄T = T̄.

7 Isoparametric property and shell geometry

In this section, two important features of the higher-
order ANCF elements proposed in this investigation
are discussed. The first is the isoparametric property
and the second is the shell geometry.

7.1 Isoparametric property

Isoparametric elements, which are capable of describ-
ing the element geometry and displacement using the
same shape function matrix, correctly describe rigid-
body motion and can be used in a non-incremental
solution procedure. As shown in Fig. 7, three gen-
eral configuration of a continuum body can be iden-
tified, namely a straight (un-deformed) configuration,
a reference (curved) stress-free configuration, and a
current (deformed) configuration. In the current con-
figuration, one can write the element position field as
r = Se = STp, where e and p are the coordinate vec-
tors associated with the volume and Cartesian parame-

terizations, respectively. In the reference configuration,
the definition of the element position field is given by
r0 = Se0 = STp0, where e0 and p0 are appropri-
ate coordinate vectors associated with the volume and
Cartesian parameterizations, respectively,which define
the stress-free reference configuration and allow for
describing a general curved geometry. In the straight
(un-deformed) configuration, the element position field
is x = Ses = STps , where es and ps are nodal
coordinate vectors associated with the volume and
Cartesian parameterization, respectively, that define the
geometry of the element in the straight (un-deformed)
configuration. One can then write J = (∂r/∂r0) =
(∂r/∂x) (∂x/∂r0) = (∂r/∂x) (∂r0/∂x)−1 = JeJ

−1
0 ,

where J is the matrix of position vector gradients, and
Je = ∂r/∂x and J0 = ∂r0/∂x, as shown in Fig. 7,
are matrices of position vector gradients defined using
the straight configuration coordinate lines. A simple
example can be used to show that all the ANCF tri-
angular plate elements developed in this investigation
are isoparametric. In order to demonstrate the isopa-
rameteric property, consider the straight (un-deformed)
configuration of the ANCF/FNMC element shown
in Fig. 7. The vectors of nodal coordinates can be

expressed as ps =
[ (

p1s
)T (

p2s
)T (

p3s
)T (

p4s
)T

]T
,

where
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p1s =
[
x1 y1 z1 1 0 0 0 1 0 0 0 1

]T

p2s =
[
x2 y2 z2 1 0 0 0 1 0 0 0 1

]T

p3s =
[
x3 y3 z3 1 0 0 0 1 0 0 0 1

]T

p4s = [(x1 + x2 + x3)/3 (y1 + y2 + y3)/3

(z1 + z2 + z3)/3]T

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(39)

The coordinates xk, yk , and zk are the Cartesian coordi-
nates of the vertex k of the element. Using the relation
ξ +η + ζ = 1, the ANCF/FNMC shape functions, and
the expression of the transformation matrix T, one can
show that

x = STps =
⎡

⎣
ξ x1 + ηx2 + ζ x3 + χw1

ξ y1 + ηy2 + ζ y3 + χw2

ξ z1 + ηz2 + ζ z3 + χw3

⎤

⎦ (40)

In this equation,w1, w2, andw3 are the Cartesian coor-
dinates of the triangular plate director vector associ-
ated with the element straight (un-deformed) config-
uration. Equation 40 shows that the element straight
(un-deformed) configuration can be represented by the
ANCF/FNMCelement shape functions using an appro-
priate set of nodal coordinates. Similar procedures can
be used to demonstrate the isoparametric property of
the ANCF/TN1 and ANCF/TN2 elements.

7.2 Shell geometry

In the conventional FE literature, there is a clear dis-
tinction between the assumed displacement fields of
plates and shells. The main reason for making this dis-
tinction is attributed to the fact that most conventional
plate and shell elements employ infinitesimal rotations
as nodal coordinates. Because of the use of infinites-
imal rotations, these plate and shell elements are not
isoparametric elements, and as a consequence, their
displacement fields cannot be used to describe arbitrary
initial curved geometry. Furthermore, because of the
use of infinitesimal rotations, the element displacement
fields cannot be related to the more accurate computa-
tional geometry B-spline and NURBS representations
using a linear mapping. Special techniques are often
used in the conventional FE literature to develop shell
elements [1,58,62]. Because the governing partial dif-
ferential equations of plate and shell bending involve
fourth-order derivative with respect to the spatial coor-
dinates, the use of cubic polynomials is important in

order to be able to correctly capture the effect of cur-
vature changes within the element. The use of lower-
order conventional isoparametric elements which do
not ensure the continuity of the rotation field at the
nodal points may require the use of a very large num-
ber of elements to capture accurately the bending defor-
mations. Nonetheless, even with the use of a very fine
mesh, the rotations, stresses, and curvatures remain dis-
continuous at the nodal points. Another serious limi-
tation of the conventional plate and shell elements is
the restriction imposed on the definition of the elas-
tic forces. For the conventional elements, the elastic
forces cannot be easily formulated using a general con-
tinuum mechanics approach or general material mod-
els, and therefore, specialized theorieswith simplifying
assumptions are often used [19,20,75].

