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Abstract Memristor-based chaotic and hyperchaotic
systems are of great interest in the recent years, and
addition of meminductor and memcapacitors to the
family has widened the applications. In this paper, we
propose a new chaotic system with fractional-order
memristor and memcapacitor components. Nonlinear
chaotic properties of the proposed system are investi-
gated with equilibrium points, eigenvalues, Lyapunov
exponents, bifurcation and bicoherence plots.We show
that a small model disturbance can make the system
to show self-excited and hidden attractors. We use the
AdomianDecompositionmethod for implementing the
proposed system in Field Programmable Gate Arrays.

Keywords Memfractor ·Hidden attractor bifurcation ·
Bicoherence · FPGA

1 Introduction

The fourth circuit element popularly known as mem-
ristors was first postulated by Chua [1]. Until 2008
when researchers of HP laboratories fabricated a solid-
state implementation of memristor, none was known
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much aboutmemristor realization [2]. Since then,many
othermemristormodels have been introduced [5,6,34].
Memristors are considered to be highly nonlinear with
nonvolatile characteristics and can be implemented
with nanoscale technologies [5,6,34]. To design mem-
ristor oscillators, a new kind of nonlinear circuits
with oscillatory memories and periodically forced
flux-controlled memductance models are investigated
[7,8].

Memristor-based chaotic oscillators are widely inv-
estigated in the last one decade. Circuits with two HP
memristors in antiparallel are demonstrated showing a
variety of chaotic attractors for different values of com-
ponents [9]. A current feedback op-amp-based mem-
ristor oscillators are analyzed, and simulation results
are investigated [10]. A simple autonomousmemristor-
based oscillator with external sinusoidal excitation
is used to generate chaotic oscillations. A discrete
model for this HP memristor is derived and imple-
mented using DSP chips [11] implementing memris-
tor. Recently a new hyper chaotic system with two
memristors is investigated and its application to image
encryption is analyzed. The correlation and ant attack
capability between adjacent pixels are investigated
[12].

Practical implementation of memristor-based cha-
otic circuits with off-the-shelf components is desired
for real-time applications [13]. Memristor-based cha-
otic circuit for pseudo-random number generation
is analyzed with applications to cryptography [14].
Memristor-based chaotic circuits for text and image
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cryptography are investigated, and the correlation anal-
ysis shows the effectiveness of the proposed crypto-
graphic scheme over other encryption algorithms [15].
Memcapacitor-based chaotic circuits with a HP mem-
ristor are proposed, and the analysis of the proposed
oscillator is implemented in DSP for further applica-
tions [16].

Recently many researchers have discussed about
fractional-order calculus and its applications [19–21].
Fractional-order nonlinear systems with different con-
trol approaches are investigated [22–24]. Fractional-
order memristor-based no equilibrium chaotic and
hyperchaotic systems are proposed [17,18,40,41]. A
novel fractional-order no equilibrium chaotic system
is investigated in [25], and a fractional-order hyper-
chaotic system without equilibrium points is investi-
gated in [26]. Memristor-based fractional-order sys-
tem with a capacitor and an inductor is discussed
[27]. Numerical analysis and methods for simulating
fractional-order nonlinear system are proposed in [28],
and matlab solutions for fractional-order chaotic sys-
tems are discussed in [29]. Fractional-order multiscroll
systems are also investigated in the recent years [87,88]

Implementation of chaotic and hyperchaotic sys-
tem using field-programmable gate arrays (FPGA) is
widely investigated [31–33]. Chaotic random number
generators are implemented in FPGA for applications
in image cryptography [34]. FPGA-implementedDuff-
ing oscillator-based signal detectors are proposed [35].
Digital implementations of chaotic multiscroll attrac-
tors are extensively investigated [31,36]. Memristor-
based chaotic system and its FPGA circuits are dis-
cussed with their qualitative analysis [37]. A FPGA
implementationof fractional-order chaotic systemusing
approximation method is investigated recently for the
first time [17,18,40,41].

Analysis of dynamical systems starts from find-
ing the fixed points. Physically equilibrium points are
known as fixed points where the system is definitely
stable. Hence, the characteristics of equilibrium lead to
identify the complexity of the system. Initially chaotic
systems without equilibria were commonly rejected as
“incomplete” or “mis-formulated” [72]. Certain sys-
tems with hidden attractor show multistability for a
range of parameter, and controlling such multistability
feature is achieved with coupling of nonlinear systems
with a linear system as discussed in [90] and using
linear augmentation in [91]. The numerical difficul-
ties associated with the location of complex nonlinear

states whose basin of attraction does not overlap with
each other lead to the term “hidden attractor” [73].
The challenges in finding the hidden attractors make
the no equilibrium systems more fascinate [74]. No
equilibrium systems are more suitable and work effec-
tively to design random number generators [75]. Hid-
den attractors affect the systemperformance vigorously
and lead to system failure, so study of these systems
becomes mandatory, especially in electromechanical
systems [76]. Leonov and Kuznetsov studied [78–83]
and developed [77–80] analytical and numerical meth-
ods to investigate the chaotic and hyperchaotic hidden
attractors. A list of 17 structurally different 3D systems
that display quadratic chaotic flows without equilibria
[84] and new ways of analyzing stability of fractional-
order systems are presented in [89]. Recentlymanynew
chaotic systems which can be controlled with a offset
or boosting parameter are discussed [93–97].

