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Abstract The fault detection filter (FDF) design
problem of a class of time-delayed and nonlinear
Markovian jumping systems (MJSs) is considered. The
delays in this paper are mode-dependent and time-
varying. Using the Takagi–Sugeno fuzzy (TSF) mod-
eling methods, the relevant TSF-MJSs related to the
TSF-FDF model are obtained. Through introducing a
reference residual model, the FDF design scheme can
be derived as an H∞-filtering formulation. By selecting
a suitable mode-dependent time-delayed Lyapunov–
Krasovskii functional (LKF), we get sufficient condi-
tions through which the stochastic stability of the TSF-
MJSs can be guaranteed. Then in terms of linear matrix
inequalities techniques, the fuzzy FDF design scheme
can be derived as an optimization one. A simulation
example is demonstrated as last to illustrate the feasi-
bility of the studied methods.
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1 Introduction

We know that nonlinearities and time-delays, which
are non-ignorable features of various engineering sys-
tems, might result in terrible deterioration of stability
and control effectiveness of many real processes. Over
the past few decades, the researches on such dynam-
ical systems with nonlinearities and time-delays have
been extensively given attention in control science and
engineering field. Many results have been arrived at in
this studied issue, see, for instance, [1–3] and the rele-
vant references. Recalling these results related to non-
linear dynamics, Takagi–Sugeno fuzzy (TSF) models
[4] have received considerable attention.We always use
TSFmodel to represent the local linear relations related
to the input–output terms of some nonlinear dynamics.
By the fuzzy membership functions, the relevant TSF
model gives a feasible framework to express the non-
linear plant by a series of local linear submodels. Many
research results of nonlinear systems modeled by TSF
representation have been studied on stability, robust
stabilization, controller synthesis and state estimation,
see [5–9] and the relevant references.

As a kind of important stochastic hybrid systems,
Markovian jumping systems (MJSs) is one of the hot
research topics in the past three decades.MJSs contains
two factors. The first one is the modes represented by a
Markov stochastic process; the second one is the states
described by the time-domain differential (or differ-
ence) equations. Many results related to the stochastic
stability (i.e., almost surely stability), controllability
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and robust filtering problems ofMJSs have beenwidely
studied, see for example, [10–17] and the relevant refer-
ences.Whenwe studyMJSsor useMJSs tomodel some
dynamics, we need to consider the time-delays owing
to the inherent features. In most research of MJSs, the
delays are mode-independent or the delayed modes are
assumed to be the same as the system modes. In fact,
some time-delays are mode-dependent. In this case,
the delay modes might not be the same as the system
modes, and themode-dependent delaysmight not cause
abrupt changes. When MJSs exist as mode-dependent
time-delays, the research will be more interesting and
challenging in theory and practice aspects.

On another research from line, the fault detec-
tion (FD) problem has regained a hot attention in
recent years due to the high reliability and high safety
demands ofmodern industrial process. Among the fault
detectionmethods,model-based fault detection [18,19]
is an active one. In the model-based fault detection
process, we can design a parameter/state estimator to
generate residual signals and to construct a evaluation
function of the residual signals. Then we can set a pre-
set threshold of the residual evaluation function and the
residual signals. In fault detection process, an alarm of
fault will generate if the evaluated function response
exceeds the given threshold. In this paper, we con-
sidered the H∞ filtering-based model fault detection
scheme. In the H∞ filtering formulation, the given H∞-
norm from external disturbances to residual signals is
used to estimate the influence of disturbance inputs and
the system sensitivity to faults. Motivated by these,
the H∞ filtering formulations have been proposed to
detect the faults for uncertain systems [20,21], non-
linear systems [22,23], time-delayed systems [24,25]
and MJSs [26–34], etc. In [26,27], the observer-based
robust fault detection method and the H∞-filtering for-
mulation were, respectively, constructed to obtain the
fault detection filter (FDF) for linear MJSs. Consider-
ing the H∞/H− settingmethods, the robust FDFdesign
problemof stochastic uncertain nonlinear time-delayed
MJSs was studied [28]. Based on the H∞ filtering-
based fault detection formulation, the FDFdesign prob-
lemswere, respectively, studied for discrete-timeMJSs
[29] andmode-dependent time-delayedMJSs [30]. For
more results on the FDF design ofMJSs, we refer inter-
ested readers to [31–34] and the relevant references.

This paper considered the FDF design problem of
time-delayed TSF-MJSs. The delays are considered
to be time-varying and mode-dependent. By selecting

an appropriate weighting matrix function, the jump-
ing fuzzy FDF systems and the H∞-filtering formu-
lation residual generator are constructed. We aim to
find a suitable FDF which derives a minimal differ-
ence between the ideal solution of the reference model
and the real result of the designed FDF. A sufficient
condition related to the designed FDF is obtained to
guarantee the stochastic stability of the resulting TSF-
MJSs and satisfy the given H∞ index to against exter-
nal disturbances, nonlinearities and time-delays. The
design scheme is proposed and proved in terms of lin-
ear matrix inequalities (LMIs) algorithms and a simu-
lation example is derived to demonstrate the feasibility
of the presented methods.

In this paper, the states are driven by the randompro-
cess {rt , t ≥ 0} which are taking values on the finite
set Υ1 = {1, 2, . . . , N1}. The time-delays are vary-
ing and mode-dependent and are driven by the ran-
dom process {lt , t ≥ 0} which are taking values on the
finite set Υ2 = {1, 2, . . . , N2}. In the process, these
two random processes are mutually independent. In
fact, if the delays are mode-dependent, the modes of
delays are always different with the modes of systems.
For convenience, some published results assume that
the delay modes are the same as the system modes,
see for example, [35,36] and the references therein.
It is obviously difficult to conduct the FDF design
research on MJSs with varying and mode-dependent
delays. When we design the fuzzy FDF, we choose the
Lyapunov–Krasovskii functional (LKF) candidate as
mode-dependent case, which is driven by the random
processes {rt , t ≥ 0} and {lt , t ≥ 0}. By choosing an
appropriate LKF, a mode-dependent sufficient condi-
tion is derived to prove that the resulting TSF-MJSs
is stochastically stable (SS) and satisfy the given H∞
index formulation. The designed algorithms and the
numerical example also illustrate the contribution of
the designed results.

