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Abstract The industrial structural systems always
contain various kinds of nonlinear factors. Recently,
a number of new approaches have been proposed to
identify those nonlinear structures. One of the promis-
ing methods is the nonlinear subspace identification
method (NSIM). The NSIM is derived from the prin-
cipals of the stochastic subspace identification method
(SSIM) and the internal feedback formulation. First,
the nonlinearities in the system are regarded as internal
feedback forces to its underlying linear dynamic sys-
tem. The linear and nonlinear components of the iden-
tified system can be decoupled. Second, the SSIM is
employed to identify the nonlinear coefficients and the
frequency response functions of the underlying linear
system. A typical SSIM always consists of two steps.
The first step makes a projection of certain subspaces
generated from the data to identify the extended observ-
ability matrix. The second one is to estimate the system
matrices from the identified observabilitymatrix. Since
the calculated process of the NSIM is non-iterative
and this method poses no additional problems on the
part of parameterization, the NSIM becomes a promis-
ing approach to identify nonlinear structural systems.
However, the result generated by the NSIM has its
deficiency. One of the drawbacks is that the identified
results calculated by theNSIMare not the optimal solu-
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tionswhich reduce the identified accuracy. In this study,
a new time-domain subspace method, namely the non-
linear subspace-prediction error method (NSPEM), is
proposed to improve the identified accuracy of non-
linear systems. In the improved version of the NSIM,
the prediction error method (PEM) is used to reesti-
mate those estimated coefficient matrices of the state-
space model after the application of NSIM. With the
help of the PEM, the identified results obtained by the
NSPEM can truly become the optimal solution in the
least square sense. Two numerical examples with local
nonlinearities are provided to illustrate the effective-
ness and accuracy of the proposed algorithm, showing
advantages with respect to the NSIM in a noise envi-
ronment.

Keywords Nonlinear identification · Stochastic
subspace identification method · Prediction error
approach · Time domain · MDOF

1 Introduction

Identification of nonlinear vibrating systems has attr-
acted a wide attention in recent years for the exten-
sive existence of nonlinearities in engineering struc-
tures, such as high-speed flexible rotors, satellite anten-
nas, and flexible robots. Significant progress has been
performed in this issue, and a variety of identification
approaches have been proposed in recent years. A sig-
nificant summary can be found in [1]. Several common
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algorithms include the restoring force surface method
[2,3], the Volterra series [4,5], the Kalman-filter-based
method [6], the reverse path method [7–9], the sub-
space identification, and its subsequent developments
[10–12]. Those algorithms are routinely used for exper-
imental modal analysis, damage detection, and struc-
tural health monitoring [13–15].

Among the significant progress in the nonlinear sys-
tem identification, a crucial contribution was proposed
by Adams and Allemang [16]. They regarded the non-
linearity as an internal feedback force to the linear
dynamic system. Based on this, the linear and non-
linear parts of the system can be naturally decoupled.
Recently, this feedback idea has been exploited for
developing a nonlinear extension of the stochastic sub-
space identification method (SSIM) [11,17]. This non-
linear subspace identification method (NSIM) converts
the nonlinear system to the form of state-space equa-
tions, and the system statematrices are estimated by the
SSIM. The FRFs of the underlying linear system and
the nonlinear parameter to be identified are then cal-
culated. This method avoids an intractable issue of the
reverse path method which is the relatively large corre-
lation of the signals around the natural frequencies of
the underlying linear system. Lacy and Bernstein [11]
extended the subspace method to identify a kind of
multi-input multi-output nonlinear time-varying sys-
tems with nonlinear in measured data and linear in
unmeasured states. Marchesiello and Garibaldi [18]
adopted the NSIM to experimentally investigate a
scaled multi-story building with a local clearance-type
nonlinearities. Results showed a good performance
of the NSIM on mechanical system with a general
set of nonlinear terms. Noël and Kerschen [10] intro-
duced a frequency-domain subspace-based method for
nonlinear system identification which was an equiva-
lent form of the time-domain NSIM in the frequency
domain. Noël et al. [19] identified the SmallSat space-
craft with the time- and frequency-domain nonlinear
subspace identification techniques. A closer inspec-
tion of the identified coefficients revealed that the esti-
mated results by the frequency-domain method exhib-
ited larger frequency variations than that by the time-
domain one. Gandino et al. [20] proposed a complete
input–output covariance-driven identification method
which did not suffer from the memory limitation prob-
lems and was suitable for the case of large data sets.
Zhang et al. [21] divided the identified nonlinear sys-
tem into an underlying linear part and a local nonlinear

part and proposed a two-stage time-domain subspace
method which was more accurate and reliable than the
single-stage method. In light of the effectiveness and
robustness of subspace methods, those nonlinear sub-
space approaches open completely new horizons for
identification of nonlinear dynamic systems.