2 Problem formulation

Many scientific and engineering fields such as physics,
bioengineering, viscoelasticity theory, fractal dynam-
ics, fractional control, signal and image processing
presently, digital and analog communication, cryptog-
raphy and secure communications use fractional cal-
culus [61–64]. The application of fractional calculus to
analyzing the memelements is an emerging discipline
of study in which few studies have been performed [9–
16,49,65–67]. In the engineering fields such as signal
analysis and processing, circuits and systems, there are
many issues on nonlinear, non-causal, non-Gaussian,
non-stationary, non-minimum phase, non-white addi-
tive noise, non-integer-dimensional and non-integer-
order characteristics needed to be analyzed and pro-
cessed [67]. The classical integer-order signal process-
ing filters and circuitmodels cannot deal with the afore-
mentioned non-problems efficiently. Hence, fractional
calculus has gained importance in signal and image
processing, circuits and systems, etc.

As per Chua’s axiomatic element system [1–6,64],
there should be a novel corresponding capacitive circuit
element and inductive circuit element to the capacitive
fractor and inductive fractor, respectively. Therefore,
it is important to investigate a challenging theoretical
problem to determine memfractor elements and their
positions in the Chua’s axiomatic element. Also it is
worth to investigate the applications of such memfrac-
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tor elements. Motivated by these, we investigate the
fractional order models of memristor and memcapaci-
tor and use the memfractor elements to propose a novel
chaotic oscillator.

Several memcapacitor models, including piecewise
linear, quadric and cubic function models, memristor-
based memcapacitor models, are discussed in several
studies [50–53]. Some special phenomena such as hid-
den attractors, coexistence attractors and extreme mul-
tistability were found in memcapacitor-based chaotic
oscillators [54–56]. Recently many researchers have
worked on the fractional-order memristor (fracmem-
ristor) models [65–67,69]. The ohmic relationship of a
memristor is given by

Rin = l Ron + (1 − l)Roff (1)

where l is the ratio of length of the doped region of
memristor to the total length of the memristor, Ron is
the minimum resistance and Roff maximum resistance
of the memristor. The rate of change of l is given as,

dl

dt
= ±λi(t)g(l) (2)

where λ = μm Ron
D2 with μm denoting the dopant mobil-

ity, D is the length of memristor, and g(l) is dopant
drift given by f (l) = 1 − (2l − 1)2p. The fractional
memristor model is given by the relation

dq x

dtq
= ±λi(t)g(l) (3)

Solving (3) with (1), the input resistance of the mem-
ristor is derived as,

dq Rin

dtq
= ±λRdi(t)g(l) (4)

where Rd = Roff − Ron. For linear window g(l) = 1
and using Riemann–Liouville Theorem [68] the mem-
ristor resistance can be derived as

Rin =
⎛
⎝Rq+1

in ∓ q (q + 1) kRd

t∫

0

(t − τ)q−1 v (τ) dτ

⎞
⎠

1
q+1

(5)

Similarly the memcapacitor can be derived from the
relation

qc(t) = cm (x, v, t) ω(t)
ẋ = f (x, v, t)

(6)

where qc(t) is quantity of charge at time t , x is the
correspondence internal state variable, and cm is mem-
capacitor. The voltage acrossmemcapacitor [66,67,69]
is given by the relation

v(t) = c−1
m (x, qc, t) qc(t) (7)

c−1
m is inverse memcapacitance.
Equations (6) and (7) can be simplified to a gener-

alized forms as,

q(t) = cm

⎡
⎣

t∫

0

v (τ) dτ

⎤
⎦ v(t) (8)

v(t) = c−1
m

⎡
⎣

t∫

0

q (τ ) dτ

⎤
⎦ q(t) (9)

Equation (8) is the voltage-controlledmemcapacitance,
and Eq. (9) is the charge-controlled memcapacitance.

Using Riemann–Liouville Theorem [68], the frac-
tional-order model of (8) and (9) can be derived as

v(t) = c−1
m

�(q)

⎡
⎣

t∫

0

(t − τ)q−1 q (τ ) dτ

⎤
⎦ q(t) (10)

q(t) = cm
�(q)

⎡
⎣

t∫

0

(t − τ)q−1 v (τ) dτ

⎤
⎦ v(t) (11)

Equation (10) shows the fractional-order charge con-
troller memcapacitor and (11) shows the fractional-
order voltage-controlled memcapacitor.

In this paper, we investigate a novel memfrac-
tor chaotic oscillator (MCO) with charge-controlled
fracmemcapacitor (10) and flux-controlled fracmem-
ristor (5) as shown in Fig. 1.