Notations In this paper, �n represents the
n-dimensional Euclidean space; �n×m represents the
n×m-dimensionalmatrices; A−1 and AT, respectively,
represent the inverse and the transpose of matrix A;
diag{A1, A2} denotes the block-diagonal matrix of A1

and A2; σmin(A) and σmax(A), respectively, denote the
minimal and maximal eigenvalues of A; ‖∗‖ repre-
sents the vectors’ Euclidean norm; E {∗} denotes the
expectation of the relevant stochastic process or vec-
tor; ‖x(t)‖2,E denotes the mean square norm, where
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‖x(t)‖2,E =
√
E
∫∞
0 xT(t)x(t)dt ; P > 0 (P < 0)

denotes a negative (or positive)-definite matrix; I and
0, respectively, denote a unit matrix and a zero matrix
with appropriate dimensions; “∗” denotes the symmet-
ric matrix.

2 Problem formulation

To obtain a Takagi and Sugeno [4] fuzzy dynamic,
the principal methods are used to linearize the system
trajectories through different operating points and the
optimizationmethods are used tominimize the relevant
identification errors. In this paper, the linear model is
derived by the so-called IF-THEN rules and then used
to design the FDF for a class of TFS-MJSs. Given a
probability space (Ψ, Γ, Pr ), where Ψ represents the
sample space, Γ represents the algebra of events and
Pr represents the measure probability defined on Γ .
Consider a class of TFS-MJSs defined in (Ψ, Γ, Pr )
which is described by:

System Rule r :
IFα1(t) is Fr

1 ,α2(t) is Fr
2 , and…,αK (t) is Fr

K ,THEN:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ar (mt )x(t) + Aτr (mt )x[t − τ(it )]
+ Br (mt )u(t) + Bdr (mt )d(t) + B f r (mt ) f (t)

y(t) = Cr (mt )x(t) + Cτr (mt )x[t − τ(it )]
+ Ddr (mt )d(t) + D f r (mt ) f (t)

x(t) = a1(t), mt = a2(t), it = a3(t),

t ∈
[−τ1 0

]
, r = 1, 2, . . . , S.

(1)

where x(t) ∈ �n represents the state, y(t) ∈ �m

represents the measured output, u(t) ∈ �l repre-
sents the controlled input, d(t) ∈ L p

2

[
0 +∞ )

rep-
resents the external disturbance, f (t) ∈ �q rep-
resents the detected fault. α1 (t) , α2 (t) , . . . , αg (t)
represent the premise variables which can be avail-
able. Fr

k , r = 1, 2, . . . , L , k = 1, 2, . . . , K rep-
resent the fuzzy sets, L represents the numbers of
the fuzzy rules. Ar (mt ), Aτr (mt ), Br (mt ), Bdr (mt ),
B f r (mt ), Cr (mt ), Cτr (mt ), Ddr (mt ), D f r (mt ) are
known compatible matrices. a1(t) is the initial vector-
valued condition which is defined on [−τ1 0 ], where
τ1 = max {τ1i , it ∈ Υ2 = {1, 2, . . . , S2}}; a2(t) and
a3(t) are, respectively, the dependent initial modes.

τ(it ) is the time-varying and mode-dependent delay
satisfying:

0 ≤ τ2i ≤ τ(it ) ≤ τ1i < ∞, τ̇ (it ) ≤ τ3i < 1. (2)

Define the stochastic processes {mt , t ≥ 0} and {it , t ≥ 0}
as two continuous-time and discrete-state Markov pro-
cesses which take values on two finite sets Υ1 =
{1, 2, . . . , S1} and Υ2 = {1, 2, . . . , S2}. The relevant
transition rate matrices are Λ1 = {πmn}, m, n ∈ Υ1

and Λ2 = {
πi j
}
, i, j ∈ Υ2, respectively. We assume

that {mt , t ≥ 0} and {it , t ≥ 0} are mutually indepen-
dent. In this paper, we obtain the transition probability
of stochastic Markov process {mt , t ≥ 0} from mode
m at time t to mode n at time t + 
t as:

Pm = Pm {rt+
t = n|rt = m}
=
{

πmn
t + o (
t) , if m 	= n
1 + πmm
t + o (
t) , if m = n

(3)

and similarly we can get the transition probability of
stochastic Markov process {it , t ≥ 0} as:

Pi = Pi {rt+
t = j |rt = i}
=
{

πi j
t + o (
t) , if i 	= j
1 + πi i
t + o (
t) , if i = j

(4)

where 
t > 0 and lim

t→0

o(
t)

t = 0. πmn ≥ 0 (or

πi j ≥ 0) represents the transition probability rates
from mode m (or i) at time t to mode n (or j) at

time t + 
t . Then we have
S1∑

n=1,n 	=m
πmn = −πmm

and
∑S2

j=1, j 	=i πi j = −πi i .
For convenience, Ar (mt ), Aτr (mt ), Br (mt ),

Bdr (mt ), B f r (mt ), Cr (mt ), Cτr (mt ), Ddr (mt ),
D f r (mt ), x[t − τ(it )] are denoted as Ar (m), Aτr (m),
Br (m), Bdr (m), B f r (m), Cr (m), Cτr (m), Ddr (m),
D f r (m), x[t − τ(i)] respectively.

We let α(t) = [α1(t) α2(t) · · · αS(t) ] and
assume that the available variables only depend on the
states. Applying the standard fuzzy singleton infer-
ence approach, i.e., a singleton fuzzifier to derive a
fuzzy inference and weighted center-average defuzzi-
fier [4,5,7–9,23,25,28,37–41], we have the TSF-MJSs
as:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
L∑

r=1
hr [α(t)] {Ar (m)x(t)

+ Aτr (m)x(t − τ(i)) + Br (m)u(t)
+ Bdr (m)d(t) + B f r (m) f (t)

}

y(t) =
L∑

r=1
hr [α(t)] {Cr (m)x(t)

+Cτr (m)x(t − τ(i)) + Ddr (m)d(t)
+ D f r (m) f (t)

}
x(t) = a1(t), mt = a2(t),

it = a3(t), t ∈ [−τ1 0 ],
r = 1, 2, . . . , L .

