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Abstract We present a spectral method to compute
the transverse vibrational modes, or Floquet Forms
(FFs), of a 2D bi-articulated bar in periodic elastic state
due to an end harmonic compressive force. By chang-
ing the directional nature of the applied load, the trivial
straight Ziegler column exhibits the classic instabilities
of stationary states of dynamical system. We use this
simple structure as a numerical benchmark to compare
the various spectral methods that consist in computing
the FFs from the spectrum of a truncated Hill matrix.
We show the necessity of sorting this spectrum and
the benefit of computing the fundamental FFs that con-
verge faster. Those FFs are almost periodic entities that
generalize the concept of harmonic modal analysis of
structures in equilibria to structures in periodic states.
Like their particular harmonic relatives, FFs allow to
get physical insights in the bifurcations of periodic sta-
tionary states. Notably, the local loss of stability is due
to the frequency lock-in of the FFs for certain modu-
lation parameters. The presented results could apply to
many structural problems inmechanics, from the vibra-
tions of rotating machineries with shape imperfections
to the stability of periodic limit cycles or of any slender
structures with tensile or compressive periodic elastic
stresses.
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1 Introduction

Modal analysis is a key concept in the study ofmechan-
ical vibrations that is today commonly used by sci-
entists and engineers in various fields from molecu-
lar chemistry [36] to aerospace industries [10]. It is
a spectral numerical method consisting in decompos-
ing the first-order perturbation around an equilibrium
state of a dynamical system in a linear superposition of
harmonic eigenmodes [13]. In practice, those modes
allow to reveal intrinsic vibrational properties [28] or
the local stability behavior of structures in equilibria
[21,31]. They can also be used as a projection basis to
reduce the dimensionality of linear or nonlinear vibra-
tional structural models [23,25].

Thanks to Floquet theory [11,44], it should be pos-
sible to generalize this modal approach to dynamical
systems in periodic stationary states, i.e., states whose
properties vary periodically with time [4]. In struc-
tural dynamics, this includes rotating machineries with
imperfections [12] or structures submitted to periodic
compression or tension axial loadings such as slen-
der beams or plates undergoing large vibrations [29].
Mathematically, a perturbation around a periodic state
can be decomposed in a linear superposition of almost
periodic eigenfunctions, called Floquet forms (FFs).
Like vibrational modes for an equilibrium, FFs could
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reveal the intrinsic vibrational properties of a struc-
ture in periodic state and determine its local stability.
Floquet theory is numerically applied in periodically
time-varying linear systems [4] or nonlinear dynami-
cal systems [14,30], but the spectral computation and
physical meaning of FFs have been overlooked.

In the time domain, two main families of numeri-
cal methods exist that derive from Floquet theory. One
possibility is to compute the Monodromy or state tran-
sition matrix and its eigenvalues (Floquet multipliers)
that assess the local stability of the perturbed periodic
stationary state [33,43]. Although it may be possible
to recover FFs from the eigenvectors of this matrix,
they are usually ignored. A second technique consists
in using theLyapunov–Floquet transformation to recast
a linear time-periodic system in a time-invariant one
[37,38]. This transformation could allow to compute
and analyze FFs, but it has mostly been used as a step,
which coupled with center manifold reduction tech-
niques and normal form theories enables the study of
nonlinear time-periodic systems undergoing bifurca-
tions [5,32,39].

In the frequency domain, the calculation of the spec-
trum of Hill’s matrix [17] associated with the perturbed
periodic state should theoretically give direct access to
FFs, but the computational reality is quite different as
upon numerical truncation, the convergence of Hill’s
matrix is subjected to controversy [6,34,35]. As a con-
sequence, two main approaches have been developed
to apply Floquet theory. The first numerical approach
consists in imposing particular fundamental frequen-
cies of FFs, or Floquet exponents, to maintain the self-
adjointness of the original perturbed Hill problem and
discard any spurious spectrum. Whether it is marginal
boundary Floquet exponents associated with harmonic
and subharmonic FFs [1,19] or intermediate ones var-
ied within the reciprocal primitive lattice of a Bloch
wave analysis [7,8,18], those methods compute the
parameters of the periodic state associated with a given
Floquet mode. This is different from modal analysis
that would supposedly seek for the FFs associated with
a given perturbed stationary state. The latter could be
done by directly computing the truncated spectrum of
Hill’s matrix for a given periodic state. But a confusion
subsists as for the sorting method one should use for
the spurious computed spectrum, between eigenvalue
[9,27,45] or eigenvector sorting [2,22,26,41]. Further-
more, only Floquet exponents are usually considered
and modal information from FFs are usually neglected.