R is the resistance, L is the inductances, G is the
conductance r is the internal resistance of the voltage
source, andC is the capacitance.Cm is the fracmemca-
pacitor [66,67,69] and M is the flux-controlled mem-
ristor [66,67,69]. The current flowing through the cir-
cuit is iG, iR, iCm , iL . The relationship between the
voltage vCm(t) and the charge qCm (t) of the mem-
capacitor is defined as,

vCm(t) = (α + βσCm)qCm (t) (12)
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Fig. 1 Memfractor chaotic
oscillator

where dqσ σ

dtqσ = qCm (t). Applying Kirchhoff’s law to
the circuit shown in Fig. 1, we derive the five state
equations of the circuit as,

dqσ σ

dtqσ
= qCm (t)

dqqm qM
dtqqM

= iL

dqcqcm
dtqc

= vCm

r
+ 1

R
(vc + vCm) (13)

dqiL iL
dtqiL

= 1

L
(VC − MiL)

dqvc vc

dtqvc
= 1

c

(
−iL + 1

R
(vCm − vc)

)

where qσ , qqM , qqCm , qiL , qvc are the fractional orders
of the MCO system. Using x = σ, y = qM , z =
qCm, u = iL , v = vc and e = 1

L , f = 1
C , g =

1
R , h = 1

r , and with the memristor flux elements as
a = 0.01, b = 0.01, memcapacitor charge control ele-
ments are c = 0.7, d = −0.8, the passive circuit ele-
ments are L = 0.136H,C = 58.82F , R = 0.2	, and
the internal resistance of the non-ideal voltage source
is r = 2.1	, we arrive at the fifth-order dimension-
less mathematical model of the memfractor oscillator
system as

dqx x

dtqx
= z

dqy y

dtqy
= u

dqz z

dtqz
= a1z + a2xz + a3v (14)

dqu u

dtqu
= a4v + a5u(1 + y)

dqv v

dtqv
= a6u + a7xz + a8z + a9v + a0

with a1 = −1.89; a2 = −2.16; a3 = 4.8; a4 =
7.35; a5 = −0.0735; a6 = −0.17; a7 = 0.6528; a8 =
0.571; a9 = −0.816 and a0 is model disturbance or
the uncertainty in the model approximations. In this
case, the value of a0 = 10−5 and the initial conditions
are [0, 0, 0, 0, 0.01]. The parameter a0 is the model
uncertainty arising due to the voltage source and if the
source is assumed to be an ideal voltage source (toler-
ance level less than 10−5), then the disturbance factor
a0 = 0 and then the system is self-excited oscillator
and if the voltage source is a non-ideal source with tol-
erance factor a0 �= 0, then the memfractor oscillator is
a hidden attractor and thus the MCO system exhibits
a chameleon [71,92] like behavior. Figure 2a, b shows
the 2D phase portraits of the MCO system for a0 �= 0
and a0 = 0, respectively.

3 Dynamic analysis of memfractor oscillator
(MCO)

Thedynamic properties of theMCOsystem such as dis-
sipativity, equilibrium points, eigenvalues, Lyapunov
exponents and Kaplan–Yorke dimension are derived
and discussed in this section.
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Dynamical analysis and FPGA implementation 1495

Fig. 2 a 2D phase portraits of the self-excited memfractor oscillator (14) for commensurate order q = 0.993. b 2D phase portraits of
the hidden attractor memfractor oscillator (14) for commensurate order q = 0.995

3.1 Equilibrium points

The equilibrium points of the MCO system depend on
the parameter a0, and if a0 = 0, the system is a self-
excited attractor with one equilibrium point at origin
(E1). If a0 �= 0, theMCO system shows no equilibrium
points and hence shows hidden attractors. The Jacobian
matrix of the MCO system (3) is

J (X) =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
a2z 0 a1 + a2x 0 a3
0 −a5u 0 a5 − a5y a4
a7z 0 a8 + a7x a6 a9

⎤
⎥⎥⎥⎥⎦

(15)

3.2 Stability analysis

For the integer-order model of the MCO system (14)
when the commensurate order of the system q = 1, the
characteristic equation of the system is derived as,

λ5 + (−a1 − a5 − a9) λ4 +
(
a1a5 + a1a9 − a4a6
−a3a8 + a5a9

)
λ3

+
(
a1a4a6 − a1a5a9
+a3a5a8

)
λ2 (16)

and at equilibrium E1 the characteristic equation is
λ5 + 2.7795λ4 + 0.248871λ3 + 2.27339028λ2 and the
corresponding eigenvalues are λ1= −2.9555, λ2,3 =
0.0880 ± 0.8726i, λ4,5 = 0 and λ2,3 is the saddle
focus. As per Routh–Hurwitz criterion, all the prin-
cipal minors need to be positive for the MCO system
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Fig. 2 continued