The identification process of a NSIM consists of two
basic steps. The first one is to find the estimates of the
extended observability matrix by making a projection
of certain subspaces. The second one is to obtain the
system state matrices from the extended observability
matrix. Obviously, the NSIM does not involve non-
linear optimization techniques. It means that they are
fast and accurate due to non-iterative operation and no
problems in terms of parameterization. However, the
price to be paid is that the estimated results by the
NSIM are not the optimal solutions. This may result
in the reduced accuracy of the identified results for
the identification of the nonlinear coefficients and the
FRFs of the underlying linear system. To solve this
shortcoming, an improved NSIM named as a nonlinear
subspace-prediction error method (NSPEM) is devel-
oped here. The proposed NSPEM uses the prediction
error method (PEM) to reestimate the identified system
matrices of the state-space model after determining a
good initial estimate of the system model with the help
of the SSIM. The PEM clearly optimizes an objective
function using a full parameterization of the state-space
modelwith regularizationwhichwill obtain the optimal
identification results in the least square sense. There-
fore, the proposed method may be more accurate and
reliable when applying for identification of the nonlin-
ear vibrating structures and performs more robustly in
a noisy environment.

The paper is organized as follows. In Sect. 2, the
state-space model of the nonlinear vibrating structures
is derived by introducing the internal feedback idea.
Section 3 illustrates the proposed NSPEM in detail.
This method consists of three steps, i.e., estimation of
the extended observability matrix, estimation of the
system state matrices, and estimation of the nonlin-
ear coefficients and the FRFs of the underlying lin-
ear systems. Then, by taking a six DOF discrete mass-
spring-damper system and a cantilever beam structure
with local nonlinearities as examples, estimations of the
nonlinear coefficients and the FRFs of the underlying
linear systems are computed numerically in Sect. 4. The
identified results are compared with that by the NSIM,
and the effects of different noise levels on the identified
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results are also considered. Finally, Sect. 5 gives a brief
conclusion.

2 State-space model of nonlinear systems

The governing equation of a p degree-of-freedom
(DOF) dynamic system with lumped nonlinear stiff-
ness and dampers [10,17,21] can be represented as

M z̈ (t) + C ż (t) + Kz (t)

+
h∑

i=1

μi gi (t) Li = L f F (t) , (1)

where M, K, and C are the mass, damping, and stiff-
ness matrices, respectively. z(t) is the generalized dis-
placement response vector, and F(t) is the external
excitation force which should be persistent excitation
such as random excitation and swept frequency excita-
tion. A Gaussian white noise is used in this study. The
nonlinear terms are expressed by the sum of h compo-
nents inwhich the component depends on the nonlinear
function μi gi (t). Some types of nonlinearities, such as
Coulomb friction, clearance, and quadratic damping,
can be specified by the base function gi (t) which is
assumed to be known. μi is the unknown nonlinear
coefficient. Li and L f are, respectively, the vectors of
Boolean values indicating the locations of the nonlinear
element and the excitation. The item Li can be deter-
mined from the nonlinear location identification.

By moving the nonlinear components of Eq. (1) to
the right side of the equation, the original system can be
considered as being subjected to the external excitation
Fex (t) and the internal feedback forces Fnl(t) which
is caused by the nonlinearities [16] (Fig. 1).

M z̈ (t) + C ż (t) + Kz (t)

= L f F (t) −
h∑

i=1

μi gi (t) Li

= Fex (t) + Fnl (t) . (2)

Underlying linear system+Input Fex(t) Output z(t)

Nonlinear feedback

Fig. 1 Feedback description of nonlinear mechanical systems

Then, the continuous-time state-space formulation
of Eq. (1) can be expressed as
[
ż
z̈

]
=

[
0p×p I p×p

−M−1K −M−1C

] [
z
ż

]

+
[
0p×1 0p×1 · · · 0p×1

M−1L f M−1μ1L1 · · · M−1μhLh

]

×

⎡

⎢⎢⎢⎢⎣

F (t)
−g1 (t)
...

−gh (t)

⎤

⎥⎥⎥⎥⎦
(3)

y =
[
Ip×p 0p×p

] [
z
ż

]
, (4)

where y = z is the output vector. 0 and I denote zero
and identity matrices, respectively.

