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Abstract The integrability of the reverse space—
time nonlocal Sasa—Satsuma equation in the Liou-
ville sense is established by showing the existence of
infinitely many conservation laws and putting into a bi-
Hamiltonian form. Further, we show that the nonlocal
Sasa—Satsuma equation for focusing case and defocus-
ing case is, respectively, gauge equivalent to a gener-
alized Heisenberg-like equation and a modified gener-
alized Heisenberg-like equation. Finally, by using of
special variable transformations, various kinds of non-
linear waves are obtained from those of the classical
counterpart.
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1 Introduction

Nonlinear Schrodinger (NLS) equation and its var-
ious generalized versions (continuous and discrete)
have been playing an important role in describing var-
ious physical phenomena [1-15]. In the literature [3],
Sasa and Satsuma proposed the following higher-order
extension of the NLS equation

iQT+§Qxx+|Q|2Q
+i(Qxxx +6¢]01*0x +3:¢0]0|%) =0, (1.1)

where O = Q(X,T) is a complex valued function
of the real variables X and 7, ¢ = F1 and sub-
script denotes the partial derivative with respect to the
corresponding variables. Taking the transformations
[24]

OO‘H

u(x, 1) = O(X, Tyei6(X~15).

Pﬂ

t=T, x=X-—— (1.2)

12’
Eq. (1.1) is reduced to
(X, 1)+t (x, 1) + 6eluCx, 1)Fux (x, 1)
+ 3eu(x, 0)lu(x, 1)> = 0. (1.3)

This system, referred as Sasa—Satsuma (SS) equa-
tion, has many important physical applications, such as
dynamics of deep water waves [16, 17], pulse propaga-
tionin optical fibers [18,19], and generally in dispersive
nonlinear media [20]. Besides, many other achieve-
ments have been made for the model including the con-
served quantities, the Hamiltonian structure, the inverse
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scattering transformation, the Darboux transformation,
the Hirota bilinear representation and various kinds of
solutions [21-26].

Very recently, investigations about the correspond-
ing integrable nonlocal model have grown tremen-
dously [27-37]. The physical application of these mod-
els can be found in various wave mixing phenomena
under appropriate P7 symmetric settings. This work
is concerned the reverse space—time nonlocal SS equa-
tion

Ur(x, 1) + gy (x, 1) +60u(—x, —t)u(x, t)u,(x, 1)
+3ou(x, )[u(—x, —Hu(x, )], = 0. (1.4)

Here and below, the bar refers to the complex con-
jugate, and coefficient o defines the sign of the non-
linearity. It should be mentioned that the nonlineari-
ties are nonlocal in case of optical beams in nonlinear
dielectric waveguides or waveguide arrays with ran-
dom variation of refractive index, size, or waveguide
spacing [36]. In addition, the Lax pair for the nonlocal
SS equation as well as its binary Darboux transforma-
tion were found in Ref. [31]. However, to the best of
our knowledge, some important integrable properties of
the nonlocal model including infinite number of con-
servation laws and bi-Hamiltonian structure have not
been reported. It is known that the gauge equivalence
of the nonlocal NLS equation with a Heisenberg-like
equation and discrete version, as well as the SS equa-
tion related to the generalized Landau Lifshitz equation
were described in Refs. [22,38-40]. It is, therefore, nat-
ural to ask what is the gauge equivalent equation of
the nonlocal SS equation. We further, from a different
point of view, find different types of nonlinear waves
of the nonlocal equation from those of the classical SS
equation by making use of special variable transforma-
tions.

The rest of the paper is organized as follows. In
Sects. 2 and 3, we report the derivation of an infi-
nite number of conservation laws and bi-Hamiltonian
structure for the nonlocal SS equation. In Sect. 4, the
relation between nonlocal SS equation and a gener-
alized Heisenberg-like equation is established with the
explicit construction of the equivalent Lax pair. Finally,
in Sect. 5 we study some different types of nonlinear
waves of the nonlocal SS equation by special variable
transformations.
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2 Conservation laws

The existence of infinite number of conservation laws
is an important indicator for the complete integrability.
The Lax pair for Eq. (1.4) is given by [31]

ox =My, ¢ =Ny, (2.1)
where
M=—i\A] +U,

N = —4i23] +40%U — 2inJ (U? — Uy)
+ U U —UUy — Uyy +2U°,

with
1 0 O
J=10 1 0 |,
0 0 —1
0 0 u(x,t)
U= 0 0 ou(—x, —t)
—ou(—x,—t) —u(x,t) 0

Here ¢ = (p1(x,t, 1), o2(x, 1, 1), ¢3(x,t, 2)7 is a
vector eigenfunction and A is acomplex spectral param-
eter. The zero curvature condition M; — N, +[M, N] =
0 can yield Eq. (1.4).