to be stable. The principal minors are,


1 = δ1 > 0, 
2 =
∣∣∣∣
δ1 δ0
δ3 δ2

∣∣∣∣ > 0,


3 =>

∣∣∣∣∣∣
δ1 δ0 0
δ3 δ2 δ1
0 0 δ3

∣∣∣∣∣∣
> 0


4 =

∣∣∣∣∣∣∣∣∣

δ1 δ0 0 0
δ3 δ2 δ1 δ0
0 δ4 δ3 δ2
0 0 0 δ4

∣∣∣∣∣∣∣∣∣
> 0,


5 =

∣∣∣∣∣∣∣∣∣∣

δ1 δ0 0 0 0
δ3 δ2 δ1 δ0 0
0 δ4 δ3 δ2 δ1
0 0 δ5 δ4 δ3
0 0 0 0 δ5

∣∣∣∣∣∣∣∣∣∣
> 0

(17)

where δ0 = 1, δ1 = −a1 − a5 − a9, δ2 = a1a5 +
a1a9 − a4a6 − a3a8 + a5a9, δ3 = a1a4a6 − a1a5a9 +
a3a5a8δ4 = 0, δ5 = 0. For the parameter values
of a1 = −1.89; a2 = −2.16; a3 = 4.8; a4 =
7.35; a5 = −0.0735; a6 = −0.17; a7 = 0.6528; a8 =
0.5712; a9 = −0.816 and at the equilibrium point E1

the MCO system is unstable and shows chaotic oscil-
lations. The system characteristic equation does not
depend on the value of a0, and hence, the eigenval-
ues are same for self-excited and hidden chaotic flows.
Similarly the fractional-order stability analysis is also
same for self-excited and hidden flows, and hence, The-
orems 1–3 are common for both a0 = 0 and a0 �= 0

Theorem 1 The commensurate order system Dqx(t) =
Ax(t), with 0 < q ≤ 1 and x(t) ∈ Rn, A ∈ Rn×n is
asymptotically stable if and only if |arg(λ)| >

qπ
2 for
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all eigenvalues of λ. For the critical eigenvalues, the
system is stable if |arg(λ)| ≥ qπ

2 where the critical
eigenvalue of |arg(λ)| = qπ

2 having geometric multi-
plicity of one.

Proof For commensurate MCO system of order q, the
system is stable and exhibits chaotic oscillations if
|arg(eig(JE ))| = |arg(λi )| >

qπ
2 where JE is the Jaco-

bian matrix at the equilibrium E and λi are the eigen-
values of the MCO system where i = 1, 2, 3, 4, 5. As
seen from the MCO system, the eigenvalues should
remain in the unstable region and the necessary con-
dition for the MCO system to be stable is q >
2
π
tan−1

( |Imλ|
Reλ

)
. The characteristic equation for the

commensurate orders q = 0.99 for the equilibrium
point E1 is given by

λ495 + 5λ397 + 2.77λ396 + 10λ299 + 11.19λ298

+ 0.25λ297 + 10λ201 + 16.67λ200 + 0.75λ199

+ 2.27λ198 + 5λ103 + 11.19λ102 + 0.746λ101

+ 4.546λ100 + λ5 + 2.779λ4 + 0.248λ3 + 2.273λ2.

��
Theorem 2 For incommensurate order system
Dqx(t) = Ax(t), q = (

qx , qy, qz, qu, qv

)T
with

qi = num(i)
den(i) and gcd (num(i), den(i)) = 1 for i =

x, y, z, u, v and if ‘M’ is LCM(den(i)), then the sys-
tem is globally asymptotically stable if all the eigen-
value of the system obeys |arg(λ)| > π

2m where
(λ) =
det

(
diag(λMqi ) − A

) = 0

Proof The necessary condition for the MCO system to
exhibit chaotic oscillations in the incommensurate case
is, π

2M −mini (|arg(λi)|) > 0 where M is the LCM of
the fractional orders. If qx = 0.99, qy = 0.99, qz =
0.99, qu = 0.98, qv = 0.98, then M = 100. The char-
acteristic equation of the system evaluated at the equi-
libria is det(diag[λMqx , λMqy , λMqz , λMqu , λMqv ] −
JE ) = 0 and by substituting the values of M and the
fractional orders, det(diag[λ99, λ99, λ99, λ98, λ98] −
JE ) = 0 and the characteristic equation at equilibrium
point E1 is,

λ493 + 2λ396 + 3.889λ395 + 1.89λ394 + λ299

+ 6.8895λ298 + 10.757λ297 + 2.719λ296 + 3λ201

+ 10.558λ200 + 14.096λ199 + 2.042λ198 + 3λ103

+ 8.44λ102 + 6.47λ101 + 3.48λ100 + λ5

+ 2.779λ4 + 0.248871λ3 + 2.273λ2.

For the values of parameters mentioned in Sect. 2,
the approximated solutionof the characteristic equation
is λ493 = 0.677, whose argument is zero and which is
the minimum argument, and hence, the stability nec-
essary condition becomes, π

200 − 0 > 0 which solves
for 0.0157 > 0 and hence the MCO system is unstable
and chaos exists in the incommensurate system. ��

Theorem 3 The necessary condition for occurrence of
a chaotic attractor in the fractional-order system (14)

for a = 0 is q > 2
π
arctan

( |Im(λ)|
Re(λ)

)
for any eigenvalue

λ of the equilibrium point.