It is assumed that external excitation force and dis-
placements are measured. Defining the input vector

u =
[
F (t) −g1 (t) · · · −gh (t)

]T
and the state

vector x = [
z ż

]T
, Eqs. (3) and (4) can be rewritten

as

{
ẋ = Acx + Bcu

y = Ccx
, (5)

where the subscript c denotes continuous-time state
space. Ac ∈ Rn×n , Bc ∈ Rn×q , and Cc ∈ Rp×n stand
for the state, input, and output matrices, respectively.
n = 2p and q = h+1. The state-spacematrices and the
physical-space matrices have the relations as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ac =
[
0p×p Ip×p

−M−1K −M−1C

]

Bc=
[
0p×1 0p×1 · · · 0p×1

M−1L f M−1μ1L1 · · · M−1μhLh

]

Cc=
[
Ip×p 0p×p

]

.

(6)

3 Nonlinear subspace-prediction error method

For nonlinear system identification, the classical identi-
fication procedure includes three steps, i.e., detection,
characterization, and parameter estimation. After the
nonlinear behavior is detected, the nonlinear system
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can be featured. That means, the location vectors and
base functions of all nonlinearities [Li and gi (t) in
Eq. (1)] are determined. Then, the parameter of the
selected nonlinear model can be identified using the
employed identification algorithms.

The proposed approach targets the estimation of the
nonlinear coefficients and the FRFs of the underly-
ing linear system. Given F(t), z(t), gi (t), Li and L f ,
the proposed NSPEM firstly estimates the extended
observability matrix using the matrix projection and
the singular value decomposition algorithm. Then,
the three system matrices Ac, Bc, and Cc can be
determined from the estimated extended observability
matrix. Those identified system matrices are then rees-
timated by the PEM to obtain the optimal solutions. The
estimation of the nonlinear coefficients and FRFs of the
underlying linear system is subsequently obtained by
the conversion from state space to physical space.

3.1 Estimation of the extended observability matrix

The SSIM is an identification method for discrete-
time state-space models. Therefore, the continuous-
time state-space model described in Eq. (5) should be
transformed into a discrete-time one under the zero-
order hold assumption. The zero-order hold assump-
tion supposes that the input vector u is constant dur-
ing one sample period. The transformation between
the continuous-time state-spacemodel and the discrete-
time one can be represented as

⎧
⎪⎨

⎪⎩

Ad = eAc�t

Bd = (
eAc�t − I

)
A−1
c Bc

Cd = Cc

, (7)

where subscript d denotes discrete-time state space.�t
is the one sample period. Ad ∈ Rn×n , Bd ∈ Rn×q , and
Cd ∈ RL×n are the matrices to be identified of the
discrete-time state-space model, respectively.

The identified discrete-time state-space model can
be expressed as

{
xk+1 = Ad xk + Bduk + wk

yk = Cd xk + vk
, (8)

where xk ∈ Rn , uk ∈ Rq , and yk ∈ RL are the state
vector, the input vector, and the output vector at the

discrete time tk , respectively. wk ∈ Rn and vk ∈ RL ,
respectively, denote the process noise and the output
measurement noise at the discrete time tk and are all
assumed to be zero-mean white noises.

By iterating Eq. (8), one can obtain

yk = CdA
k−1
d x1 + CdA

k−2
d Bdu1 + CdA

k−3
d Bdu2 + · · ·

+CdBduk−1 + CdA
k−2
d w1 + CdA

k−3
d w2 + · · ·

+Cdwk−1 + vk . (9)

Then, an input–output matrix equation can be assem-
bled as

Y = �X + �d
rU + �s

rW + V, (10)

where� denotes the extended observability matrix.�d
r

and�s
r are the deterministic and stochastic lower block

triangular Toeplitz matrices of the unknown system,
respectively. They are defined as

� =

⎡

⎢⎢⎢⎢⎢⎣

Cd

CdAd

.

.

.

CdAr
d

⎤

⎥⎥⎥⎥⎥⎦
(11)

�d
r =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

CdBd 0 0 · · · 0

CdAdBd CdBd 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

CdA
r−2
d Bd CdA

r−3
d Bd CdA

r−4
d Bd · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

�s
r =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

Cd 0 · · · 0 0

CdAd CdBd · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

CdA
r−2
d CdA

r−3
d · · · Cd 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Y =

⎡

⎢⎢⎢⎢⎢⎣

y1 · · · yk · · · yL
y2 · · · yk+1 · · · yL+1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

yr · · · yk+r−1 · · · yL+r−1

⎤

⎥⎥⎥⎥⎥⎦
(14)