For the ANCF elements proposed in this investiga-
tion, there is no distinction between the assumed dis-
placement fields of plates and shells. By simply chang-
ing the values of the nodal coordinates in the refer-
ence configuration, initially curved and stress-free shell
structures with complex shapes can be obtained. The
shell reference configuration can simply be defined by
the ANCF displacement field as Xs = r0 = S (x) e0,
where e0 is the vector of nodal coordinates in the refer-
ence configuration. By using the definition J = JeJ

−1
0 ,

as discussed in the preceding section, a stress-free
initially curved configurations can be systematically
achieved. Table 1 shows examples of some of the shell
geometry that can be obtained with one ANCF triangu-
lar plate element. Other complex shell geometries can
be created by simply changing the orientation andmag-
nitude of the position vector gradients. Furthermore,
the proposed ANCF triangular plate element assumed
displacement fields are related to the B-spline and
NURBS representations using a linear mapping, and
therefore, they can be effectively used in the successful
integration of computer-aided design and analysis (I-
CAD-A). Furthermore, the generalized ANCF triangu-
lar plate element stress forces can be formulated using
a general continuum mechanics approach and general
material models.

8 Element equations of motion

In this section, the D’Alembert-Lagrange principle is
used to develop the FE equations of motion which
are based on a total Lagrangian description and allow
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Table 1 Examples of complex geometry obtained using the ANCF triangular plate elements

Element coordinates Shell geometry

FNMC element (1 element)

e0 =
[

(
r1

)T (
r1ηi

)T (
r1ζi

)T (
r1χi

)T (
r2

)T (
r2ζi

)T

(
r2ξi

)T (
r2χi

)T (
r3

)T (
r3ξi

)T (
r3ηi

)T (
r3χi

)T (
r4

)T
]T

= [
0.2 0 −0.2 1.492 −0.158 0.686

0.094 0.974 −0.549 0.005 0.005 0.009
1.3 0.2 −0.368 −0.715 1.1 1.238
−0.825 0 1.429 0.010 0 0.006
0.25 0.8 −0.3 −0.22 −0.55 0.952
1.43 −0.55 0.952 0 0.010 0.006

0.583 0.333 −0.089
]T

TN1 element (1 element)

ē0 =
[

(
r1

)T (
r1ηi

)T (
r1ζi

)T (
r1χi

)T (
r2

)T (
r2ζi

)T

(
r2ξi

)T (
r2χi

)T (
r3

)T (
r3ξi

)T (
r3ηi

)T (
r3χi

)T
]T

= [
0.2 0 −0.2 1.492 −0.158 0.686

0.094 0.974 −0.549 0.005 0.005 0.009
1.3 0.2 −0.368 −0.715 1.1 1.238
−0.825 0 1.429 0.010 0 0.006

0.25 0.8 −0.3 −0.22 −0.55 0.952

1.43 −0.55 0.952 0 0.010 0.006
]T

TN2 element (1 element)

¯̄e0 =
[

(
r1

)T (
r1ηi

)T (
r1ζi

)T (
r1χi

)T (
r2

)T (
r2ζi

)T

(
r2ξi

)T (
r2χi

)T (
r3

)T (
r3ξi

)T (
r3ηi

)T (
r3χi

)T
]T

= [
0.2 0 −0.2 1.492 −0.158 0.686

0.094 0.974 −0.549 0.005 0.005 0.009
1.3 0.2 −0.368 −0.715 1.1 1.238
−0.825 0 1.429 0.010 0 0.006

0.25 0.8 −0.3 −0.22 −0.55 0.952

1.43 −0.55 0.952 0 0.010 0.006
]T

using non-incremental solution procedure [76]. While
the ANCF/FNMC element is used as an example, the
same procedure can be used with the ANCF/TN1 and
ANCF/TN2 elements.

8.1 Element kinematics

Using the FNMC position field, r = Se = STp, one
can write δe = Tδp = STδp. The virtual change in the
FNMC Cartesian gradients can be written as

δrx = 1
V

(
L1,1δrξ + L2,1δrη + L3,1δrζ + L4,1δrχ

)

= 1
V

(
L1,1Sξ + L2,1Sη + L3,1Sζ + L4,1Sχ

)
Tδp

δry = 1
V

(
L1,2δrξ + L2,2δrη + L3,2δrζ + L4,2δrχ

)

= 1
V

(
L1,2Sξ + L2,2Sη + L3,2Sζ + L4,2Sχ

)
Tδp

δrz = 1
V

(
L1,3δrξ + L2,3δrη + L3,3δrζ + L4,3δrχ

)

= 1
V

(
L1,3Sξ + L2,3Sη + L3,3Sζ + L4,3Sχ

)
Tδp

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(41)

or equivalently δrx = SxTδp, δry = SyTδp, and
δrz = SzTδp, where:
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Sx = 1
V

(
L1,1Sξ + L2,1Sη + L3,1Sζ + L4,1Sχ

)

Sy = 1
V

(
L1,2Sξ + L2,2Sη + L3,2Sζ + L4,2Sχ

)

Sz = 1
V

(
L1,3Sξ + L2,3Sη + L3,3Sζ + L4,3Sχ

)

⎫
⎪⎪⎬

⎪⎪⎭
(42)

where Sx ,Sy , and Sz are, respectively, the spatial
derivatives of thematrix of shape functionswith respect
to the Cartesian coordinates x, y, and z. The evalu-
ation of the Cartesian derivatives Sx ,Sy , and Sz is
necessary for the formulation of the element elastic
forces.