(5)

where

⎧
⎪⎨
⎪⎩

hr [α(t)] = υr [α(t)]∑L
r=1 υr [α(t)]

υr [α(t)] = g
�
k=1

Fr
k [αk(t)]

(6)

and Fr
k [αk(t)] represents the membership grade of

αk(t)withυr [α(t)] ≥ 0 and
∑L

r=1 υr [α(t)] > 0. Then,
it is always assumed that:

⎧
⎨
⎩

L∑
r=1

hr [α(t)] = 1,

0 ≤ hr [α(t)] ≤ 1, r = 1, 2, . . . , L .

(7)

In order to detect f (t), we aim to design a suitable
FDF of the TSF-MJSs (5). Before designing the FDF,
we need the following definitions.

Definition 1 The TSF-MJSs (1) (letting u(t) = 0,
d(t) = 0, f (t) = 0) is SS if, for x(t) = a1(t),mt =
a2(t), it = a3(t), we have:

lim
T→∞E

{∫ T

0
‖x [t,mt , it ]‖2 dt

∣∣∣∣ x(t) = a1(t)

}
< ∞.

(8)

Definition 2 [10] In Euclidean space {�n ×Υ1×Υ2×
�+}, we select a positive stochastic functional as
V [x(t),mt = m, it = i, t > 0] and we can define the
relevant weak infinitesimal operator of V [x(t),m, i]
as:

�V [x(t),m, i]

= lim

t→0

1


t

[
E {V (x(t + 
t),mt+
t , it+
t )| x(t),

mt = m, it = i} − V (x(t),m, i)
]
. (9)

In the following, we construct the jumping fuzzy FDF
as:

Filter Rule r :
IFα1(t) is Fr

1 ,α2(t) is Fr
2 , and…,αK (t) is Fr

K ,THEN:

⎧
⎨
⎩
ẋF (t) = AFr (m, i)xF (t) + BFr (m, i)y(t)
gF (t) = CFr (m, i)xF (t) + DFr (m, i)y(t)
xF (t) = 0.

(10)

Then, the relevant fuzzy FDFdynamicmodel is derived
as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋF (t) =
L∑

r=1
hr [α(t)] [AFr (m, i)xF (t)

+ BFr (m, i)y(t)]

gF (t) =
L∑

r=1
hr [α(t)] [CFr (m, i)xF (t)

+ DFr (m, i)y(t)]
xF (t) = 0.

(11)

where xF (t) ∈ �n represents the filter state, gF (t) ∈
�m represents the filter output, AFr (m, i), BFr (m, i),
CFr (m, i), DFr (m, i) are the designed filtering param-
eters for each value m ∈ Υ1, i ∈ Υ2.

To detect the faults, we introduce a suitable stable
weighting matrix function W f (s) to improve the per-
formance and to identify the detected faults. We set
W f (s) as a full rank, diagonal or identity matrix. In
some published results [21,26], we always give the ref-
erence residual model with the following form:

g f (s) = W f (s) f (s). (12)

We can get the minimal realization of W f (s) as:

{
ẋ f (t) = AW x f (t) + BW f (t)
g f (t) = CW x f (t) + DW f (t).

(13)

Denote hr [α(t)] as hr , and define e(t) = x(t)− xF (t),
g(t) = gF (t) − g f (t). The resulting TSF-MJSs are
given as:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

˙̃x(t) = Ârk(m, i)x̃(t) + Âτrk(m, i)x̃ [t − τ(i)]
+ B̂rk(m, i)w(t)

g(t) = Ĉrk(m, i)x̃(t) + Ĉτrk(m, i)x̃ [t − τ(i)]
+ D̂rk(m, i)w(t)

(14)
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where x̃(t) =
⎡
⎣

x(t)
e(t)
x f (t)

⎤
⎦, w(t) =

⎡
⎣
u(t)
d(t)
f (t)

⎤
⎦,

Ârk (m, i) =
L∑

r=1

hr

L∑

k=1

hk

×

⎡
⎢⎢⎣

Ar (m) 0 0

Ar (m) − AFr (m, i) − BFr (m, i)Ck (m) AFr (m, i) 0

0 0 AW

⎤
⎥⎥⎦ ,

Âτrk (m, i) =
L∑

r=1

hr

L∑

k=1

hk

⎡
⎢⎢⎣

Aτr (m) 0 0

−BFr (m, i)Cτk (m) 0 0

0 0 0

⎤
⎥⎥⎦ ,

B̂rk (m, i) =
L∑

r=1

hr

L∑

k=1

hk

×

⎡
⎢⎢⎣

Br (m) Bdr (m) B f r (m)

0 −BFr (m, i)Ddk (m) −BFr (m, i)D f k (m)

0 0 BW

⎤
⎥⎥⎦ ,

Ĉrk (m, i) =
L∑

r=1

hr

L∑

k=1

hk

× [CFr (m, i) + DFr (m, i)Ck (m)−CFr (m, i)CW
]
,

Ĉτrk (m, i) =
L∑

r=1

hr

L∑

k=1

hk
[
DFr (m, i)Cτk (m) 0 0

]
,

D̂rk (m, i) =
L∑

r=1

hr

L∑

k=1

hk

×
[
0 DFr (m, i)Ddk (m) DFr (m, i)D f k (m) − DW

]
.

Remark 1 The weighting matrix function W f (s) is
introduced to limit the interval of frequency. By the
weighting matrix function, the faults can be identified
and the relevant performance of the detected systems
can be improved. By introducing the reference resid-
ual dynamic g f (s), the optimization criterion of the
fuzzy FDF dynamic (11) is the worst case distance
between the real solution (i.e., the generated residual)
and the ideal solution (i.e., the reference residual sig-
nal). Meanwhile, the minimization of the worst case
distance with respect to H∞ norm provides robustness
by the designed FDF.