Floquetmodes have been computed for the linear vibra-
tion analysis of non-axisymmetric rotatingmachineries
such as cracked or geometrically imperfect rotors, but
the computations are based on Hill’s truncated matrix
without sorting algorithm [15,16,20,24], a method that
is known to give erroneous results in some cases, espe-
cially when dealing with resonant nonlinear dynamical
systems.

Here, we show how to compute FFs in the spectral
domain and highlight their potential for modal analysis
of structures in periodic states, through a simple bench-
mark model: the Ziegler column [3,42]. The discrete
dynamical system we consider is a classic 2D model
consisting of two articulated rigid bars, connected by
elastic hinges, that are submitted to an end periodic
compressive load so that the elastic state of the Ziegler
column is periodicallymodulated [32].We focus on the
transverse oscillatory modes of the structure around its
trivial configuration that is the undeformed straight col-
umn in space, with periodic elasticity in time.

In Sect. 2, we describe the nonlinear equations of
motion of our model as well as the time-varying lin-
ear ordinary differential equations describing the trans-
verse oscillations about the trivial state. By considering
a non-conservative following or conservative horizon-
tal compressive loading, we show that our benchmark
model captures the classic bifurcations and local insta-
bilities of fixed points and periodic states of discrete
dynamical systems. We then recall the Floquet–Hill
frequency method and review the various spectral sort-
ing techniques that exist to compute FFs. In Sect. 3, we
perform the modal and stability analysis of the period-
ically conservative case. In Sect. 4, we investigate the
influence of a non-conservative positional loading on
the computation of FFs and their associated stability.
In both periodically conservative and non-conservative
cases, we compare the efficiency of the spectral sorting
methods for computing FFs. All our stability results are
validated through the Monodromy matrix algorithm.

Like for classic modal analysis, the free transverse
vibration of a structure in periodic elastic state can be
decomposed in a linear combination of its FFs. As clas-
sic modes are constant eigenfunctions, harmonically
vibrating; FFs are periodic eigenfunctions, harmoni-
cally modulated. Computation of FFs is crucial since
the loss of local stability is due to frequency lock-in
of FFs in the parameter space of the periodic state. In
the conservative case, the Floquet modes are uncou-
pled. Period doubling and stationary bifurcations are
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explained by the frequency lock-in of a Floquet mode
and its conjugate in the state space. This mechanism is
a generalization of the buckling of an equilibrium con-
figuration seen through its vibrational harmonicmodes.
In the non-conservative case, the computed FFs are
coupled. Secondary Hopf bifurcations are explained by
the frequency lock-in between two physical FFs in the
parameter space of the periodic state. Similarly, Hopf
bifurcation is explained by a frequency lock-in between
two classicmodes. Finally, we show that not sorting the
spectrum of Hill’s truncated matrix leads to erroneous
stability results. We also highlight the fact that sorting
the eigenvectors instead of the eigenvalues of the Hill’s
matrix converges faster in the non-conservative case
and for slow modulation in the conservative case.

Our results give new physical insights into the natu-
ral relation between classic harmonic modes of vibra-
tions and Floquet modes for structures that are in peri-
odic elastic states. This paper also clarifies the debate
about the Floquet–Hill frequency method to assess the
stability of periodic states by clearly showing the neces-
sity of sorting the spectral outcomes of the Hill matrix.
Those results could pave the way for a modal analysis
of structures in periodic states and the use of Floquet
forms for stability analysis, structural design, or possi-
ble candidates for modal reduction techniques.

2 Nonlinear and linearized equations of motion of
the Ziegler column in periodic elastic state

2.1 Nonlinear equation of motion

To illustrate the concept of Floquet forms, we consider
the archetypal example of the planar bi-articulated bar
illustrated in Fig. 1, also known as the Ziegler column
[32,40,42]. The rigid and inextensible bars of length
l have a lineic mass m. The two bars are allowed to
rotate at points O and B thanks to elastic hinges char-
acterized by a rotational stiffness k. At rest, the bi-
articulated structure is lying in the horizontal direction
(O, x). The structure is possibly moving in the plane
(O, x, y) under the action of a T -periodic end com-
pressive force P(t) = P(t + T ) = A cos(Ωt) with
fundamental frequencyΩ = 2π/T . This force is either
periodically conservative (η = 0, i.e., horizontal force)
or non-conservative (η = 1, i.e., following force). The
motion of this structure is completely parameterized by
the two angles θ1(t) and θ2(t) between the horizontal

