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Abstract The integrability of the reverse space–
time nonlocal Sasa–Satsuma equation in the Liou-
ville sense is established by showing the existence of
infinitely many conservation laws and putting into a bi-
Hamiltonian form. Further, we show that the nonlocal
Sasa–Satsuma equation for focusing case and defocus-
ing case is, respectively, gauge equivalent to a gener-
alized Heisenberg-like equation and a modified gener-
alized Heisenberg-like equation. Finally, by using of
special variable transformations, various kinds of non-
linear waves are obtained from those of the classical
counterpart.
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1 Introduction

Nonlinear Schrödinger (NLS) equation and its var-
ious generalized versions (continuous and discrete)
have been playing an important role in describing var-
ious physical phenomena [1–15]. In the literature [3],
Sasa and Satsuma proposed the following higher-order
extension of the NLS equation

i QT + ε

2
QXX + |Q|2Q

+ i(QXXX + 6ε|Q|2QX + 3εQ|Q|2X ) = 0, (1.1)

where Q = Q(X, T ) is a complex valued function
of the real variables X and T , ε = ∓ 1 and sub-
script denotes the partial derivative with respect to the
corresponding variables. Taking the transformations
[24]

u(x, t) = Q(X, T )e−i ε
6

(
X− T

18

)
,

t = T, x = X − T

12
, (1.2)

Eq. (1.1) is reduced to

ut (x, t) + uxxx (x, t) + 6ε|u(x, t)|2ux (x, t)
+ 3εu(x, t)|u(x, t)|2x = 0. (1.3)

This system, referred as Sasa–Satsuma (SS) equa-
tion, has many important physical applications, such as
dynamics of deep water waves [16,17], pulse propaga-
tion in optical fibers [18,19], andgenerally in dispersive
nonlinear media [20]. Besides, many other achieve-
ments have beenmade for the model including the con-
servedquantities, theHamiltonian structure, the inverse
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scattering transformation, the Darboux transformation,
the Hirota bilinear representation and various kinds of
solutions [21–26].

Very recently, investigations about the correspond-
ing integrable nonlocal model have grown tremen-
dously [27–37]. The physical application of thesemod-
els can be found in various wave mixing phenomena
under appropriate PT symmetric settings. This work
is concerned the reverse space–time nonlocal SS equa-
tion

ut (x, t) + uxxx (x, t) + 6σ ū(−x,−t)u(x, t)ux (x, t)

+ 3σu(x, t)[ū(−x,−t)u(x, t)]x = 0. (1.4)

Here and below, the bar refers to the complex con-
jugate, and coefficient σ defines the sign of the non-
linearity. It should be mentioned that the nonlineari-
ties are nonlocal in case of optical beams in nonlinear
dielectric waveguides or waveguide arrays with ran-
dom variation of refractive index, size, or waveguide
spacing [36]. In addition, the Lax pair for the nonlocal
SS equation as well as its binary Darboux transforma-
tion were found in Ref. [31]. However, to the best of
our knowledge, some important integrable properties of
the nonlocal model including infinite number of con-
servation laws and bi-Hamiltonian structure have not
been reported. It is known that the gauge equivalence
of the nonlocal NLS equation with a Heisenberg-like
equation and discrete version, as well as the SS equa-
tion related to the generalized Landau Lifshitz equation
were described inRefs. [22,38–40]. It is, therefore, nat-
ural to ask what is the gauge equivalent equation of
the nonlocal SS equation. We further, from a different
point of view, find different types of nonlinear waves
of the nonlocal equation from those of the classical SS
equation by making use of special variable transforma-
tions.

The rest of the paper is organized as follows. In
Sects. 2 and 3, we report the derivation of an infi-
nite number of conservation laws and bi-Hamiltonian
structure for the nonlocal SS equation. In Sect. 4, the
relation between nonlocal SS equation and a gener-
alized Heisenberg-like equation is established with the
explicit construction of the equivalent Lax pair. Finally,
in Sect. 5 we study some different types of nonlinear
waves of the nonlocal SS equation by special variable
transformations.