8.2 Element mass matrix

The virtual work of the FNMC element inertia forces
is defined as δWi = − ∫

V ρr̈T δr |J0| dV , where ρ

is the element mass density defined in the stress-free
reference configuration, r̈ is the absolute accelera-
tion vector of an arbitrary element material point, |J0|
is the determinant of the gradient matrix defined in
the stress-free reference configuration, and V is the
volume in the straight (un-deformed) configuration.
By using the FNMC kinematic equations, one can
write:

δWi = −
∫

V
ρr̈T δr |J0| dV

= − p̈TTT
(∫

V
ρSTS |J0| dV

)
Tδp

= − (Mp̈)T δp (43)

where the element mass matrix M = TT
(∫

V ρSTS
|J0| dV )T is a constant, symmetric, and positive defi-
nite matrix, and consequently, the centrifugal and Cori-
olis inertia forces are identically zero. The definition of
the element mass matrix associated with the Cartesian
coordinate vector allows for performing a standard FE
assembly to obtain the mesh mass matrix.

8.3 Element external forces

One can write the virtual work of the external forces as
δWe = ∫

V fTe δr |J0| dV , where fe is a vector of body
forces such as the gravity and magnetic forces. Using
the FNMC kinematic equations, the virtual work of the
external forces can be rewritten as

δWe =
∫

V
fTe δr |J0| dV

=
(∫

V
fTe S |J0| dV

)
Tδp

= QT
e δp (44)

whereQe = TT
(∫

V ST fe |J0| dV
)
defines the vector of

generalized external forces associated with the element
generalized nodal coordinates. The use of the Cartesian
gradients in the coordinate vector p allows for a stan-
dard FE generalized force assembly.

8.4 Element elastic forces

Using a general continuum mechanics approach, one
can write the virtual work of the element elastic forces
as δWs = − ∫

V σ : δε |J0| dV , where σ denotes the
symmetric second Piola–Kirchhoff stress tensor, ε rep-
resents the symmetric Green-Lagrange strain tensor,
and the symbol : defines tensor double contraction. All
the elements proposed in this investigation allow using
general constitutive models in the elastic force formu-
lation. Using the FNMC kinematics, one can write the
virtual work of the elastic forces as

δWs = −
∫

V
σ : δε |J0| dV

= −
(∫

V
σ : ∂ε

∂e
|J0| dV

)
Tδp = QT

s δp (45)

where Qs = −TT
(∫

V

(
σ : ∂ε

∂e

)T |J0| dV
)
is the non-

linear vector of the element generalized elastic forces
which can be evaluated using Gauss quadrature rules.
A standard FE assembly procedure can be adopted to
define the body elastic forces because of the use of
Cartesian gradients in p.

8.5 System equations of motion

The system equations of motion of the ANCF/FNMC
element mesh can be developed using the principle of
virtual work which can be stated as δWi + δWe +
δWs = 0, where δWi is the virtual work of the ele-
ment inertia forces, δWe is the virtual work of the
element external forces, and δWs is the virtual work
of the element elastic forces. Applying this princi-
ple, the element equations of motion can be written as
Mp̈ = Qe + Qs . As mentioned previously, the use of
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Fig. 8 Location of the
Gauss integration points

the Cartesian gradients rx , ry , and rz in the generalized
coordinate vector p allows for standard FE assembly of
the element vectors and matrices.

9 Numerical results and discussion

In this section, several FE models are developed in
order to demonstrate the use and evaluate the perfor-
mance of the proposed FNMC, TN1, and TN2 ele-
ments. The numerical results obtained using these ele-
ments are compared with the results of the conven-
tional three-node linear (TNL) and six-node quadratic
(SNQ) triangular plate elements [77]. The shape func-
tions of the conventional TNL and SNQ elements are
presented in the Appendix of the paper. While these
conventional elements ensure only the continuity of
the position field at the nodes, the proposed ANCF
elements guarantee the continuity of both the position
and gradient fields, and therefore, the continuity of the
rotation, strain, and stress fields is also ensured. The
conventional TNL and SNQ elements are implemented
using a total Lagrangian approach and the results are
obtained using a non-incremental solution procedure
[78,79]. Additionally, the numerical results obtained
using the proposed ANCF triangular plate elements are
compared with the numerical results of the ANCF fully
parameterized rectangular plate element developed by
Mikkola and Shabana [34] and implemented in the gen-
eral purpose MBS computer program SIGMA/SAMS
(Systematic Integration of Geometric Modeling and
Analysis for the Simulation ofArticulatedMechanical
Systems). It is important, however, to point out that
because of the low-order of polynomial interpolation of
the conventional elements, the curvature within these

elements is either constant or identically zero, and
therefore, these conventional elements are not suitable
for describing large deformations and extreme bending
scenarios.