Fig. 1 The 2D structure under study is a bi-articulated bar sub-
mitted to a compressive periodic load at its end either conserva-
tive (η = 0, i.e., horizontal force) or non-conservative (η = 1,
i.e., following force)

axis (O, x) and the first and second bar, respectively. In
this paper, we are interested in the linear vibrations of
this two degrees-of-freedom structure about the trivial
straight state θ1(t) = θ2(t) = 0. Such a model is quali-
tatively representative of a tremendous amount of appli-
cations in structuralmechanics as it exhibitsmost of the
classic bifurcations of dynamical systems, although the
perturbed stationary state is spatially trivial. Because
the applied end load is possibly periodic, classic modal
analysis fails to analyze such a simple system whose
elasticity may vary periodically with time and Floquet
modes will be needed.

Balancing the quantity of acceleration of each bar
of the bi-articulated elastic system with the applied
external moments (the expression of those quantities
are given in “Appendix 1”), the nonlinear equation of
motion of the Ziegler column, reads, in the physical
space (θ1(t), θ2(t)):

0 = 16

3
ml2θ̈1 + 2ml2θ̈2 cos(θ1 − θ2)

+ 2ml2θ̇22 sin(θ1 − θ2) + 2kθ1 − kθ2

+ 2l A cos(Ωt) [cos(θ1) sin(ηθ2) − sin(θ1) cos(ηθ2)]

0 = 4

3
ml2θ̈2 + 2ml2θ̈1 cos(θ1 − θ2)

− 2ml2θ̇21 sin(θ1 − θ2) + kθ2 − kθ1

+ 2l A cos(Ωt) [cos(θ2) sin(ηθ2) − sin(θ2) cos(ηθ2)]
(1)

By introducing the dimensionless time variable τ =
ωnt with a reference natural frequencyωn = √

k/(ml2)
and multiplying the first and second line of Eq. (1)
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by 3/(16k) and 3/(4k), respectively, one can rewrite
Eq. (1) in the dimensionless form

0 = θ̈1 + 3

8
θ̈2 cos(θ1 − θ2)

+ 3

8
θ̇22 sin(θ1 − θ2) + 3

8
θ1 − 3

16
θ2

+ λ cos(βτ) [cos(θ1) sin(ηθ2) − sin(θ1) cos(ηθ2)]

0 = θ̈2 + 3

2
θ̈1 cos(θ1 − θ2)

− 3

2
θ̇21 sin(θ1 − θ2) + 3

4
θ2 − 3

4
θ1

+ 4λ cos(βτ) [cos(θ2) sin(ηθ2) − sin(θ2) cos(ηθ2)]
(2)

where ˙( ) denotes differentiation with respect to τ ,
β = Ω/ωn is the ratio between the excitation and the
reference natural frequency and λ = A/(8k/3L) rep-
resents the dimensionless amplitude of the harmonic
compressive load. The dimensionless period of the
applied compressive force now reads T̄ = 2π/β.

Equation (2) is an implicit nonlinear system of Ordi-
naryDifferential Equations (ODEs)with periodic coef-
ficients in the form f

(
x(t), ẋ(t), t

) = 0, where the 4-
dimensional state vector reads x(t) = {θ1, θ2, θ̇1, θ̇2}T .
By changing the dimensionless loading parameters
λ and β in the conservative case η = 0 or non-
conservative one η = 1 and for a given set of initial
conditions x(0), this simple system exhibits most of
the qualitative vibrational behavior of stationary states
of nonlinear dynamical systems as shown in Fig. 2.

2.2 Modal analysis of the trivial periodic elastic state
θ01 (τ ) = θ02 (τ ) = 0

To get a deeper physical understanding of the rich qual-
itative behavior exhibited by the Ziegler column in
Fig. 2, we study the linear vibrations around the triv-
ial spatial state θ01 (τ ) = θ02 (τ ) = 0 that verifies the
dimensionless equation of motion given in Eq. (2).