2 Conservation laws

The existence of infinite number of conservation laws
is an important indicator for the complete integrability.
The Lax pair for Eq. (1.4) is given by [31]

ϕx = Mϕ, ϕt = Nϕ, (2.1)

where

M = − iλJ +U,

N = − 4iλ3 J + 4λ2U − 2iλJ (U 2 −Ux )

+UxU −UUx −Uxx + 2U 3,

with

J =
⎛

⎝
1 0 0
0 1 0
0 0 − 1

⎞

⎠ ,

U =
⎛

⎝
0 0 u(x, t)
0 0 σ ū(−x,−t)

−σ ū(−x,−t) −u(x, t) 0

⎞

⎠ .

Here ϕ = (ϕ1(x, t, λ), ϕ2(x, t, λ), ϕ3(x, t, λ))T is a
vector eigenfunction andλ is a complex spectral param-
eter. The zero curvature conditionMt−Nx+[M, N ] =
0 can yield Eq. (1.4).

By means of the Lax representation, we can derive
infinitely many conservation laws for the nonlocal SS
equation. Introducing the variables

ω2 = ϕ2(x, t, λ)

ϕ3(x, t, λ)
, ω3 = ϕ1(x, t, λ)

ϕ3(x, t, λ)
, (2.3)

the first equation of spectral problem (2.1) is written as
a set of coupled Riccati equations

ω2,x = σ ū(−x,−t) − 2iλω2 + u(x, t)ω2
2

+ σ ū(−x,−t)ω2ω3, (2.4a)

ω3,x = u(x, t) − 2iλω3 + u(x, t)ω2ω3

+σ ū(−x,−t)ω2
3. (2.4b)

Next, we expand ω j as series,

ω j =
∞∑

k=1

χ
(k)
j (2iλ)− k, j = 2, 3. (2.5)

By substituting (2.5) into (2.4) and comparing the coef-
ficients of λ, we raise
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χ
(1)
2 = σ ū(−x,−t), χ

(1)
3 = u(x, t),

χ
(2)
2 = −σ

∂

∂x
ū(−x,−t), χ

(2)
3 = − ∂

∂x
u(x, t),

χ
(3)
2 = σ

∂2

∂x2
ū(−x,−t) + 2u(x, t)[ū(−x,−t)]2,

χ
(3)
3 = ∂2

∂x2
u(x, t) + 2σ ū(−x,−t)[u(x, t)]2,

and the recursion formulas

χ
(k+1)
2 = − ∂

∂x
χ

(k)
2 + u(x, t)

k−1∑

j=1

χ
( j)
2 χ

(k− j)
2

+ σ ū(−x,−t)
k−1∑

j=1

χ
( j)
2 χ

(k− j)
3 ,

χ
(k+1)
3 = − ∂

∂x
χ

(k)
3 + u(x, t)

k−1∑

j=1

χ
( j)
2 χ

(k− j)
3

+ σ ū(−x,−t)
k−1∑

j=1

χ
( j)
3 χ

(k− j)
3 .

On the other hand, it is easy to see that [ln ϕ3(x, t, λ)]xt
= [ln ϕ3(x, t, λ)]t x , which implies

∂

∂t
ρ = ∂

∂x
J , (2.6)

where

ρ = u(x, t)ω2 + σ ū(−x,−t)ω3,

J = [4σλ2ū(−x,−t) − 2σ iλ
∂

∂x
ū(−x,−t)

− σ
∂2

∂x2
ū(−x,−t) − 4(ū(−x,−t))2u(x, t)]ω3

+ [4λ2u(x, t) − 2iλ
∂

∂x
u(x, t) − ∂2

∂x2
u(x, t)

− 4σ(u(x, t))2ū(−x,−t)]ω2

+ 4iσλū(−x,−t)u(x, t).

Then, we expand ρ and J as

ρ =
∞∑

k=1

ρk(2iλ)−k, J =
∞∑

k=1

Jk(2iλ)−k, (2.7)

In comparison with the powers of λ on both sides of
Eq. (2.6), we obtain an infinite number of conservation
laws for the model

∂

∂t
ρk = ∂

∂x
Jk, (2.8)

where

ρ1 = σu(x, t)ū(−x,−t),

ρ2 = σ [u(x, t)ū(−x,−t)]x ,
ρ3 = σu(x, t)

∂2

∂x2
ū(−x,−t) + 4[u(x, t)ū(−x,−t)]2

+ σ ū(−x,−t)
∂2

∂x2
u(x, t),

ρk = u(x, t)χ(k)
2 + σ ū(−x,−t)χ(k)