X =

⎡

⎢⎢⎢⎢⎢⎣

x1 · · · xk · · · xL
x2 · · · xk+1 · · · xL+1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

xr · · · xk+r−1 · · · xL+r−1

⎤

⎥⎥⎥⎥⎥⎦
(15)
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U =

⎡

⎢⎢⎢⎢⎢⎣

u1 · · · uk · · · uL

u2 · · · uk+1 · · · uL+1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

ur · · · uk+r−1 · · · uL+r−1

⎤

⎥⎥⎥⎥⎥⎦
(16)

W =

⎡

⎢⎢⎢⎢⎢⎣

w1 · · · wk · · · wL

w2 · · · wk+1 · · · wL+1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

wr · · · wk+r−1 · · · wL+r−1

⎤

⎥⎥⎥⎥⎥⎦
(17)

V =

⎡

⎢⎢⎢⎢⎢⎣

v1 · · · vk · · · vL

v2 · · · vk+1 · · · vL+1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

vr · · · vk+r−1 · · · vL+r−1

⎤

⎥⎥⎥⎥⎥⎦
(18)

in which L and r are the user-defined integers which
satisfy the relationships r > 2n and L � 2n. Equa-
tion (10) includes the state vector item �X, the input
vector item�d

rU, the process noise item�s
rW, and the

measurement noise item V.
Additionally, defining a projection matrix �⊥

UT

�⊥
UT = I − UT

(
UUT

)−1
U (19)

and post-multiplying this projection matrix, Eq. (10)
becomes

Y�⊥
UT = �X�⊥

UT +�d
rU�⊥

UT +�s
rW�⊥

UT +V�⊥
UT .

(20)

By taking into account the property of projectionmatrix
(U�⊥

UT = 0), one can obtain

Y�⊥
UT = �X�⊥

UT + �s
rW�⊥

UT + V�⊥
UT . (21)

A matrix P can be constructed based on instrumental
variables technique

P =
[
UT

p , YT
p

]T
, (22)

whereUp andYp have the similar formswith thematri-
ces U and Y. Because the noise items wk and vk are all
assumed to be white noise and are uncorrelated with
the input vector uk , the matrix PT have the relationship
of

(
�s

rW + V
)
�⊥

UT PT = 0.

Bypost-multiplying thematrixPT , Eq. (21) becomes

Y�⊥
UT P

T = �X�⊥
UT P

T . (23)

Then, based on the singular value decomposition, one
can obtain the estimated observability matrix �e

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

H1Y�⊥
UT PTH2 = H1�X�⊥

UT PTH2 = QSVT

QSVT ≈ Q̄S̄V̄T = Q̄

⎡

⎢⎢⎣

σ1 · · · 0
...

. . .
...

0 · · · σs

⎤

⎥⎥⎦ V̄T

� = �eT = H−1
1 Q̄T

,

(24)

where two full-rank matrices H1 and H2 are respec-
tively pre-multiplied and post-multiplied to Eq. (23) for
improving the accuracy of the singular value decompo-
sition. S is the diagonalmatrix in singular value decom-
position, and its diagonal elements are the calculated

singular values
(

σ1 · · · σs
)
. Q̄ is the matrix by

removing some columns from the matrix Q based on
their corresponding diagonal elements in S.

It is shown that � and Y�⊥
UT PT have the same

column space based on the rank analysis. Therefore,
the column space of the estimated observability matrix
�e is the same as that of the true observability matrix
� through the singular value decomposition. And �

can be obtained by post-multiplying a nonsingular
matrix T.

3.2 Estimation of the system state matrices

After the estimation of the extended observability
matrix, the next step is to identify the system state
matrices. This computation process should yield accu-
rate estimations while preserving an acceptable com-
putation time. In this section, a new strategy to estimate
Ad , Bd , and Cd is presented. First, those three system
matrices Ad , Bd , and Cd are calculated from the esti-
mated extended observability matrix. Then, an alter-
native scheme with the help of the PEM is suggested
to reestimate the system matrices. It is mainly because
the estimated results with the NSIM are not the opti-
mal solutions which may result in the decrease in the
identified accuracy. The PEM uses a full parameteriza-
tion of the state-space model to optimize an objective
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function for obtaining the optimal solutions in the least
square sense.