Proof TheMCOsystem shows chaotic oscillations and
has λ2,3 saddle focus. A necessary condition for the
MCO system to exhibit a chaotic attractor is instability
of the equilibrium point E1. Otherwise, the equilibrium
point becomes asymptotically stable and attracts the
nearby trajectories. By Theorem 3, the condition for

instability of equilibrium is q > 2
π
arctan

( |Im(λ)|
Re(λ)

)
and

from the saddle focus λ2,3 chaotic oscillations exists

when q > 2
π
arctan

( |0.8726|
0.088

)
and the minimum value

of q = 0.936 above which the system shows chaotic
oscillations. ��

3.3 Lyapunov exponents and Kaplan–Yorke
dimension

Lyapunov exponents of a nonlinear system define
the convergence and divergence of the states. The
existence of a positive Lyapunov exponents confirms
the chaotic behavior of the system [45,57–60]. Lya-
punov exponents (LEs) are necessary and more con-
venient for detecting hyperchaos in fractional-order
hyperchaotic system. A definition of LEs for frac-
tional differential systems was given in [57] based on
frequency-domain approximations, but the limitations
of frequency-domain approximations are highlighted
by Tavazoei [45]. Time series-based LEs calculation
methods like Wolf algorithm [58], Jacobian method
[59] and neural network algorithm [60] are popularly
known ways of calculating Lyapunov exponents for
integer- and fractional-order systems. To calculate the
LEs of the MCO system, we use the Lyapunov expo-
nents for fractional order using Wolf’s algorithm [70].
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Fig. 3 Lyapunov exponents
of the MCO system. a
a0 = 0, b a0 �= 0

The Lyapunov exponents of the MCO system for
a0 = 0 are numerically found as

L1 = 0.09127, L2,3,4 = 0, L5 = −2.2236 (18)

and Lyapunov exponents of the MCO system for a0 �=
0 are numerically found as

L1 = 1.6, L2 = 0, L3= −0.521,

L4= −1.076, L5 = −2.2311 (19)

The existence of positive LE confirms that the MCO
system shows chaotic oscillations for both self-excited
(18) and hidden attractor (19). Figure 3a, b shows the
time history of Lyapunov exponents of MCO system
for a0 = 0 and a0 �= 0.
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We note that the sum of the Lyapunov exponents of
the MCO system (14) is negative. In fact,

a = 0 ⇒ L1 + L2,3,4 + L5 = −2.1323 < 0
a �= 0 ⇒ L1 + L2 + L3 + L4 + L5 = −2.2271 < 0

(20)

This shows that the MCO system (14) is dissipative.
Also, the Kaplan–Yorke dimension of theMCO sys-

tem (14) is derived as

a = 0 ⇒ DKY = 4 + L1+L2,3,4
|L5| = 4.042,

a �= 0 ⇒ DKY = 4 + L1+L2,3,4
|L5| = 4.002,

(21)

which is fractional.

3.4 Bifurcation

3.4.1 Bifurcation with parameters

To understand the parameter dependence of the MCO
system, we derive and investigate the bifurcation plots.
This MCO system bifurcates with all the six param-
eters. Figure 4a–j shows the bifurcation of the MCO
system for the parameters a1, a2, a3, a4, a5, a6, a7,
a8, a9, a0, respectively. From Fig. 4a–j, it is evident
that the MCO system shows multiple chaotic regions
for parameters. The system enters into chaotic oscil-
lations with routine period doubling or reverse period
doubling exit from chaos. Figure 4a shows the bifur-
cation of the MCO with parameter a1, and the MCO
shows period 8 limit cycles for − 2 ≤ a1 < − 1.96
and enters into the chaotic region with multiple period
doublings and similarly the MCO shows period 8 limit
cycles for − 1.9 ≤ a2 < − 1.8, period 4 limit cycles
for − 1.8 ≤ a2 < − 1.4 and period 2 limit cycles for
− 1.4 ≤ a2 < −1 and takes a period halving exit from
chaos as shown in Fig. 4b. Figure 4c shows the bifur-
cation of the MCO with a3 and has period 4, period 8
and chaotic oscillations for 4.5 ≤ a3 < 4.59, 4.59 ≤
a3 < 4.61, 4.61 ≤ a3 < 4.85, respectively, and takes
perioddoubling route to crisis. Similarly the parameters
a5, a6, a8, a9 take period doubling route to chaos, and
a4, a7, a0 take the inverse period doubling exit from
chaos. These claims are supported by the respective
Lyapunov exponents as shown in Fig. 5. TwoLyapunov
exponents are zero, two are negative, and oneLyapunov

exponent is positive confirming the existence of chaotic
oscillations.