By means of the Lax representation, we can derive
infinitely many conservation laws for the nonlocal SS
equation. Introducing the variables

L — @2(x, 1, 1) = p1(x, 1, 1)
@3(x,1,1)’ @3(x,1,1)’

the first equation of spectral problem (2.1) is written as
a set of coupled Riccati equations

(2.3)

Wy x = ou(—x, —t) —2irwy + u(x, t)a)%

+ou(—x, —t)wrws, (2.4a)
w3 x =u(x,t) —2ilw3 + ulx, Hwrws
+oi(—x, —1)w3. (2.4b)
Next, we expand w; as series,
o
wj=y X]‘.")(zi,\)—k, j=23. 2.5)
k=1

By substituting (2.5) into (2.4) and comparing the coef-
ficients of A, we raise
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0w =oia(—x, -0, xV =ux, ),
3 3
@ _ @ _
X2 = _O—au(_xv _t)v X3 - _au(-xa t)v
3) _ 32 _ . P
2
x5 = 7u(x, 1) + 20 (—x, —O)[u(x, P2,

and the recursion formulas

k+1 k k—
X2(+): ()+M()C I)ZX(J) (k—j)

+ oii(—x, _I)ZX(J) (k— ])’

j=1
k1 0 k—
X:§+):_a ()+M(X I)ZX(J) (k=)
j=1
+ oii(—x, _t)ZX(J) (k— ])
j=1

On the other hand, itis easy to see that [In 3 (x, 7, )]/
= [In @3(x, t, \)];x, which implies

0 0

—p=—J, 2.6
5P = 8xj (2.6)
where

p=u(x,t)wy +ou(—x, =3,

3
J = [dor*ia(—x, —t) — 2oi,\a—ﬁ(—x, —1)
X

2

- oa—zﬁ(—x, —1) — 4(i(—x, —0))u(x, H]ws
ox
2
+ [42%u(x, 1) —sziu(x = g au.n

— 4o (u(x, t))zu(—x, —)]wn
+ diociu(—x, —tu(x,1t).

Then, we expand p and 7 as

o0 o
p=> m@in*  T=Y geint @
k=1 k=1
In comparison with the powers of A on both sides of
Eq. (2.6), we obtain an infinite number of conservation
laws for the model

d

9 =27 2.8
o Pk = xjk (2.8)

where

P1 = UM(X, t)ﬁ(_xi _t)v
P2 = 0[u(x7 t)lz(_'x’ _t)])h
2

03 = ou(x, r)mﬁ(—x, —1) + Hu(x, Dia(—x, —1)]?

2

b
+ou(—x, —t)—u(x, 1),

—i—cm( X, —t)x(k) k=4,5,...,
52
Ji =ou(x, t) u( X, —1)

Pk = u(x, t)x

82
+ou(—x, —t)@u(x, 1)
+6[u(x, Di(—x, —1)]?

0 d _
—o—u(x,t)—u(—x, —t),
ox

ox
33
Jr = ou(x, t) u( x, —t)
3
+ou(—x, — )8 3u(x 1)

+ 12u(x, t)u(—x, —t)ai[u(x, tHu(—x, —1)],
X

- k+2
Jk = —ou(—x, —t)xé 2

9% _
— [amu(—x, —1)
4G (—x, —0)ulx, t)] *)

w2 [0
—u(x,1)x, [8 Fu(x, 1)

4o ux, 1)) 2i(—x, t)] (k)

(k+1) (k+1)

0
—oa—u( X, —1)X3 ——u(x )X, ,

k=3,4,5,...

3 Hamiltonian structure

To establish the Hamiltonian structure of the nonlocal
SS equation, we introduce a basic Hamiltonian operator
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u(x, ) u(x, 1)
@1 = - -1
—00y —u(—x, =)0 u(x,t)

—0dy — u(x, )7 i(—x, —1)
it(—x, =) Lit(—x, —1) ’

and a symplectic structure

0 3y — 8ou(x, )d; i(—x, —r))

§= (ax — 8it(—x, —1)d; u(x, 1) 0

Then, a hereditary recursion operator R = ®S that
can be written as

R — (m(u(x, 1), dix (—x, 1))

Q(M(x! t)a ﬁx(_% _t))
Qux(=x, =1), ux, 1) ’

Py (—x, —1), u(x, 1))
where

Qu,v) = u? —ud; 'u, + 8ou[d; u?]o; v

—8oud, '[a 'u?]v,

2
P, v) = i 8v,0 'u — uv +ud, v,
X

—8ou[d; 'v*]a; u + 8oud; 3, v ]u.