3 , k = 4, 5, . . . ,

J1 = σu(x, t)
∂2

∂x2
ū(−x,−t)

+ σ ū(−x,−t)
∂2

∂x2
u(x, t)

+ 6[u(x, t)ū(−x,−t)]2

− σ
∂

∂x
u(x, t)

∂

∂x
ū(−x,−t),

J2 = σu(x, t)
∂3

∂x3
ū(−x,−t)

+ σ ū(−x,−t)
∂3

∂x3
u(x, t)

+ 12u(x, t)ū(−x,−t)
∂

∂x
[u(x, t)ū(−x,−t)],

Jk = −σ ū(−x,−t)χ(k+2)
3

−
[
σ

∂2

∂x2
ū(−x,−t)

+ 4(ū(−x,−t))2u(x, t)
]
χ

(k)
3

− u(x, t)χ(k+2)
2 −

[
∂2

∂x2
u(x, t)

+ 4σ(u(x, t))2ū(−x,−t)
]
χ

(k)
2

− σ
∂

∂x
ū(−x,−t)χ(k+1)

3 − ∂

∂x
u(x, t)χ(k+1)

2 ,

k = 3, 4, 5, . . .

3 Hamiltonian structure

To establish the Hamiltonian structure of the nonlocal
SS equation,we introduce a basicHamiltonian operator
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1 =
(

u(x, t)∂−1
x u(x, t) −σ∂x − u(x, t)∂−1

x ū(−x,−t)
−σ∂x − ū(−x,−t)∂−1

x u(x, t) ū(−x,−t)∂−1
x ū(−x,−t)

)
,

and a symplectic structure

S =
(

0 ∂x − 8σu(x, t)∂−1
x ū(−x,−t)

∂x − 8ū(−x,−t)∂−1
x u(x, t) 0

)
.

Then, a hereditary recursion operator R = 
1S that
can be written as

R =
(
P(u(x, t), ūx (−x,−t)) Q(u(x, t), ūx (−x, −t))
Q(ūx (−x, −t), u(x, t)) P(ūx (−x, −t), u(x, t))

)
,

where

Q(u, v) = u2 − u∂−1
x ux + 8σu

[
∂−1
x u2

]
∂−1
x v

− 8σu∂−1
x [∂−1

x u2]v,

P(u, v) = −σ
∂2

∂x2
− 8vx∂−1

x u − 9uv + u∂−1
x vx

− 8σu
[
∂−1
x v2

]
∂−1
x u + 8σu∂−1

x

[
∂−1
x v2

]
u.

Hence, due to the Magri [41] and Olver [42], the
nonlocal SS equation has an infinite hierarchy of com-
patible Hamiltonian structures 
 j = R j−1
1, j =
2, 3, . . .. and an infinite hierarchy of commuting sym-
metries of the formK j = R j−1K1, j = 2, 3, . . .where
K1 = σ(ux (x, t), ūx (−x,−t))T . Therefore, the non-
local SS equation is a bi-Hamiltonian system

(
u(x, t)

ū(−x,−t)

)

t
= 
1

(
δ

δu(x,t)
δ

δū(−x,−t)

)

H2

= 
2

(
δ

δu(x,t)
δ

δū(−x,−t)

)

H1, (3.1)

where the Hamiltonian functions are

H1 = −
∫ +∞

−∞
u(x, t)ū(−x,−t)dx, (3.2)

H2 =
∫ +∞

−∞
2u2(x, t)ū2(−x,−t)

− σux (x, t)ūx (−x,−t)dx . (3.3)

Here δ
δu denotes variational derivative with respect

to u.

4 Gauge equivalent system

In this section, we show that the nonlocal focusing
(σ = 1) SS equation and the nonlocal defocusing
(σ = − 1) SS equation are gauge equivalent to a gen-
eralized Heisenberg-like equation and a modified gen-
eralized Heisenberg-like equation, respectively.