3.4.2 Bifurcation with fractional order

The most important analysis of interest when investi-
gating a fractional-order system is the bifurcation with
fractional order. Figure 6a, b shows the bifurcation of
the MCO system with fractional order for a = 0 and
a �= 0, respectively. As can be seen from Fig. 6a, b,
bifurcation of the MCO system for change in frac-
tional order shows that the systems chaotic oscillations
remain if qi > 0.93 and the largest positive Lyapunov
exponent (L1 = 0.1024) of the MCO system for a = 0
appears when q = 0.995 against its largest integer-
order Lyapunov exponent (L1 = 0.09127) and the
largest positive Lyapunov exponent (L1 = 1.6582) of
the MCO system for a �= 0 appears when q = 0.993
against its largest integer-order Lyapunov exponent
(L1 = 1.6).

3.5 Bicoherence

Higher-order spectra have been used to study the non-
linear interactions between frequency modes [38,39].
Let x(t) be a stationary random process defined as,

x(t) =
N∑

n=1

Ane
jωn t + A∗

ne
− jωn t (22)

where ω is the angular frequency, n is the frequency
modal index, and An are the complex Fourier coeffi-
cients. The power spectrum can be defined as,

P(ωk) = E[Aωk A
∗
ωk

] (23)

and discrete bispectrum can be defined as,

B(ωk, ω j ) = E
[
Aωk Aω j A

∗
ωk+ω j

]
(24)

If the modes are independent, then the average triple
products of Fourier components are zero resulting in
a zero bispectrum [38]. The study of bicoherence is
to give an indication of the relative degree of phase
coupling between triads of frequency components. The
motivation to study the bicoherence is twofold. First,
the bicoherence can be used to extract information
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Fig. 4 Bifurcation plots of MCO system
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Fig. 4 continued

due to deviations from Gaussianity and suppress addi-
tive (colored) Gaussian noise. Second, the bicoher-
ence can be used to detect and characterize asymmet-
ric nonlinearity in signals via quadratic phase coupling
or identify systems with quadratic nonlinearity. The
bicoherence is the third-order spectrum. Whereas the
power spectrum is a second-order statistics, formed
from X ′ ( f )∗ X ( f ), where X ( f ) is the Fourier trans-
form of x (t), the bispectrum is a third-order statistics
formed from X

(
f j

) ∗ X ( fk) ∗ X ′ ( f j + fk
)
. The bis-

pectrum is therefore a function of a pair of frequencies(
f j , fk

)
. It is also a complex-valued function. The

(normalized) square amplitude is called the bicoher-
ence (by analogy with the coherence from the cross-
spectrum).The bispectrum is calculated by dividing the
time series into M segments of length N_seg, calculat-
ing their Fourier transforms and bi-periodogram, then

averaging over the ensemble.Although the bicoherence
is a function of two frequencies, the default output of
this function is a one-dimensional output, the bicoher-
ence refined as a function of only the sum of the two
frequencies. The auto-bispectrumof a chaotic system is
given by Pezeshki [30]. He derived the auto-bispectrum
with the Fourier coefficients.

B(ω1, ω2) = E[A(ω1) A(ω2) A
∗(ω1 + ω2)] (25)

where ωn is the radian frequency and A is the Fourier
coefficients of the time series. The normalized magni-
tude spectrum of the bispectrum known as the squared
bicoherence is given by

b(ω1, ω2) = |B(ω1, ω2)|2 /P(ω1) P(ω2) P(ω1 + ω2)

(26)
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Fig. 5 Change in Lyapunov exponents of MCO system for various values of parameters (The fifth Lyapunov exponent is not visible in
the plots 5b–5e and fourth and fifth Lyapunov exponents are not visible in plot 5a)
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Fig. 6 a Bifurcation of MCO system (a = 0) with fractional
order. b Bifurcation of MCO system (a �= 0) with fractional
order

where P(ω1) and P(ω2) are the power spectra at f1
and f2.

Figures 7a, b and 8a, b show the bicoherence con-
tours of the MCO system for state x and all states
together with a = 0 and a �= 0, respectively.
Shades in yellow represent the multifrequency com-
ponents contributing to the power spectrum. From
Figs. 7a, b and 8a, b, the cross-bicoherence is signifi-
cantly nonzero and non-constant, indicating a nonlin-
ear relationship between the states. As can be seen from
Fig. 7a, b, the spectral power is very low as compared
to the spectral power of all states together (Fig. 8a,
b) indicating the existence of multifrequency nodes.
Also Fig. 8a, b shows the nonlinear coupling (straight
lines connectingmultiple frequency terms) between the
states. The yellow shades/lines and non-sharpness of
the peaks, as well as the presence of structure around

the origin in figures (cross-bicoherence), indicate that
the nonlinearity between the states x , y, z, u, v is not of
the quadratic nonlinearity and hence may be because
of nonlinearity of higher dimensions. The most two
dominant frequencies ( f1, f2) are taken for deriving
the contour of bicoherence. The sampling frequency
( fs) is taken as the reference frequency. Direct FFT is
used to derive the power spectrum for individual fre-
quencies, and Hankel operator is used as the frequency
mask. Hanning window is used as the FIR filter to sep-
arate the frequencies [40].