Throughput analysis, the design problem of the
fuzzy FDF dynamic (11) is derived as an H∞index
formulation and model matching problem, i.e., find
suitable filtering parameters AFr (m, i), BFr (m, i),
CFr (m, i), DFr (m, i), satisfying the following two
objectives:

(a) The resulting TSF-MJSs (14) should be stochasti-
cally stable, i.e., almost asymptotically stable;

(b) Given a scalar γ > 0, the index formulation J (w)

is made small:

J (w) = sup
w(t)∈L2,w(t) 	=0

‖g(t)‖2,E
‖w(t)‖2 ≤ γ (15)

where ‖g(t)‖2,E =
√
E
[∫∞

0 gT(t)g(t)dt
]
,

‖w(t)‖2 =
√∫∞

0 wT(t)w(t)dt .

According to the above two objectives, the design
problem of the fuzzy FDF can be derived as the
H∞ filtering formulation, i.e., design the fuzzy FDF
dynamic (11) with parameters AFr (m, i), BFr (m, i),
CFr (m, i), DFr (m, i), m ∈ Υ1, i ∈ Υ2, such that
the resulting TSF-MJSs (14) with w(t) ∈ L2 is SS
and satisfy theH∞ index formulation with ‖g(t)‖2,E ≤
γ ‖w(t)‖2.

To design the fuzzy FDF dynamic (11), we should
determine the appropriate threshold and residual evalu-
ation function. Considering the norm bounded external
disturbance d(t), that is, d(t) ∈ L p

2

[
0 +∞ )

, we can
determine the following fault detection threshold Jth :

Jth = sup
d(t)∈L2, f (t)=0

E
{∫ T2

T1
gT(t)g(t)dt

}
(16)

where
[
T1 T2

]
is the detection finite-time interval

with T1 < T2; T f = T2 − T1 represents the initial fault
estimated time. In general, the fault estimated time T f

is always finite because the residual evaluation over an
infinite-time range is not the fact.

Then, we can determine the following evaluation
function f (g):

f (g) = E
{∫ T2

T1
gT(t)g(t)dt

}
. (17)

In the following, we canmake a decision logic to detect
the faults:{

f (g) > Jth ⇒ having faults (fault-alarm)

f (g) ≤ Jth ⇒ without faults (fault-free)
. (18)

3 Main results

Theorem 1 The resulting TSF-MJSs (14) is SS, if there
exist mode-dependentmatrix P̃(m, i) > 0, matrix Q̃ >

0 and scalars τ1 > 0, τ2 > 0 and τ3i > 0, satisfying
the following (19) for m, n ∈ Υ1, i, j ∈ Υ2,

�(m, i) =
[

�rk(m, i) P̃(m, i) Âτrk(m)

∗ − (1 − τ3i ) Q̃

]
< 0 (19)
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where

�rk(m, i) = P̃(m, i) Ârk(m) + ÂT
rk(m)P̃(m, i)

+ [1 + π (τ1 − τ2)] Q̃

+
S2∑
j=1

πi j P̃(m, j) +
S1∑
n=1

πmn P̃(n, i),

π = max {|πmm | , m ∈ Υ1} ,

τ2 = min {τ1i , i ∈ Υ2} .

Proof Select a LKF candidate as:

V
[
x̃(t),m, i

] = V1
[
x̃(t),m, i

]+ V2
[
x̃(t),m, i

]

+ V3
[
x̃(t),m, i

]
,

where

V1
[
x̃(t),m, i

] = x̃T(t)P̃(m, i)x̃(t),

V2
[
x̃(t),m, i

] =
∫ t

t−τ(i)
x̃T(ρ)Q̃x̃(ρ)dρ,

V3
[
x̃(t),m, i

] = π

∫ −τ2

−τ1

∫ t

t+ν

x̃T(ρ)Q̃x̃(ρ)dρdν.

Recalling to Definition 2, we can get the weak
infinitesimal operator of V

[
x̃(t),m, i

]
:

�V1
[
x̃(t),m, i

]

= lim
Δ→0

1

Δ
E
{
x̃T(t + Δ)P̃(mt+Δ, it+Δ)x̃(t + Δ)

− x̃T(t)P̃(m, i)x̃(t)
}

= lim
Δ→0

1

Δ

{
x̃T(t + Δ) [[1 + πmmΔ + o(Δ)]

[1 + πi iΔ + o(Δ)] P̃(m, i) + (1 + πmmΔ

+ o(Δ))

⎛
⎝

S2∑
j=1

[
1 + πi jΔ + o(Δ)

]
⎞
⎠ P̃ (m, j)

+ (1 + πi iΔ + o(Δ))

(
S1∑
n=1

[1 + πmnΔ + o(Δ)]

)
P̃(n, i)

+
⎛
⎝

S2∑
j=1

[
1 + πi jΔ + o(Δ)

]
⎞
⎠
(

S2∑
n=1

[1 + πmnΔ

+ o(Δ)]) P̃(n, j)
]
x̃(t + Δ) − x̃T(t)P̃(n, i)x̃(t)

}

= 2x̃T(t)P̃(m, i) ˙̃x(t)

+ x̃T(t)

⎡
⎣

S2∑
j=1

πi j P̃(m, j) +
S1∑
n=1

πmn P̃(n, i)

⎤
⎦ x̃(t)

= 2x̃T(t)P̃(m, i)
[
Â(m)x̃(t)

+ Âτ (m)x̃(t − τ(i)) + B̂d (m)d(t)
]

+ x̃T(t)

⎡
⎣

S2∑
j=1

πi j P̃(m, j) +
S1∑
n=1

πmn P̃(n, i)

⎤
⎦ x̃(t),

�V2
[
x̃(t),m, i

]