Hence, due to the Magri [41] and Olver [42], the
nonlocal SS equation has an infinite hierarchy of com-
patible Hamiltonian structures ©; = RI-1O,, j =
2,3, .... and an infinite hierarchy of commuting sym-
metries of the form C; = Rj_llCl,j =2,3,...where
K1 = o(uc(x, 1), ity (—x, —1))T. Therefore, the non-
local SS equation is a bi-Hamiltonian system

)
u(x, t) _ Su(x,t)
<ﬁ(—x —z)) I G b
’ t Su(—x,—t)

_8
=0y ™50 )H, 3.1
Su(—x,—t)
where the Hamiltonian functions are
+00
H = —/ u(x, )u(—x, —t)dx, (3.2)
—00
+00
Hy = / 2u?(x, i*(—x, —t)
—00
—ouy(x, )iy (—x, —t)dx. (3.3)

Here % denotes variational derivative with respect
to u.
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4 Gauge equivalent system

In this section, we show that the nonlocal focusing
(0 = 1) SS equation and the nonlocal defocusing
(0 = — 1) SS equation are gauge equivalent to a gen-
eralized Heisenberg-like equation and a modified gen-
eralized Heisenberg-like equation, respectively.

We first make the following gauge transformation

¢=Glo, M=G"'MG-G'G,,
N=G'NG-G7'G,, (4.1a)

where G 1is a solution of system (2.1) for A = 0, i.e.,

G, =M0)G, G,=N(0)G. (4.1b)
For the focusing case, we obtain
M=—iAG~'JG 2 —ixrS, (4.2a)
- 3
N = —4ia3S + 22758, +ix (Sxx + 5553) ,
(4.2b)

in which we have used the following important identi-
ties

§S, =2G7'UG, SS§?=-4G7'JU?G,
Sex 4+ 882 =2G671JU,G.

The integrability condition I\;It -N ©+ [M , N ] = 0 for
new linear equation

ox =M@, ¢ =Ng, 4.3)
yields a generalized integrable Heisenberg-like equa-
tion

3
i+ Swex + (s;j 4 55..S; + S8, sxx) —0. (44)
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For the defocusing case, setting § = —iG~'JG,
from gauge transformation (4.1), we have

M = A\S, (4.52)

3 3
N =43385 — 22288, + A (zssﬁ - Sxx> . (4.5b)

where the following three important identities have
been used

§S, = —2G7'UG, SS8?=-4iG"'o3U%G,
Sex — 882 = —2iG™ 03U, G.

The zero curvature condition of (4.5) leads to a modi-
fied generalized integrable Heisenberg-like equation

3
i+ Soexr = 5 (Sj 4 5SS, + SSxSxx> —0. (4.6)

5 Different types of nonlinear waves

In this section, we construct analytical solutions of
the nonlocal SS equation from those of the classical
SS equation through some special variable transforma-
tions. Dynamical properties of the analytical solutions
present the structural diversity of the nonlinear waves.
Notice that nonlocal SS equation (1.4) can be converted
to classical SS equation (1.3) by introducing the vari-
able transformations [43]

x=i%, t=—if, u(x,t)20@&,10), (5.1
but with the opposite sign of nonlinearity. We have
omitted the symbol ~ for the SS equation. It means that
x and ¢ in nonlocal SS equation are treated as real vari-
ables when taking complex conjugate of u(—x, —1t),
however, the transformations, x = iX, t = —if with
real %, 7, change sign of x, ¢, which convert the non-
local term u(—x, —t) of (1.4) to the local term zi(;?, 1)
of (1.3).

5.1 Nonlinear waves of nonlocal defocusing SS
equation

Case 1 (periodic wave) Choosing the one-soliton solu-
tion of the classical focusing (¢ = 1) SS equation [3]

2
ia(x+(a273c2)t+w) 2ce"(e T+ k)
6477 + 262’7 + |k|2’ (52)

, n=clx+ (3a2 — cz)t + 6),

ulx,t)y=-¢e

k =

a+ic
and using the reverse of transformations (5.1), i.e.,
X = —ix,f = it, we get the solution of the nonlo-
cal defocusing (6 = —1) SS equation
2ce (e2m+k)
847“ + 2627“ + |k|2 ,(53)

k=—2 p=c(—ix+ GBd® = )it +8).
a—+ic

u(x,t) = ea(xf(a273cz)t+iw)

The dynamics for |u(x,?)|?, Re(u(x, t)ii(—x, —1))
and Im(u(x, t)u(—x, —t)) are illustrated in Fig. 1,
where parameters are taken as a = l,¢c = l,w =
1/2,8 = 1. We can see that Re(u(x, t)u(—x, —t)) and
Im(u(x, t)iu(—x, —t)) are periodic in both space and
time with periods Typace = % and Tijme =
respectively.