It is a common way to exploit the shifted structure
of�e to estimateAe

d andC
e
d in whichA

e
d andC

e
d repre-

sent the estimates of the Ad and Cd [22,23]. The shift
property can be written as

�eAe
d = �̄

e
, (25)

where �e and �̄
e
denote the matrices by removing the

first and the last h rows from�e, respectively. Then,Ae
d

can be obtained by the equations of the overdetermined
systems

Ae
d = �e+�̄

e
, (26)

where �e+ is the pseudo-inverse of �e. Based on the
definition of the extended observabilitymatrixEq. (11),
Ce
d can be obtained by

Ce
d = �e (1 : h, :) , (27)

where (1 : h, :) denotes the first h lines of the �e.
After the system matrices Ae

d and Ce
d are deter-

mined, the matrices Be
d are usually estimated by the

linear regression equation from Eq. (8) [17,21]. Iterat-
ing Eq. (8), one can obtain

yk = Cd xk + vk = Cd (Ad xk−1 + Bduk-1 + wk−1) + vk

= . . .

= CdA
k−1
d x1 +

k−1∑

i=1

(
CdA

k−i−1
d Bdui

)

+Noise (w1, . . . ,wk−1, vk)

= CdA
k−1
d x1 +

k−1∑

i=1

(
uTi ⊗

(
CdA

k−i−1
d

))
vec(Bd )

+Noise (w1, . . . ,wk−1, vk)

=
[
CdA

k−1
d

k−1∑
i=1

(
uTi ⊗

(
CdA

k−i−1
d

)) ][
x1
vec(Bd )

]

+Noise (w1, . . . ,wk−1, vk) , (28)

where Noise (w1, . . . ,wk−1, vk) is the residual term
of the system which is the sum of all the process noise
and the output measurement noise. ⊗ denotes the Kro-
necker multiplier. vec(Bd) stands for the column vec-
tors obtained by the rearrangement of each column of
the matrices Be

d from left to right, respectively. Then,
Be
d can be estimated by solving a linear regression equa-

tion with the help of the least square method. It should

be noted that the relationships of the estimatedmatrices
and the true ones are as follows

⎧
⎪⎨

⎪⎩

Ae
d = TAdT−1

Be
d = TBd

Ce
d = CdT−1

(29)

The algorithm described above rapidly gives an initial
model of the identified system. Then, the PEM [24] is
applied by using a full parameterization of the state-
space model in which θ is the parameter vector con-
sisted of the elements of the system matrices Ae

d , B
e
d ,

andCe
d . The one-step ahead prediction error defined as

εk = yk − ŷk (30)

is minimized to find the optimal system parameters in
which ŷk is the one-step ahead prediction of the output.
For the discrete-time state-space model of Eq. (8), the
ŷk can be described as follows:

ŷk = Ce
dA

e(k−1)
d x̂1

+Ce
dA

e(k−2)
d Be

d û1 + Ce
dA

e(k−3)
d Be

d û2 + · · ·
+Ce

dB
e
d ûk−1 + Ce

dA
e(k−2)
d w1

+Ce
dA

e(k−3)
d w2 + · · ·

+Ce
dwk−1 + vk . (31)

The criterion functions JN (θ) has to be determined
first to implement the PEM. The function JN (θ) is
generally chosen as

JN (θ) = h (RN (θ)) , (32)

where h(·) represents a scalarmonotonically increasing
function. RN (θ) denotes the sample covariance matrix
of the prediction errors and is defined as

RN (θ) = 1

N

N∑

t=1

ε (t, θ) εT (t, θ). (33)

Then, the estimation of the parameter vector θ is
obtained by minimizing the criterion function JN (θ)

θeN = argmin
θ

(JN (θ)) . (34)

In general, the predictors nonlinearly rely on the param-
eters. Therefore, the solution is obtained through the
iteration process as follows
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θ̃
(i+1)
N = θ̃

(i)
N − η

(i)
N

(
R(i)
N

)−1
J ′
N

(
θ̃

(i)
)

, (35)

where θ̃ (i) is the i th iteration and R(i)
N is the matrix

determining the search direction. J ′
N

(
θ̃

(i)
)
denotes

the gradient of the criterion function relating to the
parameter vector. η

(i)
N stands for the step size and

should be carefully chosen to ensure that the cur-
rent value of the criterion function is no larger than
that of the previous one. Several numerical algo-
rithms, such as the Newton–Raphson algorithm or the
Gauss–Newton algorithm, can be used for this itera-
tion process. Finally, the system state matrices of the
continuous-time state-space model Ac, Bc, and Cc can
be obtained by the relationships of Eq. (7).