In this investigation, aMATLAB computer program
was developed in order to obtain the numerical results
presented in this section for the conventional and pro-
posed ANCF elements. In order to correctly capture
geometric nonlinearities, a general continuummechan-
ics approach is employed for evaluating the general-
ized elastic forces. The Saint Venant–Kirchhoff hyper-
elastic constitutive law and a standard Gauss quadra-
ture procedure based on a full integration scheme are
used for the evaluation of the generalized elastic forces
[58]. For the ANCF elements developed in this inves-
tigation, full integration requires combination of 12
triangular Gauss integration points distributed along
the plate mid-surface; this corresponds to the stan-
dard sixth-order Gauss integration quadrature scheme
for triangular elements, with 2 linear Gauss integra-
tion points along the thickness, which corresponds to
the standard third-order Gauss integration quadrature
scheme for linear elements. The choice of the type
and number of integration points was made based on
numerical experimentation. It was found that using a
larger number of quadrature points does not improve
the accuracy of the numerical results, whereas using a
smaller number of integration points can lead to less
accurate results. The locations of the Gauss integration
points used for performing the numerical integration
of the proposed ANCF fully parameterized triangular
plate elements are shown in Fig. 8, while the corre-
sponding quadrature nodes and weights are presented
inTable 2. Thenumerical integration of the equations of
motion is performed using the explicitmultistep fourth-

123



2190 C. M. Pappalardo et al.

Table 2 Volume coordinates and weights of the Gauss quadrature nodes

Integration
point

Volume coordinate ξ Volume coordinate η Volume coordinate ζ Volume coordinate χ Weight w

a 0.063089014491502 0.873821971016996 0.063089014491502 0.577350269189626 0.025422453185104

b 0.053145049844817 0.636502499121399 0.310352451033784 0.577350269189626 0.041425537809187

c 0.053145049844817 0.310352451033784 0.636502499121399 0.577350269189626 0.041425537809187

d 0.063089014491502 0.063089014491502 0.873821971016996 0.577350269189626 0.025422453185104

e 0.310352451033784 0.053145049844817 0.636502499121399 0.577350269189626 0.041425537809187

f 0.636502499121399 0.053145049844817 0.310352451033784 0.577350269189626 0.041425537809187

g 0.873821971016996 0.063089014491502 0.063089014491502 0.577350269189626 0.025422453185104

h 0.636502499121399 0.310352451033784 0.053145049844817 0.577350269189626 0.041425537809187

i 0.310352451033784 0.636502499121399 0.053145049844817 0.577350269189626 0.041425537809187

j 0.249286745170910 0.501426509658179 0.249286745170910 0.577350269189626 0.058393137863189

k 0.249286745170910 0.249286745170910 0.501426509658179 0.577350269189626 0.058393137863189

l 0.501426509658179 0.249286745170910 0.249286745170910 0.577350269189626 0.058393137863189

a′ 0.063089014491502 0.873821971016996 0.063089014491502 − 0.577350269189626 0.025422453185104

b′ 0.053145049844817 0.636502499121399 0.310352451033784 − 0.577350269189626 0.041425537809187

c′ 0.053145049844817 0.310352451033784 0.636502499121399 − 0.577350269189626 0.041425537809187

d ′ 0.063089014491502 0.063089014491502 0.873821971016996 − 0.577350269189626 0.025422453185104

e′ 0.310352451033784 0.053145049844817 0.636502499121399 − 0.577350269189626 0.041425537809187

f ′ 0.636502499121399 0.053145049844817 0.310352451033784 − 0.577350269189626 0.041425537809187

g′ 0.873821971016996 0.063089014491502 0.063089014491502 −0.577350269189626 0.025422453185104

h′ 0.636502499121399 0.310352451033784 0.053145049844817 − 0.577350269189626 0.041425537809187

i ′ 0.310352451033784 0.636502499121399 0.053145049844817 − 0.577350269189626 0.041425537809187

j ′ 0.249286745170910 0.501426509658179 0.249286745170910 − 0.577350269189626 0.058393137863189

k′ 0.249286745170910 0.249286745170910 0.501426509658179 − 0.577350269189626 0.058393137863189

l ′ 0.501426509658179 0.249286745170910 0.249286745170910 − 0.577350269189626 0.058393137863189

order Adams–Bashforth numerical integration method
with a constant time step [80].

