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Abstract In this work, the dynamics of an oscillator
with delayed feedback is analyzed. It is found that for
certain values of the parameters, the system exhibits
a phenomenon known as double Hopf bifurcation with
1:2 resonance. This singularity provokes the interaction
between two oscillatory solutions, one of frequency ω

and the other with frequency 2ω. By using the graphi-
cal Hopf bifurcation theorem, the system dynamics in
a neighborhood of this singularity is explored. Also,
with the aid of the package DDE-Biftool, some global
bifurcations are detected in order to provide a better
understanding of the whole scenario.
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1 Introduction

The appearance of smooth oscillations under the sta-
bility change in the equilibrium point, when a critical
parameter is varied, is now awell-known phenomenon.
When a single pair of complex eigenvalues resulting
from the linearization of equilibrium point crosses the
imaginary axis, an emergence of a unique limit cycle is
born under the Hopf bifurcation mechanism [1]. This
rich scenario has been captured by many articles and
books, and recovered with fine and exquisite numerical
methods [2,3]. As a building block in complexity, when
two pairs of complex eigenvalues cross the frontier of
stability the appearance of two periodic branches can
interact themselves and generate quasiperiodic motion
after suitable perturbation in two parameters. This type
of singularity is now called double Hopf bifurcation
or simply Hopf–Hopf phenomenon [4]. Besides ordi-
nary differential equations, a quite similar scenario is
present in equationswith delays [5]; to bemore specific,
see [6] and the references therein for Hopf bifurcation,
and Xu et al. [7] for double Hopf singularity. Similarly,
the advance in numerical continuationmethods permits
now the computation of periodic branches by varying
one parameter in delay differential equations [8,9] in
order to complete a global result for Hopf and double
Hopf bifurcations.

The present paper inscribes in the lines traced out
by Tsypkin [10] in order to extend the stability test
for systems with delayed feedback, and in the contri-
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butions of [11,12] in order to recover the branch of
periodic oscillations fromHopf bifurcation using feed-
back control methods, such as Nyquist diagrams and
harmonic balance techniques. As a natural extension,
the computation of the periodic solutions starting from
Hopf bifurcations in a type of delayed feedback sys-
tems has been reported in [13,14]. This technique has
been efficient also to compute the periodic branches
of double Hopf bifurcations [15] in ordinary differen-
tial equations (ODEs). So, the current paper starts from
an example of a resonant 1:2 double Hopf bifurcation,
i.e., the relation between both frequencies is 1:2, taken
from [16].

Roughly speaking, the resonant 1:2 double Hopf
bifurcation provokes the interaction between two oscil-
latory solutions, one of frequency ω and the other
with frequency 2ω. However, the dynamics around this
singularity can be fully described by varying two or
three parameters, depending on its complexity. In other
words, the singularity can be co-dimension two or co-
dimension three. This difference has been pointed out
in [17] for ODEs, where the authors used the multi-
ple timescales method. By using the same theoretical
framework, some conditions to determine if the reso-
nance is co-dimension two or co-dimension three have
been derived in [18] for time-delay systems. The for-
mer case is considered a weak resonance and the latter
a strong resonance. So, it is worth mentioning that the
1:2 resonance can be weak even if it is low order.

In this paper, the dynamic behavior arising near the
1:2 resonance is analyzed by a combination of analyt-
ical techniques for local results using the frequency
domain formulation [12,19] and DDE-Biftool [8,9]
when considering some global results. More precisely,
themain objective is to capture analytically the periodic
solutions arising from the Hopf bifurcation branches
near the resonance, and additionally, to compute some
bifurcations of limit cycles numerically. The main
advantage of the theoretical method employed is that
the stability of both the equilibrium points and the peri-
odic solutions can be deduced without dealing with an
exponential polynomial. Moreover, there is no need for
changing and scaling the state variables to apply the
method. On the other hand, the main disadvantage is
that the obtained formulas do not have a direct match
with the normal formof the 1:2 resonance, so the classi-
fication intoweak and strong resonances is not straight-
forward.