Replacing θ1(τ ) and θ2(τ ) by their first-order per-
turbed expressions θ1(τ ) = θ01 (τ ) + εθ∗

1 (τ ) and
θ2(τ ) = θ02 (τ ) + εθ∗

2 (τ ) in the nonlinear equation
of motion Eq. (2) and equating the first power of the
small parameter ε, one obtains the linearized equa-
tion of motion in the vicinity of the considered state
θ01 (τ ) = θ02 (τ ) = 0,

Mü(τ ) + K(τ )u(τ ) = 0 (3)
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Fig. 2 Nonlinear dynamical response for various loading param-
eters and initial conditions θ1(0) = θ2(0) = −1◦ and θ̇1(0) =
θ̇2(0) = 0. A little amount of viscous damping has been intro-
duced to help the simulations. a Bifurcation to an equilibrium
state for η = 0, β = 0 and λ = 0.072. b Flip bifurcation to
a dynamic state with a 2T̄ -period for η = 0, β = 0.584 and
λ = 0.036. c Hopf bifurcation to a periodic stationary state for
η = 1, β = 0 and λ = 0.4. d Secondary Hopf or Neimark–
Sacker bifurcation on a quasi-periodic state for η = 1, β = 0.1
and λ = 0.6. Insets show the bifurcated stationary states in the
state space

(
θ(τ ), θ̇ (τ )

)
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where

u(τ ) =
{

θ∗
1 (τ )

θ∗
2 (τ )

}
, M =

[
1 3

8
3
2 1

]
and

K(τ ) =
[ 3

8 − 3
16− 3

4
3
4

]
+ λ cos(βτ)

[−1 η

0 4η − 4

]

are the vector of physical degrees of freedom, the mass
and stiffness matrix, respectively.

For β = 0, Eq. (3) is the one of a linearized
Ziegler column under constant compressive loading
and quantities such as natural vibrational frequencies,
critical buckling and critical flutter loads can be clas-
sically determined. By looking at the eigenvalues of
the stiffness matrix for η = 0, it is possible to assess
the critical buckling load of the fundamental elastic
state. The condition det (K(λ)) = 0 gives a critical
buckling load λb = (9 − 3

√
5)/32. By analyzing the

dynamical problem given in Eq. (3) for no compres-
sive loading, λ = 0, one can compute the dimen-
sionless natural frequencies of the straight Ziegler col-
umn. The condition det (K(λ = 0) − ω2M) = 0
gives us the natural frequencies of the unloaded sys-
tem ω1 = ((27 − 3

√
74)/14)1/2 and ω2 = ((27 +

3
√
74)/14)1/2. Finally, by finding the minimal λ for

which the condition det (K(λ) − ω2M) = 0 leads
to �(ω) > 0 for β = 0 and η = 1, we obtain
λ f = ((135/8)− 2

√
1575/256)/25, the critical flutter

instability threshold above which the Ziegler column
in constant elastic state undergoes a Hopf bifurcation
[42].

Working with the 4-dimensional vector of state vari-
ables y(τ ) = {θ∗

1 , θ∗
2 , θ̇∗

1 , θ̇∗
2 }T instead of u(τ ), the lin-

ear system of ODEs given in Eq. (3) can be recast in
the generalized form

Bẏ(τ ) − A(τ )y(τ ) = 0 (4)

with B =
[
02 M
M 02

]
and A(τ ) =

[−K(τ ) 02
02 M

]

and where 0n is the n × n null matrix. Inverting the
constant matrix B, the structural vibrational problem
of Eq. (3) can be transformed from the physical space
to the dynamical state space,

ẏ(τ ) = J(τ )y(τ ) (5)

with

J(τ ) = B−1A(τ ) = 1

2
J0c + J1c cos(βτ)

= J0 + J1eiβτ + J−1e−iβτ ,

J0 = 1

2
J0c =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

− 3
2

15
14 0 0

3 − 33
14 0 0

⎤

⎥⎥
⎦

and J1 = J−1 = 1

2
J1c = λ

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
8
7 ( 47η − 12

7 ) 0 0
− 12

7 (− 20
7 η + 32

7 ) 0 0

⎤

⎥⎥
⎦ .

One sees from the linear ODE of Eq. (5) that the time-
varying Jacobian J(τ ) of the nonlinear equation of
motion Eq. (2) evaluated at θ01 (τ ) = θ02 (τ ) = 0 is T̄ -
periodic with minimal period T̄ = 2π/β in our case.
Eq. (5) models the linear vibrations about the straight
Ziegler column in a periodic elastic state. To study this
linearODEwith periodically time-varying coefficients,
we can use Floquet theory [11,44].