We first make the following gauge transformation

ϕ̃ = G−1ϕ, M̃ = G−1MG − G−1Gx ,

Ñ = G−1NG − G−1Gt , (4.1a)

where G is a solution of system (2.1) for λ = 0, i.e.,

Gx = M(0)G, Gt = N (0)G. (4.1b)

For the focusing case, we obtain

M̃ = − iλG−1 JG � − iλS, (4.2a)

Ñ = − 4iλ3S + 2λ2SSx + iλ

(
Sxx + 3

2
SS2x

)
,

(4.2b)

in which we have used the following important identi-
ties

SSx = 2G−1UG, SS2x = − 4G−1 JU 2G,

Sxx + SS2x = 2G−1 JUxG.

The integrability condition M̃t − Ñx +[M̃, Ñ ] = 0 for
new linear equation

ϕ̃x = M̃ ϕ̃, ϕ̃t = Ñ ϕ̃, (4.3)

yields a generalized integrable Heisenberg-like equa-
tion

St + Sxxx + 3

2

(
S3x + SSxx Sx + SSx Sxx

)
= 0. (4.4)
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For the defocusing case, setting S = −iG− 1 JG,
from gauge transformation (4.1), we have

M̃ = λS, (4.5a)

Ñ = 4λ3S − 2λ2SSx + λ

(
3

2
SS2x − Sxx

)
, (4.5b)

where the following three important identities have
been used

SSx = − 2G−1UG, SS2x = − 4iG−1σ3U
2G,

Sxx − SS2x = − 2iG− 1σ3UxG.

The zero curvature condition of (4.5) leads to a modi-
fied generalized integrable Heisenberg-like equation

St + Sxxx − 3

2

(
S3x + SSxx Sx + SSx Sxx

)
= 0. (4.6)

5 Different types of nonlinear waves

In this section, we construct analytical solutions of
the nonlocal SS equation from those of the classical
SS equation through some special variable transforma-
tions. Dynamical properties of the analytical solutions
present the structural diversity of the nonlinear waves.
Notice that nonlocal SS equation (1.4) can be converted
to classical SS equation (1.3) by introducing the vari-
able transformations [43]

x = i x̂, t = −i t̂, u(x, t) � û(x̂, t̂), (5.1)

but with the opposite sign of nonlinearity. We have
omitted the symbol ˆ for the SS equation. It means that
x and t in nonlocal SS equation are treated as real vari-
ables when taking complex conjugate of ū(−x,−t),
however, the transformations, x = i x̂, t = −i t̂ with
real x̂, t̂ , change sign of x, t , which convert the non-
local term ū(−x,−t) of (1.4) to the local term ¯̂u(x̂, t̂)
of (1.3).

5.1 Nonlinear waves of nonlocal defocusing SS
equation

Case 1 (periodic wave) Choosing the one-soliton solu-
tion of the classical focusing (ε = 1) SS equation [3]

u(x, t) = eia(x+(a2−3c2)t+w) 2ceη(e2η + k)

e4η + 2e2η + |k|2 ,

k = a

a + ic
, η = c(x + (3a2 − c2)t + δ),

(5.2)

and using the reverse of transformations (5.1), i.e.,
x̂ = −i x, t̂ = i t , we get the solution of the nonlo-
cal defocusing (σ = −1) SS equation

u(x, t) = ea(x−(a2−3c2)t+iw) 2ceη1(e2η1+k)

e4η1 + 2e2η1 + |k|2 ,

k = a

a + ic
, η1 = c(−i x + (3a2 − c2)i t + δ).

(5.3)

The dynamics for |u(x, t)|2, Re(u(x, t)ū(−x,−t))
and Im(u(x, t)ū(−x,−t)) are illustrated in Fig. 1,
where parameters are taken as a = 1, c = 1, w =
1/2, δ = 1. We can see that Re(u(x, t)ū(−x,−t)) and
Im(u(x, t)ū(−x,−t)) are periodic in both space and
time with periods Tspace = π

c and Ttime = π
c(3a2−c2)

,
respectively.
Case 2 For the double-hump soliton solution of the
classical focusing SS equation [24]

u(x, t) = 4ηe−2i(ξ+iη)(x−4(η−iξ)2t)(ξ(ξ+iη)+(ξ2+η2)eβ)