Other papers focused on some special types of res-
onances, for example, Revel et al. [20] for resonant 1:2
double Hopf bifurcation in ODEs, or Xu et al. [7] and
Ji et al. [21] for delay differential equations. Recently,
a model of a maglev system has been analyzed through
an extensive exploration in the parameter space [22],
showing a presence of a resonant 1:2 doubleHopf bifur-
cation.Moreover, the celebrated technique of stabiliza-
tion of periodic solutions by means of Pyragas time-
delayed feedback control has found rich dynamic sce-
narios of double Hopf bifurcation, quasiperiodic oscil-
lations and secondary bifurcations in order to delimit
the domain of stability of the target periodic orbit [23].
These articles act as a truemotifs of genuine research in
order to characterize the unfoldings of this singularity
with an hybrid method, such as the one reported in this
paper.

2 The problem

Consider the following system proposed in [16]:

ü + αu̇ + 5

2
u = f (u(t − τ)) , (1)

where u, α ∈ R, τ ∈ R
+ and f : R → R is a smooth

function. Equation (1) is an oscillator with damping
α and forced by the control law f (u(t − τ)), where
τ is the time-delay. It is assumed that there is at least
one value u∗ such that 5

2u
∗ = f (u∗), which means the

existence of an equilibrium point of (1). By considering
a perturbation around this equilibrium, one replaces the
trial z(t) = u∗ + ε er t in (1) to obtain the characteristic
equation:

P(r, μ) = r2 + αr + 5

2
− f1e

−rτ = 0, (2)

where f1 � f ′(u∗) and μ � ( f1, τ, α) represents a
vector of parameters. A necessary condition for the
existence of a Hopf bifurcation is obtained when a pair
of complex conjugate solutions of (2) crosses the imagi-
nary axis,when a single parameter is varied.The critical
condition is stated as P(iω0, μ0) = 0, with ω0 �= 0.
The singularity known as resonant 1:2 double Hopf
occurs when two couples of complex conjugate solu-
tions of (2) cross the imaginary axis, while parameters
are varied, and the ratio between their imaginary parts
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is 2 at criticality. At least two real parameters should
be varied to provoke this situation. The necessary con-
ditions for this phenomenon are

P(iω0, μ0) = P(i2ω0, μ0) = 0, ω0 �= 0. (3)

The appearance of that singularity in system (1) will be
studied in the next section, under the framework of the
graphical Hopf bifurcation theorem (GHBT), see [11].

2.1 Analysis using the GHBT

Letting x1 = u̇ and x2 = u, system (1) can be rewritten
as

{
ẋ1 = −αx1 − 5

2 x2 + f (x2(t − τ)) ,

ẋ2 = x1.
(4)

In order to apply the GHBT formulation, (4) must be
represented in a standard feedback form, as{
ẋ(t) = A x(t) + B g(y(t − τ)),

y(t) = Cx(t),

which is a linear subsystemwhose output is y(t), with a
nonlinear feedback g(·). To do so, the following matri-
ces are considered

A =
(−α −5/2

1 0

)
, B =

(
1
0

)
, C = (0 1) .

With this choice, the output of the linear block is y =
x2, and the nonlinear feedback is g(y) = f (−y). The
linear subsystem has a transfer function

G(s) = C(s I − A)−1Be−sτ = e−sτ

Δ(s)
,

where

Δ(s) � s2 + αs + 5/2,

since the feedback depends on y(t − τ), so the delay
dynamics can be considered in the linear part. The feed-
back system can be seen in Fig. 1, where d = 0 (zero

Fig. 1 Block system representation

external reference or disturbance) means that the sys-
tem is autonomous. The stability of the equilibrium
point is deduced from a linearized analysis, consider-
ing J (μ) � g′(y)|y=y∗ = − f1, where y∗ (= u∗) is
the equilibriumvalue of the output y(t). The linear loop
gain is given by

λ(s, μ) � G(s)J (μ) = − f1e−sτ

Δ(s)
, (5)

where λ(s;μ) is known as the characteristic function.
It is convenient to consider the following result.

Lemma 1 [19] If the characteristic Eq. (2) has a pair
of imaginary complex conjugate solutions ±iω0 for
μ = μ0, then the characteristic function λ(iω0, μ0)

in the frequency domain assumes the value −1 + i0.

For a given value of μ, the characteristic locus
λ(iω,μ) describes a curve in the complex plane,
parametrized on the frequency ω. The former Lemma
establishes that the necessary condition for a Hopf
bifurcation in the frequency domain is detected when
this geometrical locus passes through −1 for ω = ω0,
when the parameter assumes the fixed value μ = μ0.
This graphical interpretation will be further explored
in Sect. 3.1.