= lim

→0

1

Δ
E
{∫ t+Δ

t+Δ−τ(t+Δ,it+Δ)

x̃T(ρ)Q̃x̃(ρ)dρ

−
∫ t+


t−τ(i)
x̃T(ρ)Q̃x̃(ρ)dρ

}

= lim
Δ→0

1

Δ

[∫ t+Δ

t+Δ−τ(i)
x̃T(ρ)Q̃x̃(ρ)dρ

+
L2∑
j=1

(
πi jΔ + o(Δ)

) ∫ t+Δ

t+Δ−τ( j)
x̃T(ρ)Q̃x̃(ρ)dρ

−
∫ t+Δ

t−τ(i)
x̃T(ρ)Q̃x̃(ρ)dρ

]

= lim
Δ→0

1

Δ

[∫ t−τ(i)

t+Δ−τ(i)
x̃T(ρ)Q̃x̃(ρ)dρ

+
∫ t+Δ

t
x̃T(ρ)Q̃x̃(ρ)dρ

]

+
S2∑
j=1

πi j

∫ t

t−τ( j)
x̃T(ρ)Q̃x̃(ρ)dρ

= x̃T(t)Q̃x̃(t)

− [1 − τ̇ (i)] x̃T [t − τ(i)] Q̃x̃ [t − τ(i)]

+
S2∑
j=1

πi j

∫ t

t−τ( j)
x̃T(ρ)Q̃x̃(ρ)dρ,

�V3
[
x̃(t),m, i

] = π (τ1 − τ2) x̃
T(t)Q̃x̃(t)

− π

∫ t−τ2

t−τ1

x̃T(ρ)Q̃x̃(ρ)dρ.

Considering that πi j ≥ 0 for i 	= j , and πi i ≤ 0, we
have:

L2∑
j=1

πi j
∫ t
t−τ( j) x̃

T(ρ)Q̃x̃(ρ)dρ

= ∑
i 	= j

πi j
∫ t
t−τ( j) x̃

T(ρ)Q̃x̃(ρ)dρ

+πi i
∫ t
t−τ(i) x̃

T(ρ)Q̃x̃(ρ)dρ

≤∑i 	= j πi j
∫ t
t−τ1

x̃T(ρ)Q̃x̃(ρ)dρ

+πi i
∫ t
t−τ2

x̃T(ρ)Q̃x̃(ρ)dρ

= −πi i
∫ t
t−τ1

x̃T(ρ)Q̃x̃(ρ)dρ

+πi i
∫ t
t−τ2

x̃T(ρ)Q̃x̃(ρ)dρ

= −πi i
∫ t−τ2
t−τ1

x̃T(ρ)Q̃x̃(ρ)dρ

≤ π
∫ t−τ2
t−τ1

x̃T(ρ)Q̃x̃(ρ)dρ

.

Letting d(t) ≡ 0, we know that �V [x̃(t),m, i
]

< 0
can be derived by:

�V [x̃(t),m, i
] ≤ ηT(t)�(m, i)η(t) < 0,
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which leads to �(m, i) < 0 with η(t) =[
x̃T(t) x̃T(t − τ(i))

]T
.

And there will exist a mode-dependent matrix

rk(m, i) > 0, and

E
{�V [x̃(t),m, i

]} ≤ −ηT(t)
rk(m, i)η(t). (20)

Considering �V [x̃(t),m, i
]

< 0, it yields:

E
{
V
[
x̃(t),m, i

]}
< E

{
V
[
x̃(0),m0, i0

]∣∣
t=0

}
= x̃T(0)P̃(m, i)x̃(0)

+ ∫ 0
−τ(i) x̃

T(ρ)Q̃x̃(ρ)dρ

+π
∫ −τ2
−τ1

∫ 0
ν
x̃T(ρ)Q̃x̃(ρ)dρdν

.(21)

Combining the above relations, we can get:

E
{�V [x̃(t),m, i

]}

E
{
V
[
x̃(t),m, i

]} <
−ηT(t)
rk(m, i)η(t)

E
{
V
[
x̃(0),m0, i0

]} . (22)

Defining η1 = E ‖η(t)‖2, η2 = supτ1≤t≤0 E ‖x̃(t)‖2,
λ1 = minm∈Υ1,i∈Υ2 λmin [Γrk(m, i)], λ2 =
maxm∈Υ1,i∈Υ2 λmax [Γrk(m, i)], λ3 = λmax(Q̃), it con-
cludes that

ηT(t)
rk(m, i)η(t) ≥ λ1η1, (23)

E
{
V
[
x̃(t),m, i

]}
< E

{
V
[
x̃(0),m0, i0

]∣∣
t=0

}

≤ [λ2 + τ1λ3 + π (τ1 − τ2) λ3] η2. (24)

Therefore, theremust exist a sufficient small scalar λ >

0 which satisfies:

E
{�V [x̃(t),m, i

]}

E
{
V
[
x̃(t),m, i

]} <
−ξT(t)
rk(m, i)ξ(t)

E
{
V
[
x̃(0),m0, i0

]}

≤ −λ1η1

[λ2 + τ1λ3 + π (τ1 − τ2) λ3] η2
= −λ. (25)

Since η1 > 0, η2 > 0, λ1 > 0, λ2 > 0, λ3 > 0, λ > 0,
we can get:

E
{�V [x̃(t),m, i

]}
< −λE

{
V
[
x̃(t),m, i

]}
. (26)

Then we have

E
{
V
[
x̃(t),m, i

]}
< −eλtE

{
V
[
x̃(0),m0, i0

]}
. (27)

Defining σ = [λ2 + τ1λ3 + π (τ1 − τ2) λ3] η2, λ4 =
min

m∈Υ1,i∈Υ2
λmin

[
P̃(m, i)

]
, we obtain:

λ4E
{
x̃T(t)x̃(t)

}
≤ E

{
V
[
x̃(t),m, i

]} ≤ σe−λt . (28)

Taking limit as T → ∞, it concludes that:

lim
T→∞E

{∫ T

0
x̃T(t)x̃(t)dt

∣∣∣ x̃(0),m0, i0

}

≤ lim
T→∞

σ

λ · λ4

(
1 − e−λT

)
= σ

λ · λ4
< ∞. (29)

Back to Definition 1, we get that the resulting TSF-
MJSs (14) is SS. We can also derive that it is almost
asymptotically stable by the main results of Feng et al.
[11]. This completes the proof. �

To obtain the FDF, the main problem can be consid-
ered to design the fuzzy filter AFr (m, i), BFr (m, i),
CFr (m, i), DFr (m, i), m ∈ Υ1, i ∈ Υ2, such that the
resulting TSF-MJSs (14) with w(t) ∈ L2 is stochas-
tically stable (i.e., almost surely stable) and satisfies
a prescribed H∞ index with ‖g(t)‖2,E ≤ γ ‖w(t)‖2
under zero-initial conditions.