9.1 Rigid-body motion

The stiff rectangular pendulum example shown in
Fig. 9 is used to demonstrate that both the conven-
tional and the proposed ANCF elements can correctly
describe rigid-bodymotion. The rectangular pendulum
is subjected to a constant gravitational force field and
is assumed to be initially in a horizontal configura-
tion. The pendulum has length L = 0.1 m, width
H = 0.1 m, thickness W = 0.01 m, mass density
ρ = 7860 kg/m3, Poisson ratio ν = 0.27, and Young’s
modulus E = 2.1 × 109 N/m2. The gravity accel-
eration considered is g = 9.81 m/s2. Based on the
assumed inertia and geometry properties, the pendulum

Fig. 9 Plate pendulum

has a massm = 0.786 kg and principal mass moments
of inertia Ixx = 6.6155×10−4 kg m2, Iyy = 6.6155×
10−4 kg m2, and Izz = 1.3 × 10−3 kg m2. In order to
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Fig. 10 Triangular plate mesh for the stiff pendulum

Fig. 11 Triangular plate asymmetric rectangularmacro-element

compare the results of this numerical example with the
results obtained using a rigid-body pendulum model,
a large elastic modulus is used for the flexible pendu-
lum models. Figure 10 shows the FE mesh used for
modeling the stiff pendulum system. Only one rectan-
gular macro-element, shown in Fig. 11, which consists
of two triangular plate elements, is used. As shown in
Fig. 10, two revolute joints located at the points A1 and
A2 are used to constrain the flexible pendulum motion
with respect to the ground. On the other hand, a revo-
lute joint having a joint axis passing through the two
points A1 and A2 is used to constrain the motion of the
rigid pendulum. The constraint equations for the flexi-
ble pendulum are linear algebraic equations, and there-
fore, are systematically eliminated at a preprocessing

Fig. 12 Vertical displacement of the rigid pendulum tip

( TNL element, SNQ element, TN1
element, TN2 element, FNMC element,

rigid-body)

stage. In addition to the proposed FNMC, TN1, and
TN2 element models, two other models based on the
conventional TNL and SNQ elements are developed.
The duration of the dynamic simulation is assumed
T = 1.0 s, while the minimum time step used in the
numerical integration algorithm is �t = 5.0× 10−6 s.
The vertical displacement of the plate pendulum tip
point B obtained using the stiff flexible and rigid-body
models is shown in Fig. 12. The results presented in
this figure show a good agreement, demonstrating that
the ANCF elements developed in this investigation can
correctly describe rigid-body motion.

9.2 Patch test

In order to perform the patch test [58,62], the rectangu-
lar plate shown in Fig. 13 with a mesh of 10 triangular
plate elements, shown in Fig. 14, is used. The model
geometric and material properties are the same as pre-
viously presented in this section and the nodal coordi-
nates considered are shown in Table 3. In order to elim-
inate all the rigid-body modes, a minimum set of dis-
placement and gradient boundary conditions are used
for constraining the rectangular plate to the ground at
the points A1 and A2. A modal analysis was performed
in order to obtain the natural frequencies, and no zero
spurious eigenvalues were found. Therefore, the states
of constant strain can be correctly captured by all the
triangular plate elements considered in this investiga-
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Fig. 13 Rectangular plate

Fig. 14 Plate mesh for the patch test

tion. This simple example demonstrates that the ANCF
elements developed in this paper pass the patch test, are
compatible elements, and converge when the number
of elements is properly increased [61].

9.3 Convergence analysis

In order to check the element convergence in the case
of finite rotations and large displacements, the initially
straight flexible rectangular pendulum shown in Fig. 9
is considered. The pendulum length, width, thickness,
and modulus of elasticity considered in this numerical
example are L = 1.0 m, H = 1.0 m,W = 0.1 m,
and E = 2.1 × 106 N/m2, respectively, while the
other model data are the same as previously used. The
numerical simulation is performed using a time inter-
val and a minimum time step size T = 1.0 s and
�t = 5.0 × 10−5 s, respectively. Figures 15 and 16

Table 3 Node Cartesian coordinates of the patch test mesh

Node Cartesian
coordinate x

Cartesian
coordinate y

Cartesian
coordinate z

A1 0 0 0

A2 0 H 0

B1 L 0 0

B2 L H 0

C1 0.2 × L 0.2 × H 0

C2 0.4 × L 0.7 × H 0

D1 0.8 × L 0.3 × H 0

D2 0.8 × L 0.7 × H 0

Fig. 15 Plate mesh for the flexible pendulum

Fig. 16 Symmetric rectangualr macro-element

show, respectively, the FE mesh and the rectangular
macro-element used. The TNL, SNQ, TN1, TN2, and
FNMC element models are developed using a sym-
metric mesh made of rectangular macro-elements. The
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Table 4 TNL triangular plate element convergence analysis