2.2 Conditions for the Hopf and resonant double
Hopf bifurcations

By applying Lemma 1 for the characteristic function
(5), the Hopf condition λ(iω,μ) = − 1 leads to

f1 cos(ωτ) = 5

2
− ω2, (6a)

f1 sin(ωτ) = −αω. (6b)

Moreover, for the occurrence of a resonant 1:2 dou-
ble Hopf, condition (3) also implies λ(i2ω;μ) = − 1,
which gives

f1 cos(2ωτ) = 5

2
− 4ω2, (7a)

f1 sin(2ωτ) = − 2αω. (7b)

From (6b) and (7b), it is obtained

f1 sin(2ωτ) = 2 f1 sin(ωτ) cos(ωτ),

which implies − 2αω = − 2αω cos(ωτ). Then α = 0,
ω = 0 or cos(ωτ) = 1 ⇒ ωτ = 2kπ, k ∈ N. Discard-
ingω = 0, ifωτ = 2kπ , from (6a) and (7a) one obtains
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5/2−ω2 = 5/2− 4ω2, then ω = 0. Thus, it should be
α = 0. Considering again (6b), it results ωτ = kπ .
But if k is even, it is obtained again that ω = 0.
Thus, k should be odd. By using (6a) and (7a) again,
as cos(ωτ) = − 1 and cos(2ωτ) = 1, one obtains
f1 = 5/2− 4ω2 = ω2 − 5/2, then ω = 1. Finally, it is
found that f1 = − 3/2 and τ = kπ , with k odd. Thus,
the possible double Hopf points in the parameter space
will have the form μk = ( f1, τ, α) = (− 3/2, kπ, 0),
k ∈ N, k odd. In the following, the neighborhood of
μ1 = (−3/2, π, 0) will be studied by varying param-
eters f1 and τ . A three-parameter variation will not be
considered in this work. Thus, the parameter α will be
considered to be zero hereinafter.

3 A particular system

As suggested by the previous analysis, let α = 0 and
f (u) = f1 u + 0.9 u2, then (1) results in ü + 5

2u =
f1u(t − τ) + 0.9u2(t − τ). With this choice of f (u),
there are two equilibrium points, one at u∗ = 0 and
the other at u∗ = (5/2 − f1)/0.9. By considering the
equilibrium at the origin, the characteristic function (5)
reduces to

λ(s, μ) = − f1e−sτ

s2 + 5/2
, (8)

and the condition for the Hopf bifurcation (6) takes the
simpler form{
f1 cos(ωτ) = 5

2 − ω2,

f1 sin(ωτ) = 0.
(9)

By solving (9), one obtains explicit expressions for the
Hopf curves in the parameter plane (τ, f1) as

Hk : f1(k) = (−1)k+1
(
k2π2

τ 2
− 5

2

)
, (10)

where the pointwise frequency is given by ω = kπ/τ .

3.1 Stability of the equilibrium point

The poles of λ(s, μ) lie on the imaginary axis, at points
± i

√
5/2. Thus, the closed-loop stability analysis is

not trivial (see [24]). Consider the modified Nyquist
contour shown in Fig. 2, in which the imaginary poles
are avoided with a semi-circumference of small radius

Fig. 2 Left: Nyquist contour in the s-plane. Right: Image of the
contour under the function λ(s, μ), for f1 = − 3/2 and τ = π .
Only the image for Im(s) ≥ 0 is shown

ε 
 1. This contour is parametrized on the frequency
ω. The portion corresponding to positive frequencies
is shown in dark solid line, and the portion of nega-
tive frequencies is shown in dashed line. The image of
the Nyquist contour under the function λ(s;μ) is only
shown for positive frequencies. Recall that the goal is
to analyze a neighborhood of the double Hopf bifurca-
tion point, then it is assumed that f1 < 0 and τ takes
values close to π . Then, every portion of the curve is
analyzed using (8), as follows:

(a) s = iω, 0 < ω <
√
5/2. Thus, |λ| =

| f1|/|5/2 − ω2|, Arg(λ) = −ωτ . With ω = 0 one
hasArg(λ) = 0, and the image starts on the positive
real axis, at point 2| f1|/5. Asω increases, the mod-
ulus grows, and when ω → √

5/2, the argument
approaches −√

5/2 τ . If τ = π , the curve crosses
the negative real axis for ω = 1, at point −2| f1|/3,
which is the critical point (−1) if f1 = − 3/2.
(c) s = iω,