Theorem 2 The resulting TSF-MJSs (14) is SS, i.e.,
almost asymptotically stable and satisfies the given H∞
index level with γ > 0, if there exist P(m, i) > 0,
matrices Q11 > 0, Q22 > 0, Q33 > 0, matrices
Xr (m, i), Yr (m, i),CFr (m, i), DFr (m, i), Q12, Q13,
Q23, and scalars τ1 > 0, τ2 > 0 and τ3i > 0, LMIs
(30)–(31) hold for all m, n ∈ Υ1, i, j ∈ Υ2, and
r, k = 1, 2, . . . , L,

�rr (m, i) < 0, r = 1, 2, . . . , L (30)

�rk(m, i) + �kr (m, i) < 0, r < k, r, k = 1, 2, . . . , L

(31)

where �rk(m, i) = [�rk(m, i)]10×10, with

�11rk = AT
r (m)P(m, i) + P(m, i)Ar (m)

+ [1 + π (τ1 − τ2)] Q11

+
S1∑
n=1

πmn P(n, i) +
S2∑
j=1

πi j P(m, j),

�21rk = P(m, i)Ar (m) − Xr (m, i)

−Yr (m, i)Ck(m) + [1 + π (τ1 − τ2)] Q21,

�13rk = [1 + π (τ1 − τ2)] Q13,

�14rk = P(m, i)Aτr (m),

�17rk = P(m, i)Br (m),

�18rk = P(m, i)Bdr (m),

�19rk = P(m, i)B f r (m),

�110rk = CT
Fr (m, i) + CT

k (m, i)DT
Fr (m, i),

�22rk = XT
r (m, i) + Xr (m, i)

+ [1 + π (τ1 − τ2)] Q22
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+
S1∑
n=1

πmn P(n, i) +
S2∑
j=1

πi j P(m, j),

�23rk = [1 + π (τ1 − τ2)] Q23,

�24rk = −Yr (m, i)Cτk(m),

�28rk = −Yr (m, i)Ddk(m),

�29rk = −Yr (m, i)D f k(m),

�210rk = −CT
Fr (m, i),

�33rk = P(m, i)AW + AT
W P(m, i)

+ [1 + π (τ1 − τ2)] Q33

+
S1∑
n=1

πmn P(n, i) +
S2∑
j=1

πi j P(m, j),

�39rk = P(m, i)BW ,

�310rk = CT
W ,

�44rk = − (1 − τ3i ) Q11,

�45rk = − (1 − τ3i ) Q12,

�46rk = − (1 − τ3i ) Q13,

�410rk = CT
τk(m, i)DT

Fr (m, i),

�55rk = − (1 − τ3i ) Q22,

�56rk = − (1 − τ3i ) Q23,

�66rk = − (1 − τ3i ) Q33,

�77rk = −γ 2 I,

�88rk = −γ 2 I,

�99rk = −γ 2 I,

�810rk = DT
dk(m, i)DT

Fr (m, i),

�910rk = DT
f k(m, i)DT

Fr (m, i) − DT
W ,

�1010rk = −I.

π = max {|πmm | ,m ∈ Υ1} ,

τ2 = min {τ2i , i ∈ Υ2} , τ1 = max {τ2i , i ∈ Υ2} .

Moreover, the fuzzy FDF parameters can be obtained
by:

⎧
⎨
⎩

AFr (m, i) = P−1(m, i)Xr (m, i),
BFr (m, i) = P−1(m, i)Yr (m, i),
CFr (m, i) = CFr (m, i), DFr (m, i) = DFr (m, i).

(32)

Proof We set the following performance index for T >

0:

J (T ) = E
{∫ T

0
gT(t)g(t)dt − γ 2

∫ T

0
w(t)w(t)dt

}
.

Under the zero-initial condition, we have:

J (T ) = E
{∫ T

0

[
gT(t)g(t) − γ 2w(t)w(t)

]
dt

+ V
[
x̃(t),m, i

]}− EV
[
x̃(t),m, i

]

= E
{ ∫ T

0

[
gT(t)g(t) − γ 2w(t)w(t)

+�V
[
x̃(t),m, i

]]
dt
}

− EV
[
x̃(t),m, i

]

< E
{∫ T

0 βT(t) [Xrk(m, i) + Ykr (m, i)]β(t)dt
}

.

where,

β(t) =
⎡
⎢⎣
x̃(t)
x̃τ (t − τ(i))
w(t)

⎤
⎥⎦ ,

Xrk(m, i) =
⎡
⎢⎣

�rk(m, i) P̃(m, i) Âτrk(m) P̃(m, i)B̂rk(m)

∗ − (1 − τ3i ) Q̃ 0
∗ ∗ −γ 2 I

⎤
⎥⎦ ,

Yrk(m, i) =
⎡
⎢⎣
ĈT
rk(m)

ĈT
τrk(m)

D̂T
rk(m)

⎤
⎥⎦
[
Ĉrk(m) Ĉτrk(m) D̂rk(m)

]
.

