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Abstract In this paper, based on the Hirota bilin-
ear method, a kind of lump solutions and two classes
of interaction solutions are discussed to the (2 + 1)-
dimensional generalized KdV equation with the aid of
symbolic computation system Mathematica. Analytic-
ity is naturally guaranteed by taking special choices of
the involved parameters to achieve a positive constant
term. Particularly, these solutions with special values
of the included parameters are plotted, as illustrative
example.

Keywords Hirota bilinear · Lump solution · Lump-
soliton · Lump–kink · (2+1)-dimensional generalized
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1 Introduction

Nonlinear evolution equations (NLEEs) have been
attractive in science and engineering [1–4]. Soliton and
rational solutions for someNLEEshavebeen structured
[5–7]. Soliton solutions describe various vital nonlinear
nature phenomena [8,9]. Upon taking long wave lim-
its, rational solutions can be created from those solitons
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[9,10], which include lump solutions, rationally local-
ized solutions in all directions of the space and par-
ticularly rogue waves [11,12]. Lump solutions emerge
in many physical phenomena, such as plasma, shallow
water wave, optic media and Bose–Einstein conden-
sate [13]. Lump solutions have been found for kinds of
integrable equation that have exponentially localized
in certain direction [14,15].

The research to lump solution has not been well
developed, because it is very complex to solve the
lump solution of NLEEs. Recently Ma [16] introduced
a method to obtain the lump solutions of NLEEs by
using the Hirota bilinear form. By utilizing this way,
Ma et al. explored the lump solutions and the inter-
action solutions of NLEEs [17–25]. Other researchers
successfully obtained the lump solutions and interac-
tion solutions of NLEEs by symbolic computation as
well [26–35].

We consider the (2 + 1)-dimensional generalized
fifth-order KdV equation [36] as follows:

ut + αuxxxxx + βuuxxx + γ uxuxx + δu2ux + uy = 0.

(1)

Equation (1) describes motions of long waves in shal-
low water under gravity field and in a two-dimensional
nonlinear lattice,whereα, β, γ, δ are the coefficients of
the fifth-order dispersion term and the high-order non-
linear term, which are arbitrary nonzero real numbers.
When model (1) is only considered one-dimensional
space, we can get the fifth-order KdV equation as fol-
lows [37,38]
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ut + αuxxxxx + βuuxxx + γ uxuxx + δu2ux = 0. (2)

Nonlinear equation (2) is an important mathematical
model with wide applications in fluidmechanics, quan-
tummechanics, ion physics, nonlinear optics and other
disciplines [39]. Equation (2) contains many practical
models. The forms include the Lax equation, SK equa-
tion, SKPD equation, KK equation, KKPD equation
and the Ito equation, such as Lax equation [40]:

ut + uxxxxx + γ uuxxx + 2γ uxuxx

+ γ 2 3

10
u2ux = 0. (3)

and Kaup–Kupershmidt equation [41]:

ut + uxxxxx + γ uuxxx + γ uxuxx + γ 2 1

5
u2ux = 0.

(4)

and Sawada–Kotera equation [42].
When α = 1, β = 15, δ = 45, γ = 15 in Eq. (1),

we obtain the following equation

ut + uxxxxx + 15uuxxx + 15uxuxx

+ 45u2ux + uy = 0. (5)

In the present paper, we will discuss the lump solu-
tion and two classes of interaction solutions to (2+1)-
dimensional generalized fifth-order KdV equation (5).

2 Lump solution of the (2+ 1)-dimensional
generalized KdV equation

By using the following bilinear transformation:

u = 2[ln f (x, y, t)]xx , (6)

Equation (5) became Hirota bilinear equation

BKdV( f ) :
(
Dx Dt + Dx Dy + D6

x

)
f · f

= 2( fxt f − fx ft ) + 2( fxy f − fx fy)

+ 2 fxxxxxx f − 12 fxxxxx fx + 30 fxxxx fxx

− 20 f 2xxx = 0, (7)

where the operator D:

Dm
t Dn

x a(t, x) · b(t, x)
= ∂m

∂sm
∂n

∂yn
a(t + s, x + y)

b(t − s, x − y)|s=0,y=0,m, n = 0, 1, 2, 3, . . .

In order to get the quadratic function solution of Hirota
bilinear equation (7), we assume

f = g2 + h2 + a9, g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8, (8)

where ai (i = 1, 2, . . . , 9) are real constants. It is
noticed that g2 + a5 cannot generate any analytic solu-
tions, which are a kind of rational function localized in
all directions of the space.