√
5/2 < ω < ∞. In this caseArg(λ) =

−ωτ +π , which decreases linearly as ω increases,
then the image turns infinitely many times around
the origin in the clockwise sense, as |λ| decreases.
If τ = π , the curve crosses the negative real axis
for ω = 2, at point−2| f1|/3, as in case (a).
(b) s = √

5/2 i + εeiθ , −π/2 ≤ θ ≤ π/2, with
ε 
 1. In this case, from (8)

λ(s, μ) = − f1 e−τ
(√

5/2 i+εeiθ
)

(√
5/2 i + εeiθ

)2 + 5/2

= − f1 e−τ
(√

5/2 i+εeiθ
)

2
√
5/2εieiθ + ε2ei2θ


 − f1 e−τ(
√
5/2 i+εeiθ )−i(θ+π/2)

√
10ε

,
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Resonant 1:2 double Hopf bifurcation in an oscillator 1783

Fig. 3 Hopf curves in the (τ, f1) plane. H(−) corresponds to
σ0 < 0 (supercritical Hopf) and H(+) corresponds to σ0 > 0
(subcritical Hopf). The number in each region corresponds to the
number of solutions of (2) in the right-half plane. The three rep-
resentative cases of Hopf bifurcations appearing for this example
are shown below schematically

so

|λ| = | f1|√
10ε

e−ετ cos θ ,

Arg(λ) = −τ
√
5/2 − ετ sin θ − θ − π/2


 −τ
√
5/2 − θ − π/2.

Thus, when θ varies from −π/2 to π/2, Arg(λ) varies
between −√

5/2τ and −√
5/2τ − π , respectively.

The image of theNyquist contour under the function
λ(s, μ) can be seen schematically in Fig. 2. The case
depicted corresponds to ( f1, τ ) = (−3/2, π), since
two portions of the curve, namely (a) and (c), pass
both through −1. According to the Nyquist stability
criterion, if the image of the curve does not enclose the
point −1, the closed-loop system is stable. Figure 3
shows the Hopf curves Hk in the (τ, f1) obtained from
(10), for k = 1, 2. In each region determined by these
curves, it is simple to deduce, based on the Nyquist
stability criterion, if the equilibrium point is stable or
unstable. Also, for clarity, the number of encirclements
of λ(iω,μ) around−1 is indicated, which is equivalent
to the number solutions of (2) with positive real part.
Then, only the region with the number “0” has an sta-
ble equilibrium point; the other three regions, delimited

by Hopf bifurcation curves, have unstable equilibrium
points, i.e., there are 2 or 4 encirclements of the critical
point −1 by the geometrical locus of λ(s, μ) (recall
that only the image of λ(iω,μ) for positive frequen-
cies is shown in Fig. 2, since λ(−iω,μ) = λ(iω,μ)).
Then, in the regions with 2 or 4 encirclements, it means
that 2 or 4 solutions of (2) are located in the right-half
complex plane.

3.2 Direction and stability of the emerging periodic
solutions

The direction and stability of the periodic solutions
emerging from the Hopf points are determined by both
the sign of the curvature coefficient and the stability
changes in the equilibrium point.

For the block system in Fig. 1, the closed-loop trans-
fer function is given by

H(s) = G(s)

1 + G(s)J (μ)
= 1

Δ(s)esτ − f1
.

Also by introducing the compact notation

η(k) = Δ(ikω)eikωτ − f1

=
[
5/2 − (kω)2

]
eikωτ − f1,

one can write H(ikω) = 1/η(k). As the linear sys-
tem represented by G(s) is single input–single output
(SISO), the loop gain G(s)J (μ) is scalar and its left
and right eigenvectors are simply v = w = 1. Thus,
the following formulas are much simpler than in the
general case of havingmultiple inputs andmultiple out-
puts (MIMO). For the sake of simplicity, the simpler
formulas are provided here, while the reader is referred
to [11,19] for the general ones.

The values representing the zero and second har-
monics are given by

v02 = − 1
4H(0) f ′′(u∗) = − 0.45

η(0) ,

v22 = − 1
4H(i2ω) f ′′(u∗) = − 0.45

η(2) .

Thus, one obtains the vector which involves the com-
ponents of fundamental frequency, given by

p1(ω) = f ′′(u∗)
(
v02 + 1

2v22
) + 1

8 f
′′′(u∗)

= −0.405
(

2
η(0) + 1

η(2)

)
,

(11)

and the auxiliar complex quantity

ξ1(ω) = −G(iω)p1(ω)

= 0.405 e−iωτ

(5/2 − ω2)

(
2

η(0)
+ 1

η(2)

)
. (12)
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1784 F. S. Gentile et al.