As T → ∞, we know that J (T ) < 0 if Xrk(m, i) +
Yrk(m, i) < 0holds.According toSchur complements,
Xrk(m, i) + Yrk(m, i) < 0 equals to:

�(m, i) =

⎡
⎢⎢⎢⎢⎣

�rk (m, i) P̃(m, i) Âτrk (m) P̃(m, i)B̂rk (m) ĈT
rk (m)

∗ − (1 − τ3i
)
Q̃ 0 ĈT

τrk (m)

∗ ∗ −γ 2 I D̂T
rk (m)

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

< 0.

(33)

Wecan choose P̃(m, i) = diag
[
P(m, i) P(m, i) P(m, i)

]
,

Q̃ =
⎡
⎣
Q11 Q12 Q13

∗ Q22 Q23

∗ ∗ Q33

⎤
⎦. Then, we obtain the fol-

lowing relation by inequality (33):

L∑
r=1

hr

L∑
k=1

hkΨ (m, i) < 0 (34)

where

Ψ (m, i) =
⎡
⎣

Ψ1rk(m, i) Ψ2rk(m, i) Ψ3rk(m, i)
∗ Ψ4rk(m, i) Ψ5rk(m, i)
∗ ∗ Ψ6rk(m, i)

⎤
⎦ ,

Ψ1rk(m, i) =
⎡
⎣

�11rk ∗ [1 + π (τ1 − τ2)] Q13
Ψ21rk Ψ22rk [1 + π (τ1 − τ2)] Q23
∗ ∗ �33rk

⎤
⎦ ,

Ψ2rk(m, i) =
⎡
⎣
P(m, i)Aτr (m) 0 0
−P(m, i)BFr (m, i)Cτk(m) 0 0
0 0 0

⎤
⎦ ,
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Ψ3rk(m, i) =
⎡
⎣
P(m, i)Br (m) P(m, i)Bdr (m) P(m, i)B f r (m) CT

Fr (m, i) + CT
k (m, i)DT

Fr (m, i)
0 −P(m, i)BFr (m, i)Ddk(m) −P(m, i)BFr (m, i)D f k(m) −CT

Fr (m, i)
0 0 P(m, i)BW CT

W

⎤
⎦ ,

Ψ4rk(m, i) = − (1 − τ3i )

⎡
⎣
Q11 Q12 Q13

∗ Q22 Q23

∗ ∗ Q33

⎤
⎦ ,

Ψ5rk(m, i) =
⎡
⎣O3×3

.

.

.

CT
τk(m, i)DT

Fr (m, i)
0
0

⎤
⎦ ,

Ψ6rk(m, i) =

⎡
⎢⎢⎣

−γ 2 I 0 0 0
∗ −γ 2 I 0 DT

dk(m, i)DT
Fr (m, i)

∗ ∗ −γ 2 I DT
f k(m, i)DT

Fr (m, i) − DT
W

∗ ∗ ∗ −I

⎤
⎥⎥⎦ ,

with

Ψ21rk = P(m, i)Ar (m) − P(m, i)AFr (m, i)

− P(m, i)BFr (m, i)Ck(m)

+ [1 + π (τ1 − τ2)] Q21,

Ψ22rk = AT
Fr (m, i)P(m, i) + P(m, i)AFr (m, i)

+ [1 + π (τ1 − τ2)] Q22

+
S1∑
n=1

πmn P(n, i) +
S2∑
j=1

πi j P(m, j).

Using Schur complements and letting Xr (m, i) =
P(m, i)AFr (m, i), Yr (m, i) = P(m, i)BFr (m, i), we
know that inequality (34) is equivalent to the relation
as follows:

L∑
r=1

h2r�i i (m, i)

+
L∑

r=1

hr

{
L∑

k=1

hk [�rk(m, i) + �kr (m, i)]

}

< 0. (35)

It easily leads to LMIs (30)–(31). By Theorem 1, it
is derived that the resulting TSF-MJSs (14) is SS and
satisfies ‖g(t)‖2,E < γ ‖w(t)‖2. This completes the
proof. �

Remark 2 By selecting an appropriate LKF, we get the
mode-dependent sufficient conditions in Theorems 1
and 2. According to LMIs (29)–(31), we should deter-
mine τ1 = max {τ1i }, τ2 = min {τ2i } and τ3i , where
i = it ∈ Υ2 = {1, 2, . . . , L2}. The values τ1, τ2 and τ3i
are related to themode-dependent delay it . Meanwhile,
we also choose the positive-definite matrix P(m, i)

and the fuzzyFDFgains Xr (m, i),Yr (m, i),CFr (m, i),
DFr (m, i) as mode-dependent, which are driven by the
random processes {mt , t ≥ 0} and {it , t ≥ 0}.
Corollary 1 To obtain an optimization fuzzy FDF for-
mulation against external disturbance, time-varying
delays, nonlinearities and faults, the attenuation index
γ can be derived to the following optimization problem
satisfying LMIs (30)–(31):

min
P(m,i),Xr (m,i),Yr (m,i),CFr (m,i),DFr (m,i),Q,χ

χ

s.t. LMIs (30)−(31) with χ = γ 2
. (36)

To describe the efficiency of the designed approach, we
give a two-dimension and two-mode stochastic MJSs
with varying and mode-dependent time-delays. Recall-
ing to the main results in LMIs (30)–(31), we should
choose the initial values. ApplyingMATLAB LMI Tool-
box, we can straightforwardly solve LMIs (30)–(31).
To prove the feasibility of the designed approaches, we
give a simulation example in the next Section.

4 Numeral example

Considering a two-dimension and two-mode TSF-
MJSs with parameters described by:

A1 (1) =
[− 0.3 0.2

0.1 − 0.4

]
,

Aτ1 (1) =
[− 0.1 − 0.1

0 − 0.1

]
,

A2 (1) =
[− 0.3 0.5

0.1 − 1

]
,
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Aτ2 (1) =
[−0.05 −0.1

0 0.05

]
,

A1 (2) =
[− 0.3 − 0.4

− 0.1 − 1

]
,

Aτ1 (2) =
[

0 −0.1
0.1 0

]
,

A2 (2) =
[− 0.1 10

− 1 − 10

]
,

Aτ2 (1) =
[
0.05 − 0.1
0 0.1

]
,

Br (m) =
[
0.8
1.2

]
,

Bdr (m) =
[
0.1
0.1

]
,

B f r (m) =
[−0.2

0.1

]
,

Cr (m) = [0.2 0.1
]
,

Cτr (m) = [−0.1 0.1
]
,

Ddr (m) = 0.5,

D f r (m) = 1.5.