Case 2 For the double-hump soliton solution of the
classical focusing SS equation [24]

R S
c(3a?—c?)’

e 2EHD GO0 (6 (¢ i) (52 eP)
E242(82+n2)ef+(524+n?)e?P
B = 4n(x —4t(n* — 3&%)), (5.4)

ulx,t) =

where £,7 € R and |£] < |n], the reverse of trans-
formations (5.1) yields the following solution of the
nonlocal defocusing SS equation

4ne 2EHDGHG—E’D (£ (£ 4 in) + (E24n)ef)
E242(£24n?)ef1 +(£2+n?)e?h
Bi = 4n(—ix — 4it(n* — 3€%)). (5.5)

u(x,t) =

This solution is displayed in Fig. 2 when § = 1/4,n =
1. The module of solution (5.5) grows exponentially,
but Re(u(x, t)iu(—x, —t)) and Im(u(x, t)u(—x, —t))
are still periodic in both space and time with periods
Tspace = 21)7 and Tiime = 8(”2@—352), respectively.
Case 3 For the breather solution of the classical focus-
ing SS equation [24], setting

a = (x+4m+i&)*)(n +i&),
B=—x+4E> 30D, y=x+40n* —3E1,
(5.6)

and employing the reverse of transformations (5.1), we
obtain a singular solution for the nonlocal defocusing
SS equation

@ Springer
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(@) (b)

Reluz(—x—t]) Tra (i (—x, —1))

Fig. 1 a Evolution plot of the module of solution (5.2); b evolution plot of the module of solution (5.3); ¢ evolution plot of
Re(u(x, t)u(—x, —t)) of (5.3); d evolution plot of Im(u(x, t)u(—x, —t)) of (5.3). a Focusing SS. b Nonlocal defocusing SS

2 25 +in) (55 = 3im) + (§ — in)(5§ — 3ime*PE + 8§ —ime MV 4 4E(5 +inet®

(992 4 41£2) cos(4yn) — 32n2 cosh(4B€) 4+ (n? + £2)(40 — 9i sin(4yn)) 7

u(x,t) = 8ne

The singular point (x, 7) satisfies This solution is displayed in Fig. 3 with & = 1/2, 5 =

1/2.
Case 4 (W-type and dark soliton solution) The classi-

2n(x +4(n? — 36)1) =k, ) : : . o
5 5 5 5 5 (5.8) calfocusing SS equation admits the following periodic
81&° + 49n° = 32n“ cosh(4&(—x + 4(£° — 3n)1)). solution

@ Springer
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(b)

R (ul (=) Tra(uir (—x, —t))

(c) ()

Fig. 2 a Double-hump soliton solution of the focusing SS Im(u(x, t)u(—x, —t)) with periods Tspace = zlﬂ and Tiime =
equation; b module lu(x, t)|> of solution (5.5) to nonlo- respectively. Parameters £ = 1/4,n =1

b4
i ion: = 8(>—382)°
cal defocusing SS equation; ¢, d Re(u(x, f)u(—x, —t)) and

2% = 2)p3

W) = —p+ —— - , (5.9)
—2p% — At cos(Qtx — 2mt) + A*sin(2tx — 2mt)

where T = \/2p2 — A2, m = 4t(p> + A?), A, p € R Here we remark that, by choosing proper parame-
and 2|p| > |A]. Using the reverse of transformations ters, W-type (or M-type) and dark soliton solutions of
(5.1), we yield a W-type solution of the nonlocal defo- nonlocal defocusing SS equation can also be derived
cusing SS equation

202 —2)p°
u(x, 1) = —p ( )P (5.10)

"~ 2p2 + At cosh(2tx + 2mt) + iA2sinh(2Tx + 2mt)

When 1 = 1/2,p = 1, the dynamical profile of from the periodic solution of the focusing SS equa-
solution (5.10) is displayed in Fig. 4. If we choose tion under the variable transformations. These solutions
A = 1, p = 1, dark soliton solution can be obtained, have been obtained by Darboux transformation in [31].
which is depicted in Fig. 5.