3.3 Estimation of nonlinear coefficients and FRFs of
the underlying linear systems

Once the system model Ac, Bc, and Cc have been esti-
mated, the final step is to estimate the nonlinear coef-
ficients and the FRFs of the underlying linear system.
The main calculated process is based on the extended
FRF which contains nonlinear terms in the model [17].
By taking Fourier transform of Eq. (5), an extended
FRF of the system is obtained

Hex (ω) = Cc (iωI − Ac)
−1 Bc. (36)

Defining two matrices

N =
[
N11 N12

N21 N22

]
= iωI −

[
0n×n In×n

−M−1K −M−1C

]
(37)

P =
[
P11 P12

P21 P22

]
=

(
iωI −

[
0n×n In×n

−M−1K −M−1C

])−1

(38)

and taking into account Eq. (6),Hex (ω) can be derived
as

Hex (ω)

= [
Ip×p 0p×p

]
[
P11 P12

P21 P22

]

[
0p×1 0p×1 · · · 0p×1

M−1L f M−1μ1L1 · · · M−1μhLh

]

=
[
P11 P12

] [
0p×1 0p×1 . . . 0p×1

M−1L f M−1μ1L1 . . . M−1μhLh

]

= P12

[
M−1L f M−1μ1L1 . . . M−1μhLh

]
. (39)

Based on the block matrix inversion rule, P12 can be
obtained by

P12 = −N−1
11 N12

(
N22 − N21N

−1
11 N12

)−1

=
(
K + iωC − ω2M

)−1
M. (40)

Therefore, Hex (ω) can be rewritten as

Hex (ω)

= P12
[
M−1L f M−1μ1L1 . . . M−1μhLh

]

=
(
K + iωC − ω2M

)−1 [
L f μ1L1 . . . μhLh

]
.

(41)

where the item
(
K + iωC − ω2M

)−1
describes the

dynamic features of the underlying linear system

and the item
[
L f μ1L1 . . . μhLh

]
includes the

nonlinear coefficients to be identified.With the hypoth-
esis that the FRF of the underlying linear system(
K + iωC − ω2M

)−1
is a symmetric matrix, the non-

linear coefficients μi and the FRF of the underlying
linear system can be obtained from Eq. (41).

In order to demonstrate the calculating process for
estimating the nonlinear coefficients and the FRFs of
the underlying linear system, a two DOF dynamic sys-
tem with one local nonlinear stiffness is considered as

M z̈ (t) + C ż (t) + Kz (t) + kng1 (t) L1 = L f F (t) ,

(42)

where kn is the local nonlinear stiffness to be iden-
tified. z(t) is the displacement response vector of the
system, and z (t) = [z1 (t) z2 (t)]T . g1(t) denotes the
base function of nonlinear component which is

g1 (t) = z31 (t) . (43)

L1 and L f are the location vectors of the nonlinear
element and the excitation, respectively. They can be
assumed as

L f = [
0 1

]T
, L1 = [

1 0
]T

. (44)

After the system models Ac, Bc, and Cc are esti-
mated, the extended FRF of the systemHex2 (ω) can be
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Fig. 2 Overview of the
NSPEM

1. Input the displacement response z(t), external 

excitation force F(t), location vector of the excitation Lf, 

base function of nonlinear components gi(t) and location 

vectors of the nonlinear elements Li. 

2. Compute the projection matrix TU using Eq. (19) 

and the matrix P using Eq. (22). 

3. Estimate the extended observability matrix e using 

Eq. (24).

4. Estimate e
dA  using Eq. (26) and e

dC using Eq. (27). 

5. Estimate e
dB  using Eq. (28) with the help of the least 

square method.

6. Reestimate e
dA , e

dB  and e
dC  using Eq. (34). 

7. Convert e
dA , e

dB  and e
dC  into continuous-time 

matrices using Eq. (7) and form the extended FRF using 

Eq. (36).

8. Estimate the nonlinear coefficient and the FRFs of the 

underlying linear system using Eq. (41). 

obtained and one has the following relationship based
on Eq. (41)

Hex2 (ω) =
[
Hex11 Hex12

Hex21 Hex22

]

= H (ω)
[
L f knL1

]

= H (ω)

[
0 kn
1 0

]
=

[
H12 knH11

H22 knH21

]
,

(45)

where H (ω) represents the FRF of the underlying lin-
ear system and is expressed as

H (ω) =
[
H11 H12

H21 H22

]
. (46)

Taking into account H12 = H21, the nonlinear coeffi-
cient kn can be obtained by

kn = knH21

H21
= knH21

H12
= Hex22

Hex11
. (47)

The FRF of the underlying linear system can be calcu-
lated by

{
H12 = Hex11

H22 = Hex21
. (48)

To summarize, Fig. 2 presents an overview of the
NSPEM.