According to Floquet theory, the N -dimensional lin-
ear system Eq. (5) has N = 4 linearly independent
solutions yn(τ ), so that any solution y(τ ) can be writ-
ten:

y(τ ) =
N∑

n=1

cnyn(τ ) (6)

where cn are N constants that depend upon the ini-
tial conditions y(0) and yn(τ ) are called fundamental
solutions. According to the same theory, it is possible
to express the fundamental solutions yn(τ ) in the so-
called Floquet form

yn(τ ) = pn(τ )esnτ (7)

where pn(τ ) = pn(τ + T̄ ) is a N -dimensional complex
vector function of period T̄ and sn is a complex number
called a Floquet exponent. Developing the unknown
periodic function pn(τ ) in a complex Fourier series
pn(τ ) = ∑

phne
ihβτ , the FFs in Eq. (7) can be rewritten

in term of the fundamental frequency β = 2π/T̄ :

yn(τ ) =
+∞∑

h=−∞
phne

(ihβ+sn)τ (8)

The FF yn(τ ) is an almost periodic oscillation whose
spectrum depends on the periodicity T̄ of the spatially
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trivial elastic state of the Ziegler column. In the partic-
ular case when β = 0, the eigenfunction p(τ ) is con-
stant and the normal form in Eqs. (7)–(8) is a harmonic
mode of vibration as it is defined in classic structural
dynamics. The FFs for structures in periodic state can
therefore be seen as a generalization of a vibrational
mode of a structure in equilibrium.

In this work, we would like to compute the FFs of
a Ziegler column for a given compressive end peri-
odic load. One direct way to do it is to expand the
T̄ -periodically time-varying Jacobian of Eq. (5) in the
Fourier series

J(τ ) =
+∞∑

k=−∞
Jkeikβτ . (9)

In the particular case of a harmonic end compressive
loadwith the Jacobian given inEq. (5), Eq. (9) is simpli-
fied in closed form as the contributions of J(τ ) are lim-
ited to the fundamental andfirst harmonic, i.e.,Jk = 0N
for |k| > 1.

Replacing the perturbed solution y(τ ) by its expan-
ded Floquet form Eq. (8) and the jacobian J(τ ) by
its Fourier expansion Eq. (9) in the periodically time-
varying linear ODE Eq. (5), and balancing every har-
monic, we obtain an extended eigenvalue problem in
the spectral domain

(
HH − s1

)
qH = 0 (10)

where, for example,

H2 =

⎡

⎢⎢⎢⎢
⎣

J0+i2β14 J−1 J−2 J−3 J−4

J1 J0+iβ14 J−1 J−2 J−3

J2 J1 J0 J−1 J−2

J3 J2 J1 J0−iβ14 J−1

J4 J3 J2 J1 J0−i2β14

⎤

⎥⎥⎥⎥
⎦

.

is the complexHillmatrix truncated to the order H = 2,
1N is the identity matrix of size N = 4, 1 is the identity
matrix of size N × (2H + 1) and 0 is a null vector of
same dimension. More details about the derivation of
the complex and real Hill matrix from the harmonic
balance method can be found in “Appendices 2 and 3”,
respectively.

Computing the spectrum of the square Hill matrix
HH with size N × (2H + 1), we get N × (2H + 1)
eigenvalues sl and complex eigenvectors qH

l of size
N × (2H + 1). For H = 2, qH=2

l is in the form

qH=2
l =

{
p−2
l p−1

l p0l p
1
l p

2
l

}T
where phl is the har-

monic contribution of the lth Floquet form yl(τ ) given
in Eq. (8). Replacing the computed eigenvalues sl
and eigenvectors qH

l in the expression Eq. (8), we
get N × (2H + 1) numerically approximated Floquet
forms yl(τ ). Since we were theoretically waiting for N
Floquet forms in the state space, some information is
redundant and some interpretation is needed.

When H → ∞, the computed eigenvalues and
eigenvectors are not all independent. Actually, there are
N independent families of solutions that verify the rela-
tions sn+k = sn + ikβ and ph+k

n+k = phn for n = 1 . . . N ,
−∞ < k < +∞ and −∞ < h < +∞. By replacing
the N families of infinite eigenvalues and eigenvectors
in Eq. (8), only N Floquet forms yn(τ ) are obtained,
the rest of the information being redundant. In prac-
tice, when truncating H to a finite value, only some of
the N × (2H + 1) computed eigenvalues sl and eigen-
vectors qH

l eventually converge, as H is increased, to
the aforementioned relations; some of the spectrum is
spurious, whatever the chosen truncation order. The
presence of this spurious spectrum lies in the fact that
the infinite Hill operator H∞ is self-adjoint when the
truncated one HH is not (a short explanation is given
at the end of “Appendix 3”). As a consequence, there
is a necessity to sort the computed spectrum to obtain
the N converged Floquet forms. Based on the particu-
lar relations between eigenvalues or eigenvectors that
exist for H → ∞, two different sorting strategies can
be used:

1. Eigenvalue sorting For the converged part of the
computed spectrum, we have the particular rela-
tions sn+k = sn + ikβ for n = 1 . . . N and
−H ≤ k ≤ +H . By taking the N eigenvalues
whose imaginary parts are contained in the spec-
tral primitive cell −β/2 ≤ 	(sl) < β/2, the latter
will eventually converge to Floquet exponents as H
is increased. Replacing those N converged eigen-
values sl with their associated eigenvectors qH

l in
Eq. (8), we can reconstruct the N Floquet forms
yn(τ ). The convergence of the sorted eigenvalues
has been rigorously proved [27,45].

2. Eigenvector sorting Since the converged eigenvec-
tors verify ph+k

n+k = phn for −H ≤ k ≤ +H
and −H ≤ h ≤ +H , the N fundamental eigen-
vectors qH

n associated with the fundamental Flo-
quet exponents sn+k = sn + ikβ for k = 0 are
the most symmetric ones as compared to p0n [22].

123



Modal and stability analysis of structures in periodic elastic 1355

To compute those N fundamental eigenvectors in
practice, we compute the N × (2H + 1) weighted
meanswl = ∑

h h|phl |/
∑

h |phl |. In this dual space,
the converged spectrum verifies wn+k = wn + k.
The N eigenvectors and associated eigenvalues that
lead to the N fundamental Floquet forms yn(τ )

through Eq. (8) are the ones inside the primitive cell
−1/2 ≤ wl < 1/2. Currently, there is no mathe-
matical proof on the convergence of this sorting
method, but we will show that computing the N
fundamental FFs associated with k = 0 is often
more efficient than the eigenvalue sorting method,
especially for small fundamental frequency of the
periodic state β.

Like a vibrational mode for a perturbed equilibrium,
the N computed FFs yn(τ ), with complex spectrum∑

h(sn + ihβ), allow to determine the local stability
of a perturbed periodic stationary state. Notably, if it
exists a subscript g for which�(sg) > 0, the perturbed
stationary state increases exponentially in the direc-
tion of the gth mode yg(τ ) and the stationary state is
said to be locally unstable. By analyzing how the spec-
trum

∑
h(sg + ihβ) and its complex conjugate in the

state space
∑

h(s̄g + ihβ) cross the imaginary axis in
the Argand plane, as shown in Fig. 3, it is possible to
characterize the bifurcation that will undergo the per-
turbed stationary state. Note that for both algorithms,
it is important to exclude one of the limits of the ranges
−β/2 ≤ 	(sl) < β/2 or −1/2 ≤ wl < 1/2 in order to
keep N eigenvalues or eigenvectors even if the conju-
gate spectra lock in i(β/2 ± mβ) as shown in Fig. 3d.

In the following, we compare and challenge the
aforementioned algorithms by computing the FFs and
local stability of the Ziegler column in the straight triv-
ial spatial state and periodic elastic state as shown in
Fig. 1. In practice, this is done by computing and sort-
ing the spectrum of the truncated Hill matrixHH of Eq.
(10) derived from the Jacobian J(τ ) given in Eq. (5).
Section 3 concerns the case of a conservative compres-
sive end force with η = 0 where only the bifurcations
of Fig. 3a, c, d can be observed. Section 4 deals with a
non-conservative following end compressive load, i.e.,
for η = 1, where Hopf bifurcations as illustrated in
Fig. 3b, e can happen as well.

3 Periodically conservative case (η = 0)

In this section, we analyze the influence of the mod-
ulation loading parameters β and λ on the transverse

(c) (d)

(e)

(a) (b)

Fig. 3 Bifurcation and local stability analysis of a periodic sta-
tionary state by studying the spectrum of the destabilizing Flo-
quet form in the Argand plane. a Static instability leading to a
steady-state bifurcation. b Dynamical instability responsible for
the Hopf bifurcation. c Steady bifurcation of a T -periodic state.
d Flip or period doubling bifurcation of a periodic state. e Sec-
ondary Hopf or Neimark–Sacker bifurcation of a periodic state

vibrational modes and stability of the Ziegler column
under an end compressive horizontal load (η = 0). We
start with the classic case of a constant compressive
force, i.e., for β = 0 and study the influence of period-
icity when β 
= 0 on the harmonic modes and stability.
We finish with some remarks on the particular limit
β → 0.