The last expression is needed for computing the ampli-
tude and frequency of the bifurcated periodic solutions.
Moreover, the stability of those solutions is determined
algebraically by the curvature coefficient, defined as

σ0=Re

{
ξ1(ω0)

G ′(iω0)J (μ)

}
,

whereω0 represents the critical Hopf frequency, Re { · }
is the real part of a complex quantity and G ′(iω0) �
dG(s)/ds|s=iω0 . Considering condition (9), it results
that ω0τ = kπ , then ei2ω0τ = 1, and ω2

0 = 5/2 +
(−1)k+1 f1, thus

ξ1(ω0)

= 0.405

f1

(
2

5/2 − f1
− 1

15/2 + f1[4(−1)k+1 + 1]
)

.

If k is odd, one obtains

ξ1,O(ω0) = 0.405

f1

(
11/5 f1 + 5/2

(5/2 − f1)(3/2 + f1)

)
, (13)

which leads to

ξ1,O(ω0) =
⎧⎨
⎩

< 0 f1 < −3/2,
> 0 −3/2 < f1 < −25/22,
< 0 −25/22 < f1 < 0,

and if k is even,

ξ1,E (ω0) = 0.675

f1(5/2 − f1)
< 0.

Taking into account that G(s) = e−sτ /Δ(s) and
J (μ) = − f1, it results

G ′(s)J (μ) = f1e
−sτ (τΔ(s) + Δ′(s))

Δ2(s)

= f1e
−sτ

(
τ

s2 + 5/2
+ 2s

(s2 + 5/2)2

)
.

By using (9) again, after some simple calculations, one
has G ′(iω0)J (μ) = τ +2iω0(−1)k/ f1, and the curva-
ture coefficient finally results in this compact expres-
sion:

σ0 = Re

⎧⎨
⎩

ξ1(ω0)

τ + 2iω0(−1)k
f1

⎫⎬
⎭ = ξ1(ω0) τ

τ 2 + (2ω0/ f1)2
, (14)

thus the sign ofσ0 coincideswith the sign of ξ1(ω0). So,
the stability of the periodic solutions bifurcated from

the curves H1 and H2 can be deduced replacing ξ1(ω0)

in (14) by ξ1,O(ω0) and ξ1,E (ω0), respectively. Notice
that (13) is not defined for f1 = − 3/2, which cor-
responds exactly to the 1:2 resonance point. It means
that the direction of birth of the limit cycle cannot be
deduced exactly at this point, but in any neighborhood
of it. Also note that the 1:2 double Hopf bifurcation
is the only one which provokes this situation, because
for any other ratio between the frequencies different
from 1/2, the quantity H(i2ω0) is well defined (more
specifically, for 1:3 and 1:4 resonances).

The local bifurcation diagram of Fig. 3 shows the
Hopf curves H1 and H2 in the (τ, f1) plane. H(−) rep-
resents supercritical bifurcations (σ0 < 0) and H(+),
subcritical bifurcations (σ0 > 0). On the other hand,
dashed lines correspond to supercritical bifurcations
with no stability change in the equilibrium point (the
emerging cycles are unstable). Three representative
cases of Hopf bifurcations appearing for this example
are shown below schematically as cross sections of the
bifurcation diagram. For the diagrams below in Fig. 3,
heavy line represents a stable equilibrium, dashed line
represents unstable equilibrium, dark solid circles are
stable limit cycles, and white circles are unstable limit
cycles. It can be seen that when σ0 < 0, the Hopf bifur-
cation is supercritical, and the emerging limit cycle
exists when the associated pair of complex conjugate
eigenvalues lie on the right half of the complex plane.
Moreover, if the equilibrium point losses its stability,
then the emerging limit cycle is stable (aa′ cross sec-
tion). If the stability of the equilibriumdoes not change,
the limit cycle is unstable (cc′ cross section). If σ0 > 0,
the Hopf bifurcation is subcritical, and the emerging
periodic orbit exists when the associated pair of com-
plex conjugate eigenvalues lie on the left half of the
complex plane. Moreover, the emerging limit cycle is
unstable (bb′ cross section). Then, in simpler terms, if
there is no stability change in the equilibrium point, σ0
indicates only the direction, but not the stability, of the
appearing cycle (which will be unstable).