ξ2+2(ξ2+η2)eβ+(ξ2+η2)e2β
,

β = 4η(x − 4t (η2 − 3ξ2)), (5.4)

where ξ, η ∈ R and |ξ | < |η|, the reverse of trans-
formations (5.1) yields the following solution of the
nonlocal defocusing SS equation

u(x, t) = 4ηe−2(ξ+iη)(x+4(η−iξ)2t)(ξ(ξ + iη) + (ξ2+η2)eβ1 )

ξ2+2(ξ2+η2)eβ1+(ξ2+η2)e2β1
,

β1 = 4η(−i x − 4i t (η2 − 3ξ2)). (5.5)

This solution is displayed in Fig. 2 when ξ = 1/4, η =
1. The module of solution (5.5) grows exponentially,
but Re(u(x, t)ū(−x,−t)) and Im(u(x, t)ū(−x,−t))
are still periodic in both space and time with periods
Tspace = π

2η and Ttime = π
8(η2−3ξ2)

, respectively.
Case 3 For the breather solution of the classical focus-
ing SS equation [24], setting

α = (x + 4(η + iξ)2t)(η + iξ),

β = −x + 4(ξ2 − 3η2)t, γ = x + 4(η2 − 3ξ2)t,

(5.6)

and employing the reverse of transformations (5.1), we
obtain a singular solution for the nonlocal defocusing
SS equation
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Fig. 1 a Evolution plot of the module of solution (5.2); b evolution plot of the module of solution (5.3); c evolution plot of
Re(u(x, t)ū(−x,−t)) of (5.3); d evolution plot of Im(u(x, t)ū(−x,−t)) of (5.3). a Focusing SS. b Nonlocal defocusing SS

u(x, t) = 8ηe−2iα 2(ξ + iη)(5ξ − 3iη) + (ξ − iη)(5ξ − 3iη)e4βξ + 8ξ(ξ − iη)e− 4iγ η + 4ξ(ξ + iη)e4iα

(9η2 + 41ξ2) cos(4γ η) − 32η2 cosh(4βξ) + (η2 + ξ2)(40 − 9i sin(4γ η))
. (5.7)

The singular point (x, t) satisfies

2η(x + 4(η2 − 3ξ2)t) = kπ,

81ξ2 + 49η2 = 32η2 cosh(4ξ(−x + 4(ξ2 − 3η2)t)).
(5.8)

This solution is displayed in Fig. 3 with ξ = 1/2, η =
1/2.
Case 4 (W-type and dark soliton solution) The classi-
cal focusing SS equation admits the following periodic
solution
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Integrability and gauge equivalence of the reverse space–time 1915

Fig. 2 a Double-hump soliton solution of the focusing SS
equation; b module |u(x, t)|2 of solution (5.5) to nonlo-
cal defocusing SS equation; c, d Re(u(x, t)ū(−x,−t)) and

Im(u(x, t)ū(−x,−t)) with periods Tspace = π
2η and Ttime =

π
8(η2−3ξ2)

, respectively. Parameters ξ = 1/4, η = 1

u(x, t) = −ρ + 2(λ2 − 2)ρ3

−2ρ2 − λτ cos(2τ x − 2mt) + λ2 sin(2τ x − 2mt)
, (5.9)

where τ = √
2ρ2 − λ2,m = 4τ(ρ2 + λ2), λ, ρ ∈ R

and 2|ρ| > |λ|. Using the reverse of transformations
(5.1), we yield a W-type solution of the nonlocal defo-
cusing SS equation

u(x, t) = −ρ − 2(λ2 − 2)ρ3

2ρ2 + λτ cosh(2τ x + 2mt) + iλ2 sinh(2τ x + 2mt)
. (5.10)

When λ = 1/2, ρ = 1, the dynamical profile of
solution (5.10) is displayed in Fig. 4. If we choose
λ = 1, ρ = 1, dark soliton solution can be obtained,
which is depicted in Fig. 5.