4 Numerical simulations

4.1 A six DOF discrete mass-spring-damper system

As shown in Fig. 3, a six DOF mass-spring-damper
system with one local nonlinearity is considered. The
system parameters are set as ki = 3× 104 Nm−1, ci =
5 × 10−5 × ki Nsm−1, and mi = 1 kg (i = 1, . . ., 6).
The nonlinearity in the system is located between the

m1 m2 m4 m5 m6

k1 k2 k3 k4 k6

c1 c2 c3 c4 c6

m3
kn1

k5

c5
x1 x2 x3 x4 x5 x6

F

Fig. 3 SixDOFmass-spring-damper systemwith one local non-
linearity
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Fig. 4 Estimated FRF (H16) of the six DOF discrete mass-
spring-damper system and theoretical FRF (H16) of its under-
lying linear system

x1 and the ground. The expression of the nonlinearity
is written as

fNd1 = knd x
3
1 , (49)

where knd is the nonlinear coefficient with the value
of 1013 Nm−3. xi (i = 1, . . ., 6) is the displacement
response and obtained by the fourth-order Runge–
Kutta algorithmwith the sample frequency of 2000Hz.
The excitation Find onnode six is chosen as a zero-mean
white Gaussian noise whose root-mean-square (RMS)
value is 1N.

Figure 4 gives the estimated FRF(H16) by the typ-
ical linear technique H1 estimator. The theoretical
FRF(H16) of its underlying linear system is also plot-
ted. It is noted that there are obvious differences of those
two FRFs, indicating the existence of nonlinearities.

In order to illustrate the performance of the proposed
method under different levels of noise environment,
all the simulated responses are contaminated by differ-
ent levels of noises with the SNR = 20, 40, 60dB in
sequence. And each group of numerical experiments
consists of 100 times simulation calculation by the
Monte Carlo method. Figure 5 compares the estimated
nonlinear coefficient by the proposed method and the
NSIM under a 20-dB noise environment. The results
show that the distribution of estimated nonlinear coef-
ficient obtained by the proposed method is more con-
centrated than that obtained by the NSIM. Table 1 lists
the means and variances of the estimated results under
different levels of noises. Note that the mean values
obtained by the proposed method are more accurate
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Fig. 5 Histograms of the estimated nonlinear coefficient knd by
a the proposed method and b the NSIM under the 20dB noise

than those results calculated by theNSIM.The variance
values obtained by the proposed method are smaller
than those calculated by the NSIM under the same
level of noise. It is mainly because that the NSPEM
obtains the parameter estimatewith the help of the PEM
which can give the optimal identification results in the
least square sense. Figure 6 plots the estimated FRF
(H16) of the underlying linear system using the pro-
posed method under the 20-dB noise. It is noted that
the estimated FRF of the underlying linear system is in
good agreement with the theoretical values.

4.2 A cantilever beam structure

A cantilever beam with two local nonlinearities depic-
ted in Fig. 7 is carried out in this subsection. The beam
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Table 1 Comparison of the estimated nonlinear coefficients by
the proposed method and the NSIM under different levels of
noises (the six DOF discrete mass-spring-damper system)

Noise level
(dB)

The proposed method The NSIM

Mean Variance Mean Variance

60 1.00e13 5.31e10 1.00e13 6.88e10

40 1.00e13 2.48e11 9.99e12 3.89e11

20 1.04e13 6.77e11 9.62e12 4.40e12
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Fig. 6 Estimated FRF (H16) of the underlying linear system for
the sixDOFdiscretemass-spring-damper systemunder the 20dB
noise

x1 x3 Fx2

kn1 kn2

Fig. 7 Cantilever beam structure with two local nonlinearities

ismodeled by the finite elementmethod [25]with Euler
beam unit, while the first three modes between 0 and
300Hz are discussed herein. The density and elasticity
modulus of the beam are 7800 kgm−3 and 2.06e11Pa,
respectively. The length, height, and width of the beam
are 0.2, 0.01, and 0.005m, respectively.