3.3 Approximation of the periodic solutions

The former curvature coefficient is derived from a
second-order Fourier representation of the periodic
solutions. In order to compute the amplitude and fre-
quency of those solutions, the same Fourier series may
be used, but clearly the results will be more accurate if
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Resonant 1:2 double Hopf bifurcation in an oscillator 1785

a higher (fourth)-order harmonic balance is employed
(see [12]). Thus, the requested approximation of the
periodic solutions can be achieved by solving

λ(iω,μ) = − 1 + ξ1(ω0)θ
2 + ξ2(ω0)θ

4, (15)

where ξ1 is given in (12), ξ2(ω) = −G(iω)p2, and p2
is given by

p2 = f ′′(u∗)
2

[2v v04 + v̄22 v33 + v̄ v24] + H.O.T.,

(16)

where H.O.T. represents terms involving higher-order
derivatives, which are null in the current example since
the nonlinearity is quadratic. Equation (16) has been
also simplified considering that the system is SISO.
The complete formulas can be seen in [19]. Coefficients
v33, v04 and v24 are given by the following expressions
(also simplified):

v33 = −1

2
H(i3ω) f ′′(u∗)v v22,

v04 = −1

4
H(0) f ′′(u∗)

[
2v202 + v22v̄22

]
,

v24 = −1

2
H(i2ω) f ′′(u∗) [2v02v22 + v v33] .

(17)

Now it is necessary to distinguish two cases relatedwith
the orbits coming from H1 or H2, whose frequencies
are close to ω = π/τ or ω = 2π/τ , respectively.

Consider the first instance. By applying (16) and
(17), and replacing the critical frequency associated
with H1 Hopf points, i.e., ω0 = π/τ , one obtains

p2(ω0) = − 0.164025

×
{(

2|η(2)|2+3[η(0)]2
)
η(3)+3[η(0)]3

[η(0)]3|η(2)|2η(3)

}
.

(18)

As ξ1(ω0) and ξ2(ω0) result to be real numbers, the
frequency which solves (15) can be obtained letting
Im(λ) = 0, which implies ω = ω0 = π/τ . Then, (15)
can be written as

p2(ω0)θ
4 + p1(ω0)θ

2 + c = 0, (19)

where c = − f1 − 5
2 + (

π
τ

)2. The amplitude can be
obtained as

Fig. 4 The Ω rectangle in the (τ, f1) plane

θ2 =
−p1 ±

√
p21 − 4p2c

2p2
. (20)

Let N be the number of real positive solutions of (19). It
is mandatory to know the signs of p1, p2 and c, at least
in a rectangle of the plane (τ, f1), namely Ω : [2, 4]×
[−2,−0.5] (which can be observed in Fig. 4, where six
regions of interest are labeled for convenience).

Consider (18). One has η(0) = 5/2 − f1 > 0 since
f1 < 0 and η(3) = [

(3π/τ)2 − 5/2
] − f1 > 0 in Ω .

In this way, both numerator and denominator in (18)
are positive and p2(ω0) < 0. Also, from (11), it is also
simple to deduce that p1 is negative in regions I, II, V
and VI and positive in regions III and IV of Fig. 4. The
curve when p1 vanishes is indicated in the figure. On
the other hand, the coefficient c is negative in regions
I, III and V and positive in regions II, IV and VI. Also,
the discriminant D = p21 − 4p2c is positive in regions
II, IV and VI. So, in regions I and V, from the signs
of coefficients of (19) and the Descartes’ rule of signs,
there are no positive solutions of (19). In region III,
applying the same rule one gets that there are zero or
two positive solutions. The above results are summa-
rized in Table 1.

For the remaining case, namely the cycles associ-
ated with H2, a similar study is performed with fre-
quency ω0 = 2π/τ . In this case the analysis is simpler
since the curvature coefficient does not vanish along
the curve H2. It is shown in “Appendix A” that there is
one periodic solution on regions V and VI, and there
are no solutions on the other regions.