@ Springer
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Re(ur (—x,—t))

Trauir (—x,—t))

‘ ! -

(@)

(e) ®

Fig. 3 a Breather solution of the focusing SS equation; b, ¢ singular solution of the nonlocal defocusing SS equation; d Density plot
of breather soliton of the focusing SS equation; e and f are density plot of b and ¢, respectively. Parameters § = 1/2,n =1/2

On the other hand, one can check that the solution of
nonlocal SS equation can also be converted into those
of classical SS equation by means of transformations
(5.1). For example, the breather solution of the nonlocal

5.2 Periodic wave solution of nonlocal focusing SS
equation

For the dark one-soliton solution of the defocusing

defocusing SS equation is given by [31] (e = — 1) SS equation [25], under the reverse of trans-
AP 4Pt + (A —it)e) (2ite” + (A2 + 1) (1 + e2)eité
ux,t)y=p|1-— (22l (. 2 )(l (, X ) ) , (5.11)
12621 + p2e2HE (AL +iT + (A — iT)e*) 4 4p2e?n)

where £ = x + 4221, 0 = tx +mt, T = /2p% — A2,
m = 4t(p? 4+ A%). Under the transformation
(5.12)

X —ix, t=—it,

we arrive to a semi-periodical solution of the focusing
SS equation

formations (5.1), i.e., £ = —ix, = it, we derive a
periodic wave solution of the nonlocal focusing SS
equation

2§

E+ 1
¢ = —i(p—E)x —4i((E* — ) — &Nt

u(x,t) = c(tanh ¢ — i Bsech¢p), B =

ux,t)y=p (1 —

AeTHI(L it 4 (L —iT)e? M) (2ite 4+ (A + 12)(1 4 eM)e 1)
: ; - - - , (5.13)
T2e2M + p2e=24E1 (MA +iT 4+ (A — iT)eHM) + 4p2e2im)

where & = x — 422, = 1x —mt. The dynamics of
the solution is displayed in Fig. 6b. We can see that the
expression of (5.13) tends to a constant p as t — —o0,
but to quasi-periodic oscillation as t — +00.

@ Springer
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+-In ————, u=+E24+2c2. (5.14)
2 a6 (E+p)
We thus see that the solution is periodic in both space
and time with periods Tipace = 777 and Time =
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Re(uzr (%)) Ira{uz(—x, —t))

(a)

Fig. 4 a Periodic soliton solution of the focusing SS equation; b—d W-type solution of nonlocal defocusing SS equation. Parameters
A=1/2,p=1

Re(u (—x,~1)) Tra(u (—x,~1))

Fig. 5 a-c Dark soliton solution of nonlocal defocusing SS equation with A =1, p =1

@ Springer
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-

L L A
-4 -2 0 2
t

()

Fig. 6 a Breather solution (5.11) of the nonlocal defocusing SS equation with p = 1, X = 1; b semi-periodical solution (5.13) of the
focusing SS equation; ¢ x = 1. a Nonlocal defocusing SS. b Focusing SS. ¢ Focusing SS

(a) (b)

Re(ur (—x,—t)) Tra(uir (—x, —t))

(0 d)

Fig. 7 Periodic solution (5.14) of the nonlocal focusing SS equation witha =2,b =2, ¢ = 1, & = 1/2. a Defocusing SS. b Nonlocal
focusing SS

W’T(Zz—_éz)_u)' The dynamics of the solution is shown studied through the transformation based on corre-
sponding solutions of defocusing or focusing SS equa-
tion, respectively. The symbols x and ¢ should be
regarded as imaginary variables under the transfor-

inFig. 7asa=2,b=2,c=1,&£ =1/2.
In short, some other kinds of solutions for the
nonlocal focusing or defocusing SS equations can be

@ Springer



Integrability and gauge equivalence of the reverse space—time

1919

mation of (5.1), but real variables within the scope
of the nonlocal system. This provides an effective
tool in search for explicit solutions of nonlocal sys-
tems.

6 Conclusion

In this paper, we have investigated the integrability
of the reverse space—time Sasa—Satsuma equation in
the Liouville sense including the infinite many con-
servation laws and bi-Hamiltonian form. We have also
shown that, under the gauge transformations, the nonlo-
cal Sasa—Satsuma equation for focusing case and defo-
cusing case are, respectively, gauge equivalent to a gen-
eralized Heisenberg-like equation and a modified gen-
eralized Heisenberg-like equation. By using of special
variable transformations, various kinds of explicit solu-
tions of the reverse space—time Sasa—Satsuma equation
are derived from those of the classical counterpart.
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