The dynamic equation of the cantilever beam can be
expressed as

0 100 200 300
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|) 
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N
-1

]
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Fig. 8 Estimated FRF (H15) of the cantilever beam structure
and theoretical FRF (H15) of its underlying linear system

Mẍ + Cẋ + Kx = F + Fn, (50)

where

F = [0, 0, 0, 0, Fin, 0]
T (51)

Fn = [0, 0,−FNc1, 0,−FNc2, 0] (52)

x = [x1, θ1, x2, θ2, x3, θ3]
T . (53)

xi (i = 1, . . ., 6) is the displacement response of the
corresponding node, and θi (i = 1, 2, 3) is the angular
displacement of the corresponding node of the beam.
M, K, and C denote the mass, stiffness, and damp-
ing matrices, respectively. C = U−Tdiag(2ζiωi )U−1

in which ζi (i = 1, . . . , N ) denotes themodal damping
ratios and is assumed to be 0.2%. The natural frequen-
cies ωi and the orthonormalized modal matrix U can
be calculated by the eignvalue problem of the under-
lying linear system. The excitation Fin is subjected to
the x3 and also chosen as a zero-mean white Gaussian
noise whose RMS value is 1 N. The two nonlinearity
internal feedback forces of the system FNc1 and FNc2
are expressed as

{
FNc1 = knc1x3 |x3|
FNc2 = knc2x35

, (54)

where knc1 = 107 Nm−1, knc2 = 8 × 108 Nm−1 are
the nonlinear coefficients of the forces. The system
response is obtained by the fourth-order Runge–Kutta
algorithm with the sample frequency of 10kHz.
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Fig. 9 Histograms of the estimated nonlinear coefficient knc1 by
a the proposed method and b the NSIM under the 20dB noise

The estimated and theoretical values of the FRF
(H15) of the underlying linear system are given in
Fig. 8. Results show that those two FRFs have obvi-
ous differences, implying that the nonlinearities are
present. To make a comparison between the proposed
method and the NSIM, the identified nonlinear coef-
ficients knc1 and knc2 of the cantilever beam structure
between these two methods under a 20-dB noise envi-
ronment are plotted in Figs. 9 and 10. The numerical
experiments also consist of 100 times simulation cal-
culation by the Monte Carlo method. From the results,
one can see that the distribution of the estimated non-
linear coefficients calculated by the proposedmethod is
more concentrated than that calculated by the NSIM.
More specifically, the mean and variance of the esti-
mated results for the cantilever beam structure under
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Fig. 10 Histograms of the estimated nonlinear coefficient knc2
by a the proposed method and b the NSIM under the 20dB noise

different levels of noises (SNR = 20, 40, 60dB) are
listed in Table 2. It can be seen that the mean values
obtained by the proposed method are more accurate
than those values obtained by the NSIM. The variance
values by the proposed method are much smaller than
those by theNSIMunder the same level of noise. This is
mainly because that the PEMclearly optimize an objec-
tive function and the NSPEM provides a more suitable
way to determine the estimate of the state-spacemodel.
Figure 11 gives the estimated FRF (H15) of the under-
lying linear system using the proposed method under
the 20-dB noise. It is also shown that the estimated FRF
of the underlying linear system is in good consistency
with the theoretical one, verifying the accurate of the
NSPEM.
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Table 2 Comparison of the estimated nonlinear coefficients by
the proposed method and the NSIM under different levels of
noises (the cantilever beam structure)

Noise level
(dB)

The proposed method The NSIM

Mean Variance Mean Variance

knc1

60 1.00e7 5.78e4 1.04e7 4.95e5

40 9.80e6 2.51e5 9.45e6 5.86e5

20 9.95e6 3.08e5 9.53e6 1.13e6

knc2

60 7.97e8 4.68e6 8.01e8 9.88e6

40 7.91e8 1.15e7 7.75e8 2.85e7

20 7.95e8 1.56e7 6.93e8 1.14e8
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Fig. 11 Estimated FRF (H15) of the underlying linear system
for the cantilever beam structure under the 20dB noise

5 Conclusions

In this study, a new time-domain subspace identi-
fication approach named as the nonlinear subspace-
prediction error method (NSPEM) is proposed for
nonlinear system identifications. One of the major
shortcomings of the nonlinear subspace identification
method (NSIM) is that the estimated results generated
by the NSIM are not the optimal solutions, leading
to the decrease in the identified accuracy. To solve
this shortcoming, an improved NSIM has been sug-
gested in this paper. The proposed NSPEM utilizes the
prediction error approach (PEM) to reestimate those
estimated coefficient matrices of the state-space model

after obtaining an initial system model with the appli-
cation of the NSIM. The PEM employs a full param-
eterization of the state-space model with regulariza-
tion to obtain the optimal identification results in the
least square sense. Both the original NSIM and the pro-
posed method have been used to identify the nonlin-
ear vibrating structures, i.e., a six DOF discrete mass-
spring-damper system with one local nonlinearity and
a cantilever beam structure with two local nonlineari-
ties. The results show that the proposedmethod has bet-
ter identification results than the NSIM under a noise
environment. It is confirmed that the proposed NSPEM
is a promising tool for identifying nonlinear vibrating
structures.
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