These results will become clearer in the framework
of the next section, where the analysis of global bifur-
cations is going to be included.
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Table 1 Signs of the expressions involved in (20) (symbol “?”
means that the sign is not known) and number N of local periodic
orbits emerging from H1 in the six regions of Fig. 4

Region p2 p1 c D N

I − − − ? 0

II − − + + 1

III − + − ? 2 or 0

IV − + + + 1

V − − − ? 0

VI − − + + 1

Fig. 5 Comparison between DDE-Biftool (numerical) and
GHBT (analytical, using a fourth-order harmonic balance)
results in the detection of the SN of limit cycles bifurcation curve
in region III

4 Analysis of global bifurcations

In Fig. 3, it can be seen that there is a point belonging
to the Hopf curve H1 where the curvature coefficient
vanishes, at

( f1, τ ) = (−25/22, π
√
11/15) 
 (−1.1364, 2.6903)

This point, known as Bautin bifurcation, is a degener-
ate Hopf singularity from which emerges a bifurcation
curve of saddle-node of limit cycles, i.e., a singularity
joining two periodic solutions [4]. This global bifurca-
tion curve is detected both numerically using the pack-
age DDE-Biftool [8], as well as analytically through
the fourth-order approximation (19) (see Fig. 5). The
last one is defined as the vanishing of the discriminant
in (20), since the existence of a solution of multiplicity
two of (20) represents the coalescence of two periodic
solutions. The slight difference in the location of the

Fig. 6 Amplitude of the periodic orbits emerging from the sub-
critical Hopf bifurcation with τ = 2.8 (see Fig. 4, region III).
The turning point corresponds to the saddle-node of limit cycles.
There is a comparison between the numerical result of DDE-
Biftool and the analytical prediction of the GHBT

−2 0 2
−2

0

2

−2 0 2
−1

0

1

(a) (b)

x2

x1 x1

x2

Fig. 7 Numerical simulations for τ = 3.4 and a f1 = − 1.05;
b f1 = − 1.2. The effect of the PD bifurcation is illustrated

900 950 1000
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2

−4 −2 0 2 4
−2
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1
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t
(a) (b)

x1 x2

x1

Fig. 8 Numerical simulations for τ = 3.55 and f1 = − 1.2.
a Time evolution of x1(t), b phase diagram. The effect of the
Neimark–Sacker bifurcation can be observed

saddle-node of limit cycles between GHBT and DDE-
Biftool is due to the local nature of approximation of
the first method.

The SN curve indicates that the unstable limit cycles
emerging from the subcritical Hopf bifurcations (in
region III of Fig. 4) collide with stable ones (of larger
amplitude) and disappear. This is the reason why
Eq. (19) can have two or zero solutions in region III
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Fig. 9 a Bifurcation
diagram. It shows
saddle-nodes (SN) of limit
cycles, period-doubling
(PD) bifurcations and two
Neimark–Sacker curves,
NS1 (detected from the
cycles emerging from H1)
and NS2 (exhibited by the
cycles emerging from H2).
b Enlarged area, in which
the interaction between the
mentioned curves can be
appreciated more clearly.
c Amplitudes of the
periodic solutions obtained
using DDE-Biftool via cross
sections of the bifurcation
diagrams (a) and (b) for
constant values of τ . Solid
lines represent stable
periodic solutions, and
dashed lines represent
unstable ones
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(see Table 1). In fact, (19) has two solutions under the
SN curve, and no solution above this curve. This phe-
nomenon is illustrated in Fig. 6, in which the amplitude
of the limit cycles emerging from the subcritical Hopf
bifurcation (region III in Fig. 4) is shown. This fig-
ure also provides a comparison between the analytical
results obtained from (20) and the numerical results via
DDE-Biftool.
The limit cycles emerging from the H2 curve (whose
period is close to π ) can develop period-doubling (PD)
or Neimark–Sacker (NS) bifurcations. The PD bifurca-
tion provokes the loss of stability of these orbits, giv-
ing way to periodic solutions of period close to 2π .
This effect is illustrated in Fig. 7, where τ = 3.4 (see

Fig. 4) is considered. In case (a), one has f1 = − 1.05
(a point above the PD curve), and the existing limit
cycle is shown, which emerges from the H2 curve. In
case (b), with f1 = − 1.2 (below the PD curve), a peri-
odic solution whose period is approximately twice the
period of the former orbit appears. The detection of
the PD bifurcation is performed numerically, and the
determining condition is the appearance of a Floquet
multiplier crossing the unit circle at point −1 (see [4]).