The transition rate matrices related to the two opera-

tion modes are shown as Λ1 =
[−0.3 0.3

0.2 −0.2

]
and

Λ2 =
[−0.4 0.4

0.6 −0.6

]
. Give the following state-space

realization of the weighting function W f (s) as:

AW =
[−0.8 0

0 −0.6

]
,

BW =
[
0.1
0.2

]
,

CW = [ 0.4 0.3
]
,

DW = 0.2.

In this simulation,we give the initial values as τ1 = 0.8,
τ2 = 0.3, τ31 = 0.4, τ32 = 0.7. Solving LMIs (30, 31),
the optimization level can be derived as γmin = 1.4749.
The relevant TSF-FDF dynamic is obtained as follows:

AF1(1, 1) =
[− 0.4706 0.0764

0.0596 − 0.4434

]
,

BF1(1, 1) =
[
0.7040
0.1833

]
,

CF1(1, 1) = [− 0.0106 −0.0076
]
,

DF1(1, 1) = 0.0401;
AF1(1, 2) =

[− 0.4270 0.0883
0.0175 − 0.4957

]
,

BF1(1, 2) =
[
0.4259
0.2978

]
,

CF1(1, 2) = [− 0.0086 −0.0073
]
,

DF1(1, 2) = 0.0256;
AF1(2, 1) =

[−0.3658 −0.6126
−0.5791 −2.7647

]
,

BF1(2, 1) =
[

0.0286
− 0.0920

]
,

CF1(2, 1) = [− 0.0038 0.0020
]
,

DF1(2, 1) = 0.0278;
AF1(2, 2) =

[−0.8038 − 0.5018
0.1618 − 2.3777

]
,

BF1(2, 2) =
[

2.6915
− 3.0573

]
,

CF1(2, 2) = [−0.0118 0.0028
]
,

DF1(2, 2) = 0.0840;
AF2(1, 1) =

[− 0.3996 1.1487
0.0184 − 2.3124

]
,

BF2(1, 1) =
[
0.5656
0.0601

]
,

CF2(1, 1) = [−0.0042 −0.0021
]
,

DF2(1, 1) = 0.0182;
AF2(1, 2) =

[− 0.4086 1.1841
0.0402 − 2.3695

]
,

BF2(1, 2) =
[
0.2500
0.1375

]
,

CF2(1, 2) = [− 0.0054 − 0.0039
]
,

DF2(1, 2) = 0.0256;
AF2(2, 1) =

[− 1.1645 16.8291
− 0.5676 − 20.5278

]
,

BF2(2, 1) =
[
0.2020
0.0757

]
,

CF2(2, 1) = [− 0.0060 − 0.0051
]
,

DF2(2, 1) = 0.0330;
AF2(2, 2) =

[− 1.2270 20.2688
0.8656 − 27.2868

]
,

BF2(2, 2) =
[− 1.0432

2.0936

]
,
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Fig. 1 Bound-limited
random noise d(t)
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Fig. 2 Residual signal g(t)
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CF2(2, 2) = [− 0.0066 − 0.0116
]
,

DF2(2, 2) = 0.0450.

To show the feasibility of the designed TSF-FDF,
we suppose that the external disturbance d(t) is a
[−0.50.5]-bound-limited random noise. The fault f (t)
is chosen as a step square wavewhich occurs from 9s to
15s with positive unit amplitude. The external distur-

bance d(t), the residual response g(t) and the residual
evaluation response f (g) are illustrated in Figs. 1, 2
and 3.

Figure 3 shows the residual evaluation response
f (g)with respect to fault case and fault-free case. From
the residual evaluation response, we select the thresh-

old as Jth = supd(t)∈L2, f (t)=0 E
{∫ 20

0 gT(t)g(t)dt
}

=
2.42. It is shown from Fig. 3 that f (g) =
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Fig. 3 Residual evaluation
response f (g)
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E
{∫ 9.96

0 gT(t)g(t)dt
}

= 2.44 > Jth . Therefore, we

can detect the appeared fault within 1.0s after its occur-
rence.

Remark 3 To prove the efficiency of the designed
approach, we give a two-dimension and two-mode
MJSs with varying and mode-dependent time-delays.
Recalling to the main results in LMIs (29)–(31), we
choose the values τ1, τ2 and τ3i related to the mode-
dependent delay it as τ1 = 0.8, τ2 = 0.3, τ31 =
0.4, τ32 = 0.7. For the MJSs containing mode-
independent time-delays, the interested readers can see
[28,29,33,42].

Remark 4 It is observed that the novelty in our study
relates to nonlinearities and mode-dependent time-
delays existing in MJSs. By using the designed algo-
rithms, it is seen that the appeared faults can be
detected within 1.0s by the designed fuzzy FDF. By
means of H∞-filtering formulation and LMIs tech-
niques, Zhong et. al. [21,26], respectively, studied
the FDF design problems for uncertain LTI systems
and linear MJSs. The main results in our study show
more applicable advantages in time-varying andmode-
dependent delayed systems. Moreover, it will be an
important improvement in the research of TSF sys-
tems. It should point out that if the time-delays are
constant or without delays, themain conclusions in this
paper can be derived to the general results published in
[21,26,29,33].

5 Conclusion

The H∞ filtering-based FDF designed problems for
nonlinear MJSs with varying and mode-dependent
time-delays have been researched. Applying the LKF
techniques and LMIs algorithms, sufficient conditions
are obtained such that the resulting TSF-MJSs is SS
and the derived fuzzy FDF are presented and proved.
A simulation example has been obtained to show the
feasibility of the presented methods.
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