4 FPGA implementation of the MCO systems

The three main approaches derived to solve fractional-
order chaotic systems are frequency-domain method
[42], Adomian decompositionmethod (ADM) [43] and
Adams–Bashforth–Moulton (ABM) algorithm [44].
The frequency-domain method is not always reliable
in detecting chaos behavior in nonlinear systems [45].
On the other hand, ABM and ADM are more accu-
rate and convenient to analyze dynamical behaviors
of a nonlinear system. Compared with the ABM,
ADM yields more accurate results and needs less com-
puting resources as well as memory resources [46].
Hence, the proposed MCO system is implemented
in FPGA by applying ADM scheme. The challenge
of implementing the systems in FPGA is designing
the fractional-order integrator which is not a readily
available block in the system generator [18,40,41]. As
because the ADM algorithm converges fast [46,47],
the first 6 terms are used to get the solution of
MCO system as in real cases, it is impossible to find
the accurate value of x when t takes larger values
[48]. Hence, we have to design a time discretization
method. That is to say, for a time interval of ti (ini-
tial time) to t f (final time), we divide the interval
into (tn, tn+1) and we get the value of x(n + 1) at
time tn+1 by applying x(n) at time tn using the rela-
tion x (n + 1) = F (x (n)) [48]. We use the ADM
method [55,58] to discretize the fractional-order CA
system for implementing in FPGAusing the hardware–
software cosimulation as described in [85,86]. The
fractional-order discrete form of the dimensionless
state equations for the MCO system can be given
as,
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Fig. 7 a Bicoherence plot
of MCO system (a = 0) for
state x . b Bicoherence plot
of MCO system (a �= 0) for
state x
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Fig. 8 a Bicoherence plot
of MCO system (a = 0) for
all states. b Bicoherence
plot of MCO system
(a �= 0) for all states
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Fig. 9 RTL schematics of the MCO system implemented in Kintex 7 (Device=7k160t Package= fbg484 S). The sampling time of the
system is kept at 0.01s to minimize the time slack errors. The entire system is configured for a 32bit operation

Fig. 10 a Power consumed by MCO system (a = 0) for
q = 0.995. b Power consumed by MCO system for various
fractional orders. It can be seen that maximum power of 0.251W

is consumed for order q = 0.995 when the MCO system shows
the largest Lyapunov exponents

xn+1 =
6∑
j=0

p j
1

h jqx

� ( jqx + 1)

yn+1 =
6∑
j=0

p j
2

h jqy

�
(
jqy + 1

)

zn+1 =
6∑
j=0

p j
3

h jqz

� ( jqz + 1)
(27)

un+1 =
6∑
j=0

p j
4

h jqu

� ( jqu + 1)

vn+1 =
6∑
j=0

p j
5

h jqv

� ( jqv + 1)

where p j
i are the Adomian polynomials with i =

1, 2, 3, 4 and

p01 = xn, p
0
2 = yn, p

0
3 = zn, p

0
4 = un, p

0
5 = vn
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Fig. 11 a Power consumed by MCO system (a �= 0) for
q = 0.993. b Power consumed by MCO system for various
fractional orders. It can be seen that maximum power of 0.251W

is consumed for order q = 0.993 when the MCO system shows
the largest Lyapunnov exponents

The Adomian first polynomial is derived as,

p11 = p03
p12 = p04
p13 = a1 p03 + a2 p01 p

0
3 + a3 p05

p14 = a4 p05 + a5 p04 + a5 p04 p
0
2

p15 = a6 p04 + a7 p01 p
0
3 + a8 p03 + a9 p05 + a0

(28)

The Adomian second polynomial is derived as,

p21 = p13
p22 = p14
p23 = a1 p13 + a2

[
p01 p

1
3 + p11 p

0
3

] + a3 p15
p24 = a4 p15 + a5 p14 + a5

[
p14 p

0
2 + p04 p

1
2

]
p25 = a6 p14 + a7

[
p01 p

1
3 + p11 p

0
3

]
a8 p13 + a9 p15 + a0

(29)

The Adomian third polynomial is derived as,

p31 = p23

p32 = p24
p33 = a1 p

2
3 + a2

[
p21 p

0
3 + p01 p

2
3 + �(2qz+1)

�2(qz+1)
p11 p

1
3

]
+ a3 p

2
5

p34 = a4 p
2
5 + a5 p

2
4 + a5

[
p24 p

0
2 + p04 p

2
2 + �(2qu+1)

�2(qu+1)
p14 p

1
2

]

p35 = a6 p
2
4 + a7

[
p21 p

0
3 + p01 p

2
3 + �(2qv+1)

�2(qv+1)
p11 p

1
3

]

+ a8 p
2
3 + a9 p

2
5 + a0

(30)