On the other hand, the periodic solutions developing
Neimark–Sacker bifurcations become unstable, giving
way to quasiperiodic orbits. This can be seen in Fig. 8,
where the solution from numerical simulation is shown
for τ = 3.55 and f1 = − 1.2. The interaction between
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two frequencies can be appreciated, which provokes a
stable torus in the phase diagram of Fig. 8b. In this case,
the bifurcation is determined by the crossing of a pair
of complex conjugate Floquet multipliers through the
unit circle at points e±iω, when a parameter is varied.
Limit cycles emerging from H1 and H2 may exhibit
both NS bifurcations, labeled as NS1 and NS2, respec-
tively, in the bifurcation diagram of Fig. 9a, b. As also
shown in Fig. 9a, b, the PD curve is tangent to the H2

curve at the double Hopf point, as expected accord-
ing by LeBlanc and Langford [25]. One branch of the
PD curve collides with both the NS1 and NS2, at a
point which represents itself a resonance point, since
two Floquet multipliers of the periodic orbit coalesce at
point −1. Figure 9c shows the amplitudes of the peri-
odic solutions obtained using DDE-Biftool under cross
sections of the bifurcation diagram, for constant values
of τ . A 2τ -periodic solution emerging from H1 can be
seen in Fig. 9c-I for τ = 3.0020. As τ increases, this
solution interacts through a period-doubling bifurca-
tion with the τ -periodic solution emerging from H2, as
shown in Fig. 9c-II with τ = 3.2504. If τ increases
further, the SN point approaches the PD as shown in
Fig. 9c-III for τ = 3.3301. Finally, there is no SN
bifurcation in Fig. 9c-IV, where τ = 3.4001. Then,
even if the resonance cannot be named as strong, the
interaction between τ and 2τ -period solutions through
a period-doubling bifurcation becomes evident.

5 Conclusions

Asecond-order differential systemwith timedelay hav-
ing a 1:2 resonant double Hopf bifurcation has been
presented. In the unfolding of the singularity saddle-
node of limit cycles, Neimark–Sacker bifurcations and
period-doubling are found using a combination of
an analytical approach, rooted in harmonic balance
method and Nyquist stability diagrams, and numeri-
cal continuation software DDE-Biftool. This type of
hybrid method seems very powerful in order to dis-
cover the intricacies of period and quasiperiodic orbits
around Hopf–Hopf bifurcations in delayed feedback
systems.
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A Number of periodic solutions associated with H2

It is necessary to study the number N of positive solu-
tions of

p2θ
4 + p1θ

2 + d = 0, (21)

now for ω0 = 2π/τ , where

p2(ω0)

= −0.164025

{
2 |η̄(2)|2 η̄(3) + 3 [η̄(0)]2 (η̄(3) + η̄(0))

[η̄(0)]3 |η̄(2)|2 η̄(3)

}

p1(ω0) = −0.405

{
2

η̄(0)
+ 1

η̄(2)

}
,

d = − f1 + 5

2
− 4

(π

τ

)2
,

and

η̄(k) =
[
5/2 − (2kπ/τ)2

]
(−1)k − f1.

Again, it is necessary to analyze the sign of every coef-
ficient in (21) in order to determine N . By replacing
the formulas of η̄(0) and η̄(2) in p1(ω0), one obtains

p1(ω0) = −0.405

⎧⎨
⎩

15
2 − 32π2

τ 2
− 3 f1(

5
2 − f1

) (
5
2 − 16π2

τ 2
− f1

)
⎫⎬
⎭ ,

and p1 < 0 in all regions labeled in Fig. 4. On the
other hand, d is negative in regions I, II, III and IV
and positive in regions V and VI. It remains to analyze
the sign of p2(ω0) in regionΩ . Consider the following
expressions:

1. η̄(0) = 5/2 − f1 > 0 since f1 < 0.
2. η̄(3) = 5/2 − 36π2/τ 2 − f1 < 0 in Ω .
3. 2 |η̄(2)|2 η̄(3) + 3 [η̄(0)]2 (η̄(3) + η̄(0)).

In the last expression, the first term is negative in Ω

and the sign of the second term agrees with

η̄(3) + η̄(0) = 5 − 36π2

τ 2
− 2 f1 < 0 in Ω.

Then it follows that p2(ω0) < 0 inΩ . Hence, the num-
ber N of positive solutions of (21) can be determined,
which is summarized in Table 2.
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Table 2 Signs of the expressions involved in (21) and number
N of local periodic orbits emerging from H2 in the six regions
of Fig. 4

Region p2 p1 d N

I − − − 0

II − − − 0

III − − − 0

IV − − − 0

V − − + 1

VI − − + 1

This means that in regions V and VI of Fig. 4, there
is only one periodic solution associated with the fre-
quency ω0 = 2π/τ .
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