Number of
elements

Displacement
normalized
root-mean-square error

Normal strain εxx
normalized
root-mean-square error

Normal strain εyy
normalized
root-mean-square error

Normal strain εzz
normalized
root-mean-square error

128 3.220 × 10−2 1.285 × 10−1 1.337 × 10−1 1.439 × 10−1

288 1.719 × 10−2 6.672 × 10−2 8.657 × 10−2 8.100 × 10−2

512 9.399 × 10−3 3.759 × 10−2 6.271 × 10−2 4.563 × 10−2

800 5.181 × 10−3 2.101 × 10−2 3.926 × 10−2 2.540 × 10−2

1152 2.677 × 10−3 1.088 × 10−2 2.176 × 10−2 1.317 × 10−2

1568 1.077 × 10−3 4.411 × 10−3 9.317 × 10−3 5.346 × 10−3

Table 5 SNQ triangular plate element convergence analysis

Number of
elements

Displacement
normalized
root-mean-square error

Normal strain εxx
normalized
root-mean-square error

Normal strain εyy
normalized
root-mean-square error

Normal strain εzz
normalized
root-mean-square error

128 4.949 × 10−4 9.877 × 10−3 9.370 × 10−3 6.810 × 10−3

288 1.235 × 10−4 4.145 × 10−3 4.847 × 10−3 2.578 × 10−3

512 4.268 × 10−5 2.021 × 10−3 3.355 × 10−3 1.444 × 10−3

800 1.647 × 10−5 1.042 × 10−3 1.988 × 10−3 1.034 × 10−3

1152 5.749 × 10−6 4.936 × 10−4 1.300 × 10−3 7.881 × 10−4

total number of triangular plate elements that form
each mesh is Ne = 8N 2

m , where Nm is the number
of macro-elements, each of which is constructed from
8 triangular plate elements. Because the convergence
rate is not the same for the five types of triangular
plate elements considered, different numbers of ele-
ments are used to obtain convergent solutions for dif-
ferent plate models. It was found that the displacement
and strain convergence requires a 16 macro-element
(Ne = 8 × 162 = 2048) for the TNL element; a 14
macro-element (Ne = 8 × 142 = 1568) for the SNQ
element; a 14 macro-element mesh (Ne = 8 × 142 =
1568) for the TN1 element; a 14 macro-element mesh
(Ne = 8 × 142 = 1568) for the TN2 element; and a
12 macro-element mesh (Ne = 8 × 122 = 1152) for
the FNMC element. However, in the case of the con-
ventional TNL and SNQ models, finer meshes cannot
achieve geometric convergence because of the gradi-
ent discontinuities at the element interface nodes that
lead to rotation, strain, and stress discontinuities. In
order to perform a comparative convergence rate study
of the elements considered in this investigation, the
root-mean-square errors of the numerical results are

evaluated considering a set of reference solutions and
the resulting normalized values are reported in Tables
4, 5, 6, 7, and 8. The normalized root-mean-square
errors of the numerical results are computed for the
complete simulation interval considering the displace-
ments and the normal strains εxx , εyy , and εzz . The ref-
erence solution corresponds to the 16 macro-element
mesh for the TNL element; 14macro-element mesh for
the SNQ element; 14 macro-element mesh for the TN1
element; 14 macro-element mesh for the TN2 element;
and 12 macro-element mesh for the FNMC element.
As expected, for all elements considered, the normal-
ized root-mean-square errors decrease as the number
of elements increases. The TNL element has the slow-
est convergence rate, while the TN1 and TN2 elements
have a convergence rate comparable with the conver-
gence rate of the SNQ element. The FNMC element,
on the other hand, has the fastest convergence rate. The
difference in the convergence rates can be attributed to
the fact that the TN1 and TN2 elements are based on an
incomplete set of cubic polynomials, whereas the shape
functions of the FNMC element are obtained from a
complete set of cubic polynomial basis functions.
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Table 6 TN1 triangular plate element convergence analysis