Table 1 Resource consumption of FPGA-implemented MCO
system for a = 0

Resource Utilization Available Utilization %

LUT 2361 101,400 2.33

FF 518 202,800 0.26

DSP 12 600 2.00

IO 161 285 56.49

BUFG 1 32 3.13

Table 2 Resource consumption of FPGA-implemented MCO
system for a �= 0

Resource Utilization Available Utilization %

LUT 2361 101,400 2.33

FF 518 202,800 0.26

DSP 12 600 2.00

IO 161 285 56.49

BUFG 1 32 3.13

The Adomian fourth polynomial is derived as,

p41 = p33
p42 = p34
p43 = a1 p

3
3

+ a2
[
p31 p

0
3 + p01 p

3
3
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Fig. 12 2D phase portraits of the FPGA-implemented MCO system for a = 0 . The initial conditions and parameter values are taken
as in Sect. 2, and the order of the system is q = 0.995

+ �(3qz + 1)

�(qz + 1)�(2qz + 1)

[
p21 p

1
3 + p11 p

2
3

]]

+ a3 p
3
5

p44 = a4 p
3
5 + a5 p

3
4

+ a5
[
p34 p

0
2 + p04 p

3
2

+ �(3qu + 1)

�(qu + 1)�(2qu + 1)

[
p24 p

1
2 + p14 p

2
2

]]

p45 = a6 p
3
4

+ a7
[
p31 p

0
3 + p01 p

3
3

+ �(3qv + 1)

�(qv + 1)�(2qv + 1)

[
p21 p

1
3 + p11 p

2
3

]]

+ a8 p
3
3 + a9 p

3
5 + a0 (31)

The Adomian fifth polynomial is derived as,

p51 = p43

p52 = p44

p53 = a1 p
4
3

+ a2
[
p41 p

0
3 + p01 p

4
3

+ �(4qz + 1)

�(qz + 1)�(3qz + 1)

[
p31 p

1
3 + p11 p

3
3 + p21 p

2
3

]]

+ a3 p
4
5

p54 = a4 p
4
5 + a5 p

4
4

+ a5
[
p44 p

0
2 + p04 p

4
2

+ �(4qu + 1)

�(qu + 1)�(3qu + 1)

[
p34 p

1
2 + p14 p

3
2 + p24 p

2
2

]]

p55 = a6 p
4
4 + a7

[
p41 p

0
3 + p01 p

4
3

+ �(4qv + 1)

�(qv + 1)�(3qv + 1)

[
p31 p

1
3 + p11 p

3
3 + p21 p

2
3

]]

+ a8 p
4
3 + a9 p

4
5 + a0 (32)
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Fig. 13 2D phase portraits of the FPGA-implemented MCO system for a �= 0 . The initial conditions and parameter values are taken
as in Sect. 2, and the order of the system is q = 0.993

The Adomian sixth polynomial is derived as,

p61 = p53

p62 = p54

p63 = a1 p
5
3 + a2

[
p51 p

0
3 + p01 p

5
3 + �(5qz + 1)

�(qz + 1)�(4qz + 1)

×
[
p41 p

1
3 + p11 p

4
3 + p31 p

2
3 + p21 p

3
3

]]
+ a3 p

5
5

p64 = a4 p
5
5 + a5 p

5
4 + a5

[
p54 p

0
2 + p04 p

5
2

+ �(5qu + 1)

�(qu + 1)�(4qu + 1)

×
[
p44 p

1
2 + p14 p

4
2 + p34 p

2
2 + p24 p

3
2

]]

p65 = a6 p
5
4 + a7

[
p51 p

0
3 + p01 p

5
3

+ �(5qv + 1)

�(qv + 1)�(4qv + 1)

[
p41 p

1
3 + p11 p

4
3 + p31 p

2
3 + p21 p

3
3

]]

+ a8 p
5
3 + a9 p

5
5 + a0 (33)

where h = tn+1 − tn and �(•) is the gamma function.
The fractional-order discretized system (27) is then
implemented in FPGA, and the necessary Adomian
polynomials are calculated using (28)–(33). For imple-
menting in FPGA, the value of h is taken as 0.001s and
the initial conditions are fed into the forward register
with fractional order taken as q = 0.995 and q = 0.993
for MCO system with a = 0 and a �= 0, respectively.
Figure 9 shows theRTL schematics of theMCO system
implemented in Kintex 7. Figures 10a and 11a show
the power consumed by MCO system for order a = 0
and a �= 0, respectively, and Figs. 10b and 11b show
the power consumed for various fractional orders of
a = 0 and a �= 0, respectively, and it can be seen that
maximum power is consumed when the MCO system
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exhibits the largest Lyapunov exponent. Tables 1 and 2
show the resources consumedwith the consumed clock
frequencies, and Figs. 12 and 13 show the 2D phase
portraits of the FPGA-implemented MCO system for
a = 0 and a �= 0, respectively.

5 Conclusion

Fractional-order models of memristor and memcapaci-
tor are derived and used to design a memfractor chaotic
oscillator. The oscillator shows self-excited and hidden
flows depending on the value of the parameter a0, thus
showing a chameleon-like behavior. Bifurcation plots
are derived and investigated. Adomian decomposition
method is used to derive the discrete version of the pro-
posed chaotic oscillator for implementing in FPGA.
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