3.1 Constant elastic state (β = 0)

When β = 0, the applied compressive dimensionless
load P̄(τ ) = λ cos(βτ) is constant in time and the
Hill matrix of Eq. (10) truncated to the order H = 2
becomes
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H2 =

⎡

⎢⎢⎢⎢
⎣

J0 04 04 04 04
04 J0 04 04 04
04 04 J0 04 04
04 04 04 J0 04
04 04 04 04 J0

⎤

⎥⎥⎥⎥
⎦

(11)

with

J0 =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

− 3
2

15
14 0 0

3 − 33
14 0 0

⎤

⎥⎥
⎦ + λ

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
8
7 − 12

7 0 0
− 12

7
32
7 0 0

⎤

⎥⎥
⎦ .

FromEq. (11),we see that the lines and rowsof the trun-
cated Hill matrix of Eq. (10) are independent, whatever
the truncation order H . If H = 0, no spectral sort-
ing is needed as the Hill matrix reduces to its central
block J0 whose spectrum gives N = 4 eigenvalues
and eigenvectors that correspond to the N classic har-
monic modes yn(τ ) = p0ne

snτ when replaced in Eq.
(8). If H > 0, the Hill matrix leads to (2H + 1)
identical families of N independent eigenvalues and
eigenvectors of J0. Applying the eigenvector sorting
method would give the N correct harmonic modes, but
the eigenvalue sorting algorithm will return an empty
spectrum as the computed eigenvalues will never be in
the spectral primitive cell −β/2 ≤ 	(sl) < β/2 since
β = 0. Thus, only the eigenvector sorting algorithm
conveys the notion that classic normal modes are par-
ticular cases of fundamental FFs.

Figure 4 is the classical dynamical vision of buck-
ling. It shows the evolution of the computed spectrum
of the N = 4 harmonic FFs as a function of dimen-
sionless compressive load λ/λb where λb is the already
mentioned buckling load. At λ = 0, the bi-articulated
beamhas two classic harmonic vibrationalmodes in the
physical space: one with natural frequency ω1 where
the linearized angles θ∗

1 (τ ) and θ∗
2 (τ ) vibrate in phase;

one with natural frequency ω2 where θ∗
1 (τ ) and θ∗

2 (τ )

are out-of-phase. The time evolutions of the linearized
angles θ∗

1 (τ ) and θ∗
2 (τ ) of those two modes are shown

in the insets of Fig. 4b. The dash-dotted lines represent
the constant amplitude of the eigenfunction modulus
|p0n| whose value is undefined, unless normalized. The
free vibratory response of the bi-articulated beam, solu-
tion of Eq. (5) with the Jacobian J(τ ) given in Eq. (11),
can be written as a linear superposition of these two
normal modes. As the compressive load λ is increased,
the frequencies of the two fundamental FFs decrease

(a)

(b)

Fig. 4 Evolution of the spectrum of the two Floquet forms (or
classic harmonic modes) as a function of loading parameter λ

for η = 0 and β = 0. a Evolution of the natural frequencies of
the bi-articulated bar in compression. b Evolution of the growth
rate of the two modes. The gray regions in (a, b) indicate that
the trivial state θ01 (τ ) = θ02 (τ ) = 0 is locally unstable. Insets:
top and bottom, respectively, show, for λ = 0, the angles θ∗

1 (τ )

and θ∗
2 (τ ) of the in-phase and out-of-phase classic modes with

natural frequency ω1 and ω2, respectively. The dashed-dotted
lines represent the moduli of the complex eigenfunctions |p0n |
and −|p0n | that envelope the motion

until the smallest one eventually goes to zero at λ = λb.
The lock-in of the conjugate spectrum s1 and s̄1 on the
real axis induces a positive growth rate �(s1) > 0 and
therefore a bifurcation of the trivial spatial straight state
of the Ziegler column along the in-phase static mode.
This local instability is the one shown in Fig. 3a and is
responsible for the nonlinear response shown in Fig. 2a.
Note that in this case, the two FFs are uncoupled in the
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physical space as highlighted in Fig. 4 by the fact that
the two color lines never combine.