Number of
elements

Displacement
normalized
root-mean-square error

Normal strain εxx
normalized
root-mean-square error

Normal strain εyy
normalized
root-mean-square error

Normal strain εzz
normalized
root-mean-square error

128 1.205 × 10−2 6.992 × 10−2 1.497 × 10−1 9.104 × 10−2

288 6.226 × 10−3 3.840 × 10−2 8.437 × 10−2 4.267 × 10−2

512 3.292 × 10−3 2.023 × 10−2 4.396 × 10−2 2.164 × 10−2

800 1.621 × 10−3 9.993 × 10−3 2.219 × 10−2 1.074 × 10−2

1152 6.254 × 10−4 3.920 × 10−3 8.932 × 10−3 4.263 × 10−3

Table 7 TN2 triangular plate element convergence analysis

Number of
Elements

Displacement
normalized
root-mean-square error

Normal strain εxx
normalized
root-mean-square error

Normal strain εyy
normalized
root-mean-square error

Normal strain εzz
normalized
root-mean-square error

128 7.059 × 10−3 4.038 × 10−2 8.824 × 10−2 6.003 × 10−2

288 3.287 × 10−3 1.840 × 10−2 4.094 × 10−2 2.580 × 10−2

512 1.602 × 10−3 9.028 × 10−3 2.059 × 10−2 1.269 × 10−2

800 7.573 × 10−4 4.425 × 10−3 1.039 × 10−2 6.169 × 10−3

1152 2.869 × 10−4 1.795 × 10−3 4.593 × 10−3 2.551 × 10−3

Table 8 FNMC triangular plate element convergence analysis

Number of
elements

Displacement
normalized
root-mean-square error

Normal strain εxx
normalized
root-mean-square error

Normal strain εyy
normalized
root-mean-square error

Normal strain εzz
normalized
root-mean-square error

128 2.167 × 10−3 8.335 × 10−3 2.241 × 10−2 3.793 × 10−2

288 8.620 × 10−4 3.482 × 10−3 1.035 × 10−2 1.471 × 10−2

512 3.708 × 10−4 1.814 × 10−3 5.602 × 10−3 6.389 × 10−3

800 1.338 × 10−4 7.864 × 10−4 2.608 × 10−3 2.464 × 10−3

The numerical results obtained using the proposed
ANCF elements are also compared with the numerical
results obtained using the ANCF rectangular plate ele-
ment developed by Mikkola and Shabana [34]. To this
end, a 10×10mesh, a 12×12mesh, and a 14×14mesh
made of ANCF rectangular plate elements are devel-
oped and it was found that the displacement and strain
convergence is achieved for this ANCF element using
the 14× 14 element model. Figures 17, 18, 19, and 20
show, respectively, the vertical displacement of point
B on the pendulum under the effect of gravity, and the
normal strains εxx , εyy , and εzz at the pendulum cen-
ter point C when convergence is achieved for the TNL
and SNQ element models. Because nodal strain con-
tinuity is not ensured by the conventional triangular

plate elements, averaging techniques were adopted to
improve the accuracy of the strain results of these con-
ventional elements. Figures 21, 22, 23, and 24 show,
respectively, the point B vertical displacement under
the effect of gravity, and the normal strains εxx , εyy , and
εzz at the pendulum center point C when convergence
is achieved for the ANCF rectangular plate, TN1, TN2,
andFNMCelementmodels. Since theANCF triangular
plate elements guarantee the continuity of the rotation,
strain, and stress fields at the nodes, there is no need
for using strain averaging techniques. The numerical
results presented in this section demonstrate that there
is, in general, a good agreement between the numeri-
cal solutions obtained using different triangular plate
element models. However, the strain results obtained
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Fig. 17 Vertical displacement of the flexible pendulum tip

( ANCF element, TNL element,
SNQ element)

Fig. 18 Normal strain εxx at the flexible pendulum center

( ANCF element, TNL element,
SNQ element)

using the TNL and SNQ element models show slightly
different trends because such elements do not guaran-
tee the continuity of the rotation, strain, and stress fields
at the nodal points.

9.4 Continuity conditions

In order to demonstrate the gradient and strain con-
tinuity that characterize ANCF elements, the flexible
straight rectangular pendulum shown in Fig. 25 is mod-
eled using a mesh of one macro-element composed of
eight FNMC triangular plate elements. The dynamic

Fig. 19 Normal strain εyy at the flexible pendulum center

( ANCF element, TNL element,
SNQ element)

Fig. 20 Normal strain εzz at the flexible pendulum center

( ANCF element, TNL element,
SNQ element)

simulation is carried out using the geometric and mate-
rial properties previously used. Figures 26, 27, and 28
show the normal strains εxx , εyy , and εzz at the pendu-
lum center pointC , while Figs. 29, 30, and 31 show the
normal stresses σxx , σyy , and σzz at the same point C
predicted using the coordinates of all the eight FNMC
elements of the rectangularmacro-element. Thenumer-
ical results presented in Figs. 26, 27, 28, 29, 30, and 31
clearly demonstrate the continuity of the normal strains
and stresses; similar continuity results are obtained for
the shear strains and stresses. The proposed TN1 and
TN2elements also ensure the gradient, strain, and stress
continuity at the nodes.
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Fig. 21 Vertical displacement of the flexible pendulum tip

( ANCF element, TN1 element,
TN2 element, FNMC element)

Fig. 22 Normal strain εxx at the flexible pendulum center

( ANCF element, TN1 element,
TN2 element, FNMC element)

9.5 Quasi-periodic motion

In order to demonstrate that the proposed ANCF ele-
ments can capture the quasi-periodic motion that char-
acterizes the dynamic simulation of the flexible pendu-
lum system, the straight rectangular pendulum shown
in Fig. 9 ismodeled using amesh of onemacro-element
composed of eight FNMC triangular plate elements.
The dynamic simulation is carried out using the geo-
metric and material properties used previously except
for the elasticity modulus and the time interval which
are assumed to be E = 2.1 × 107 N/m2 and T =
10.0 s. Figure 32 shows the vertical displacement of

Fig. 23 Normal strain εyy at the flexible pendulum center

( ANCF element, TN1 element,
TN2 element, FNMC element)

Fig. 24 Normal strain εzz at the flexible pendulum center

( ANCF element, TN1 element,
TN2 element, FNMC element)

point B under the effect of gravity. Figures 33, 34, and
35 show the normal strains εxx , εyy , and εzz , respec-
tively, at the pendulum center point C . These figures
clearly show that the flexible pendulum meshed using
the proposed FNMC element exhibits the expected
quasi-periodic motion. The proposed TN1 and TN2
elements also show a similar dynamic response.