Here we remark that, by choosing proper parame-
ters, W-type (or M-type) and dark soliton solutions of
nonlocal defocusing SS equation can also be derived

from the periodic solution of the focusing SS equa-
tionunder the variable transformations.These solutions
have been obtained by Darboux transformation in [31].
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Fig. 3 a Breather solution of the focusing SS equation; b, c singular solution of the nonlocal defocusing SS equation; d Density plot
of breather soliton of the focusing SS equation; e and f are density plot of b and c, respectively. Parameters ξ = 1/2, η = 1/2

On the other hand, one can check that the solution of
nonlocal SS equation can also be converted into those
of classical SS equation by means of transformations
(5.1). For example, the breather solution of the nonlocal
defocusing SS equation is given by [31]

u(x, t) = ρ

(

1 − λeiλξ (λ + iτ + (λ − iτ)e2η)
(
2iτeη + (λ2 + τ 2)(1 + e2η)eiλξ

)

τ 2e2η + ρ2e2iλξ
(
λ(λ + iτ + (λ − iτ)e4η) + 4ρ2e2η

)

)

, (5.11)

where ξ = x + 4λ2t, η = τ x + mt, τ = √
2ρ2 − λ2,

m = 4τ(ρ2 + λ2). Under the transformation

x → i x, t = −i t, (5.12)

we arrive to a semi-periodical solution of the focusing
SS equation

u(x, t) = ρ

(

1 − λe−λξ1(λ + iτ + (λ − iτ)e2iη1)
(
2iτeiη1 + (λ2 + τ 2)(1 + e2iη1)e−λξ1

)

τ 2e2iη1 + ρ2e−2λξ1
(
λ(λ + iτ + (λ − iτ)e4iη1) + 4ρ2e2iη1

)

)

, (5.13)

where ξ1 = x − 4λ2t, η1 = τ x −mt . The dynamics of
the solution is displayed in Fig. 6b. We can see that the
expression of (5.13) tends to a constant ρ as t → −∞,
but to quasi-periodic oscillation as t → +∞.

5.2 Periodic wave solution of nonlocal focusing SS
equation

For the dark one-soliton solution of the defocusing
(ε = − 1) SS equation [25], under the reverse of trans-

formations (5.1), i.e., x̂ = −i x, t̂ = i t , we derive a
periodic wave solution of the nonlocal focusing SS
equation

u(x, t) = c(tanh φ − i Bsechφ), B =
√

2ξ

ξ + μ

φ = −i(μ − ξ)x − 4i((ξ2 − c2)μ − ξ3)t

+1

2
ln

2b2+μ2

a2ξ(ξ+μ)
, μ=

√
ξ2+2c2. (5.14)

We thus see that the solution is periodic in both space
and time with periods Tspace = π

μ−ξ
and Ttime =
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Fig. 4 a Periodic soliton solution of the focusing SS equation; b–d W-type solution of nonlocal defocusing SS equation. Parameters
λ = 1/2, ρ = 1

Fig. 5 a–c Dark soliton solution of nonlocal defocusing SS equation with λ = 1, ρ = 1

123



1918 L. Ma et al.

Fig. 6 a Breather solution (5.11) of the nonlocal defocusing SS equation with ρ = 1, λ = 1; b semi-periodical solution (5.13) of the
focusing SS equation; c x = 1. a Nonlocal defocusing SS. b Focusing SS. c Focusing SS

Fig. 7 Periodic solution (5.14) of the nonlocal focusing SS equation with a = 2, b = 2, c = 1, ξ = 1/2. a Defocusing SS. b Nonlocal
focusing SS

π
4(ξ3+(c2−ξ2)μ)

. The dynamics of the solution is shown

in Fig. 7 as a = 2, b = 2, c = 1, ξ = 1/2.
In short, some other kinds of solutions for the

nonlocal focusing or defocusing SS equations can be

studied through the transformation based on corre-
sponding solutions of defocusing or focusing SS equa-
tion, respectively. The symbols x and t should be
regarded as imaginary variables under the transfor-
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mation of (5.1), but real variables within the scope
of the nonlocal system. This provides an effective
tool in search for explicit solutions of nonlocal sys-
tems.

6 Conclusion

In this paper, we have investigated the integrability
of the reverse space–time Sasa–Satsuma equation in
the Liouville sense including the infinite many con-
servation laws and bi-Hamiltonian form. We have also
shown that, under the gauge transformations, the nonlo-
cal Sasa–Satsuma equation for focusing case and defo-
cusing case are, respectively, gauge equivalent to a gen-
eralized Heisenberg-like equation and a modified gen-
eralized Heisenberg-like equation. By using of special
variable transformations, various kinds of explicit solu-
tions of the reverse space–time Sasa–Satsuma equation
are derived from those of the classical counterpart.
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