By substituting (8) into (7) and handling all the
coefficients of different polynomials of x, y, t to zero,
we obtain a set of algebraic equations for ai (i =
1, 2, . . . , 9). Solving the set of algebraic equations by
mathematics yields the following solutions of ai (i =
1, 2, . . . , 9).

a1 = a1, a2 = a1a6
a5

, a3 = −a1a6
a5

, a4 = a4,

a5 = a5, a6 = a6, a7 = −a6, a8 = a8, a9 = a9, (9)

where a1, a4, a5( �= 0), a6, a8, a9 are arbitrary con-
stants.

Substituting (9) into (8), we obtain a kind of positive
quadratic function solution f of Eq. (7)

f =
[
a4 + a1x − a1a6(y − t)

a5

]2

+[a8 + a5x + a6(t − y)]2 + a9, (10)

and the resulting class of quadratic function solutions,
in turn, yields a class of lump solutions to (2 + 1)-
dimensional generalized KdV equation (5) via trans-
formation (6):

u = −8(a1g + a5h)2 − 4(a21 + a25) f

f 2
, (11)

where the function f is defined by (10). Note that the
lump solution in (11) is analytic if the parameter a5 �=
0, a9 > 0. Quite evidently, we can get at any given
time t the above lump solutions u → 0 if and only if
the corresponding sum of squares g2 + h2 → ∞.

When a1, a4, a5, a6, a8, a9 are special value, we
obtain two special pairs of positive quadratic function
solutions and lump solutions as follows.
1. A selection of the parameters:

a1 = 1, a4 = 1, a5 = 2, a6 = 3, a8 = 5, a9 = 1

leads to

f1(x, y, t) = 1

4
(2x − 3y + 3t + 2)2

+ (2x − 3y + 3t + 5)2 + 1,

and the lump solution
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u1(x, y, t) = −16[428 + 225t2 + 100x2 + 225y2 + 660y + 20x(22 + 15y) − 30t (22 + 10x + 15y)]
[(2x + 3y − 3t + 2)2 + 4(2x + 3y − 3t + 5)2 + 4]2 . (12)

The profile of u1(x, y, t), its profiles, density and y-
axis plots are shown in Fig. 1.
2. Another selection of the parameters:

a1 = −1, a4 = −4, a5 = −7, a6 = −3,

a8 = 0, a9 = 7, (13)

leads to

f2(x, y, t) = 1

49
(7x − 3y + 3t + 28)2

+ (7x − 3y + 3t)2 + 7, (14)

and the lump solution

u2(x, y, t)

= −8[−27391 + 11250t2 + 61250x2 + 4200y + 11250y2 + 700x(14 + 75y) − 300t (14 + 175x + 75y)]
49[(7x + 3y − 3t)2 + 1

49 (7x + 3y − 3t + 28)2 + 7]2 .

(15)

Theprofile ofu2(x, y, t), its profiles, density and y-axis
plots are shown in Fig. 2.

3 Lump-soliton solutions of the
(2+ 1)-dimensional generalized KdV equation

Interaction solutions of the (2+1)-dimensional gener-
alized KdV equation will be studied in this section.
In order to obtain the interaction solutions between
lump solution and solitary wave solution, we assume
f (x, y, t) as a combination of hyperbolic cosine func-
tion and positive quadratic function:

f = (a1x + a2y + a3t + a4)
2 + (a5x + a6y + a7t + a8)

2

+ cosh(ζ1x + ζ2y + ζ3t + ζ4) + a9, (16)

where ai (i = 1, 2, . . . , 9), ζi (i = 1, . . . , 4) are real
constants.

Substituting (16) into (7) with a direct symbolic
computation, we get the following solutions:

a2 = a4a6
a8

, a3 = −a2, a6 = −a7, ζ1 = 0,

ζ2 = −ζ3, ai = ai (i = 1, 4, 5, 8, 9), ζ4 = ζ4, (17)

where a1, a4, a5, a8( �= 0), a9, ζ3, ζ4 are arbitrary con-
stants. Then, the exact interaction solution of u is
expressed as follows:

u = −8[a5a8(a5x + a6y − a6t + a8) + a21a8x + a1a4(a8 + a6y − a6t)]2
a28 f

2
+ 4(a21 + a25)

1

f
, (18)

where

f =
[
a1x + a4

a8
(a8 + a6y − a6t)

]2

+ (a5x + a6y − a6t + a8)
2

+ cosh[ζ3(t − y) + ζ4] + a9.

To illustrate the interaction solutions between lump
and line solitons, we choose the parameters as follows:

a1 = 1, a4 = −1, a5 = 4, a6 = 1, a8 = 3,

a9 = 6, ζ3 = 2, ζ4 = 2. (19)

Profiles of (18) with parameters (19) are shown in
Figs. 3 and 4

Figure 3 exhibits the interaction between hyperbolic
functions and the positive quadratic functions. We can
see the soliton finally drowns or swallows up the lump
soliton with the evolution of time t . The interaction
between two solitary waves is nonelastic (Fig. 5).