10 Summary and conclusions

In the conventional FE literature, distinction is often
made between plate and shell elements as the results
of using rotations as nodal coordinates. The use of this
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Fig. 25 Flexible pendulum
2 × 2 mesh

Fig. 26 Normal strain εxx at the flexible pendulum center using

an FNMC 2× 2 mesh ( element 1, element 2,

element 3, element 4, element 5,

element 6, element 7, element 8)

non-isoparametric element description does not allow
for obtaining complex geometric shapes by changing
the value of the nodal coordinates. In this investigation,
three new ANCF triangular plate/shell elements are
developed, namely four-node mixed-coordinate ele-
ment (FNMC) obtained using a complete cubic poly-

Fig. 27 Normal strain εyy at the flexible pendulum center using

an FNMC 2× 2 mesh ( element 1, element 2,

element 3, element 4, element 5,

element 6, element 7, element 8)

nomial representation, three-node triangular plate ele-
ment (TN1)obtained from theFNMCelement by elimi-
nating the internal node, and three-node element (TN2)
obtained by using an incomplete cubic polynomial
representation from the outset. A cubic polynomial
interpolation and a constant transformation between
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Fig. 28 Normal strain εzz at the flexible pendulum center using

an FNMC 2× 2 mesh ( element 1, element 2,

element 3, element 4, element 5,

element 6, element 7, element 8)

Fig. 29 Normal stress σxx at the flexible pendulum center using

an FNMC 2× 2 mesh ( element 1, element 2,

element 3, element 4, element 5,

element 6, element 7, element 8)

the ANCF nodal coordinates and the Bezier control
points are used to develop the ANCF fully parameter-
ized triangular plate elements developed in this study.
All the proposed ANCF elements are isoparametric;
describe correctly arbitrary rigid-body motion; lead to
constant mass matrix and zero Coriolis and centrifu-
gal forces; allow for consistently representing large
finite rotations; ensure continuity of the gradients, rota-
tions, strains, and stresses at the nodal points; and
impose no restrictions on the value of the deformation

Fig. 30 Normal stress σyy at the flexible pendulum center using

an FNMC 2× 2 mesh ( element 1, element 2,

element 3, element 4, element 5,

element 6, element 7, element 8)

Fig. 31 Normal stress σzz at the flexible pendulum center using

an FNMC 2× 2 mesh ( element 1, element 2,

element 3, element 4, element 5,

element 6, element 7, element 8)

within the finite element. Two coordinate parameteriza-
tions are used for describing the kinematics of the pro-
posed elements, namely volume and Cartesian param-
eterizations. In order to be able to use a standard FE
assembly procedure, the volume position vector gra-
dients are first used to develop closed-form and com-
pact element shape function expressions. The numer-
ical results obtained using the proposed elements are
compared with the numerical results obtained using the
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Fig. 32 Vertical displacement of the flexible pendulum tip
(FNMC element)

Fig. 33 Normal strain εxx at the flexible pendulum center
(FNMC element)

conventional elements (TNL and SNQ) as well as an
ANCF fully parameterized rectangular plate element.
The results obtained in this study using the proposed
elements showed, in general, good convergence char-
acteristics.
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edge the financial support of the National Natural Science Foun-
dation of China (Grants No. 11602228).

Appendix

In this appendix, the shape functions of the TNL and
SNQ elements that use extensible directors are pre-
sented [77]. Considering a general node k, both the

Fig. 34 Normal strain εyy at the flexible pendulum center
(FNMC element)

Fig. 35 Normal strain εzz at the pendulum center (FNMC ele-
ment)

TNL and SNQ elements have the nodal position vector
rk and the slope vector rkz as nodal coordinates. The lin-
ear shape functions sk, k = 1, 2, . . . , 6, of the conven-
tional TNL element can be explicitlywritten in terms of
the set of volume coordinates ξ, η, ζ , and χ as follows:

s1 = ξ, s2 = W
2 ξχ, s3 = η, s4 = W

2 ηχ,

s5 = ζ, s6 = W
2 ζχ

}

(A.1)

where W is the TNL element thickness. The pairs of
shape functions si and s j , i = 1, 3, 5, j = 2, 4, 6, are,
respectively, associated with the TNL nodal positions
and slopes of the corner nodes k, k = 1, 2, 3.
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The quadratic shape functions sk, k = 1, 2, . . . , 12,
of the SNQ element can be written in terms of the set
of volume coordinates ξ, η, ζ , and χ as

s1 = ξ (ξ − (η + ζ )) , s2 = W
2 ξχ (1 − 2 (η + ζ )) ,

s3 = η (η − (ζ + ξ)) ,

s4 = W
2 ηχ (1 − 2 (ζ + ξ)) ,

s5 = ζ (ζ − (ξ + η)) , s6 = W
2 ζχ (1 − 2 (ξ + η)) ,

s7 = 4ξη, s8 = 2Wξηχ,

s9 = 4ηζ, s10 = 2Wηζχ,

s11 = 4ζ ξ, s12 = 2Wζ ξχ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.2)

whereW is the SNQelement thickness.While the pairs
of shape functions si and s j , i = 1, 3, 5, j = 2, 4, 6,
are, respectively, associated with the SNQ nodal posi-
tions and slopes of the corner node k, k = 1, 2, 3, the
pairs of shape functions si and s j , i = 7, 9, 11, j =
8, 10, 12, are, respectively, associated with the nodal
positions and slopes of the middle node k, k = 4, 5, 6,
on the sides of the element.
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