4 Lump–kink solutions of the (2+ 1)-dimensional
generalized KdV equation

The interaction between a lump and a stripe of (2 +
1)-dimensional generalized KdV equation (5) will be
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Fig. 1 (Color online) Lump solution (12) with t = 0. (Left) Perspective view of lump soliton (12). (Middle) Overhead view of the
wave. (Right) The wave along the y-axis with x = −1 (green), x = 0 (blue) and x = 1 (pink)
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Fig. 2 (Color online) Lump solution (15) with t = 1. (Left) Perspective view of lump soliton (15). (Middle) Overhead view of the
wave. (Right) The wave along the y-axis with x = −1 (green), x = 0 (blue) and x = 1 (pink)
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Fig. 3 (Color online) Perspective view of lump-soliton solution (19). a Solution (19) with t = 0. b Solution (19) with t = 3. c Solution
(19) with t = 6. d Solution (19) with t = 10. e Solution (19) with t = 15. f Solution (19) with t = 20
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Fig. 4 (Color online) Overhead view and contour plot of lump-soliton solution (19). a, d Solution (19) with t = 0. b, e Solution (19)
with t = 8. c, f Solution (19) with t = 15

studied in this section. To seek the interaction solution
of Eq. (5), we begin with

f = (a1x + a2y + a3t + a4)
2

+ (a5x + a6y + a7t + a8)
2

+ exp(ζ1x + ζ2y + ζ3t + ζ4) + a9, (20)

where ai (i = 1, 2, . . . , 9), ζi (i = 1, . . . , 4) are real
constants.

Substituting (20) into Eq. (7) with a direct symbolic
computation, we obtain the following set of solutions
for the parameters ai , ζi :

a3 = −a2, a6 = −a7, ζ1 = 0, ζ2 = −ζ3. (21)

Then we obtain the mixed lump–kink solution of
Eq. (5)

u = 4(a21 + a25) f − 8[a1(a1x + a3t − a3y + a4) + a5(a5x + a7t − a7y + a8)]2
f 2

,

where f is given in (20), and a1, a2, a4, a5, a6, a8, a9,
ζ3, ζ4 are arbitrary real constants.

When we choose the following special value for the
parameters:

ζ3 = 5

4
, ζ4 = 1

2
, a1 = 3, a3 = 3, a4 = 2,

a5 = −1, a7 = −2, a8 = 4, a9 = 1, (22)

then we obtain

u =
8

[
101 + 5 exp

(
1
2 + 5

4 t − 5
4 y

)
− 56t2 − 20x − 50x2 − 2t (32 + 55x − 56y) + 64y + 110xy − 56y2

]

[
1 + exp

(
1
2 + 5

4 t − 5
4 y

)
+ (2 + 3t + 3x − 3y)2 + (−4 + 2t + x − 2y)2

]2 .

(23)
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Fig. 5 Profile and contour plot of lump–kink solution (23). a
Solution (23) with t = −10. b, I Solution (23) with t = 0. II
Solution (23)with t = 7. c, IIISolution (23)with t = 20.dSolu-

tion (23) with t = 28. e Solution (23) with t = 45. f Solution
(23) with t = 58

To get the collision phenomenon, a23 + a27 + ζ3 �= 0 is
indispensable. So the asymptotic behavior of u can be
obtained, the solution u → 0 as t → ∞. The asymp-
totic behavior shows that the lump is finally drowned
or swallowed up by the stripe along with the change of
time.

5 Conclusion

In this paper, a kind of lump solutions and two classes
of interaction solutions to (2 + 1)-dimensional gen-
eralized KdV equation (5) are studied with the aid
of symbolic computation systemMathematica. Firstly,
using the transformation u = 2[ln f (x, y, t)]xx , we
obtained the bilinear form of the (2 + 1)-dimensional
KdV equation. By determining the positive quadratic

function solutions of bilinear equation (7), we have
derived the lump solution ofEq. (5). The result included
six arbitrary parameters, and these parameters guaran-
teed analyticity and rational localization of the lump
solution. Secondly, we presented the interaction solu-
tions between positive quadratic function and hyper-
bolic cosine function and showed the process of inter-
action. Finally, we successfully constructed the inter-
action solutions between lumps and kinks of Eq. (5).
When time t increases to big enough, the lump solitary
wave solution disappears, and only the kink solitary
wave solution exists. For such phenomenon, the asymp-
totic behavior shows that the lump is finally drowned
or swallowed up by the stripe along with the change
of time. The above phenomenon shows that the inter-
action between two solitary waves is nonelastic [43–
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45]. These results help to understand the propagation
of nonlinear waves in fluid mechanics and enrich the
dynamic changes of high-dimensional nonlinear wave
fields. Also it shows that the method can be used for
many other NLEEs in mathematical physics.
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