3.2 Periodic elastic state (β 
= 0)

When β 
= 0, the straight bi-articulated bar is in a
periodic elastic state as the Jacobian J(τ ) of Eq. (5) is
T̄ -periodic with T̄ = 2π/β. In the particular conser-
vative case where η = 0, the Hill matrix of Eq. (10),
truncated to the order H = 2, becomes

H2 =

⎡

⎢⎢⎢⎢
⎣

J0+i2β14 J1 04 04 04
J1 J0+iβ14 J1 04 04
04 J1 J0 J1 04
04 04 J1 J0−iβ14 J1

04 04 04 J1 J0−i2β14

⎤

⎥⎥⎥⎥
⎦

(12)

with

J0 =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

− 3
2

15
14 0 0

3 − 33
14 0 0

⎤

⎥⎥
⎦ and J1 = λ

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
8
7 − 12

7 0 0
− 12

7
32
7 0 0

⎤

⎥⎥
⎦ .

Unlike in Eq. (11), the lines and rows of the truncated
HH of Eq. (12) are now fully coupled via the harmonic
contribution of the Jacobian J1 and the sorting of the
spectrumofHill’smatrix given inEq. (12) is a necessity
to compute the N = 4 FFs in the state space.

Figure 5a, b shows the two fundamental FFs,
yn(τ ) = pn(τ )esnτ , computed with the eigenvector
sorting algorithm, about the trivial spatial state θ01 (τ ) =
θ02 (τ ) = 0 for η = 0, β = 1.55ω1, λ = 0.75λb and
H = 3. Those two typical physical FFs are the periodi-
cally modulated generalization of the classic harmonic
modes shown in the insets of Fig. 4b. Notably, the first
FF of Fig. 5a almost periodically vibrates with a θ∗

1 (τ )

and θ∗
2 (τ ) in phase and a fundamental frequency close

to ω1 when the second FF in Fig. 5b vibrates out-of-
phasewith a fundamental frequency close toω2. Unlike
classic harmonic modes, the modulus of the eigenfunc-
tion p(τ ), whose value is undefined unless normal-
ized, is not constant but T̄ -periodic as illustrated by the
dashed-dotted lines in Fig. 5a, b. Like for β = 0, the
moduli |p(τ )| and −|p(τ )| envelope the almost peri-
odic motion. The superposition property of FFs given
in Eq. (6) is highlighted in Fig. 5c where we show the

1
( )
( )2

1
( )
( )2

1
( )
( )2

(a)

(b)

(c)

Fig. 5 Vibratory response for η = 0, β = 1.55ω1, λ = 0.75λb
and H = 3. a Time evolution of the angles θ∗

1 (τ ) and θ∗
2 (τ ) of the

first fundamental Floquet form y1(τ ) = p1(τ )es1τ over the first
two periods 2T̄ where T̄ = 2π/β. The dash-dotted lines show
the moduli of the periodic eigenfunctions |pn(τ )| and −|pn(τ )|
that envelope the almost periodic motions. b Same as (a) but for
the second fundamental Floquet form. c Time evolution of the
angles θ∗

1 (τ ) and θ∗
2 (τ ) of the free vibratory response y(τ ) of

Eq. (5) for the initial conditions θ∗
1 (0) = 1 and θ∗

2 (0) = θ̇∗
1 (0) =

θ̇∗
2 (0) = 0. The response has been computed either with a classic
direct iterative ODE solver (dashed line) or by recombining the
FFs (full line)

free vibratory response of the straight bi-articulated bar
computed either through FFs or classic ODE time inte-
grator. The perturbation y(τ ), solution of Eq. (5), can
be decomposed in the normal basis of its FFs which
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(a)

(b)

Fig. 6 Evolution of the spectrum of the N = 4 fundamental
FFs as a function of β/ω1 for η = 0, λ = 0.75λb and H =
25. a Evolution of the frequency spectrum location of the FFs,
	(sn)+∑

h ihβ.bEvolution of the growth rate of the FFs,�(sn).
The gray regions in (a, b) indicate that the straight bi-articulated
bar is unstable

notably means it would have been possible to find a set
of initial conditions for which only one FF contributes
to the solution y(τ ) (e.g., in Fig. 5 for θ∗

1 (0) = 0.646,
θ∗
2 (0) = 1 and θ̇∗

1 (0) = θ̇∗
2 (0) = 0, only the first

FF would contribute to the linear response and Fig. 5c
would have been identical to Fig. 5a).

Figure 6 shows the evolution of the N = 4 spec-
tra sn + ∑

h ihβ of the computed fundamental FFs as
a function of β/ω1 for λ = 0.75λb and H = 25 (to
ensure convergence). Like in the classic case illustrated
in Fig. 4 for β = 0, the fundamental frequencies 	(sn),
and moreover the frequency spectra 	(sn) + ∑

h ihβ,
vary with the modulation parameters of the elastic state
λ and β. Also, since the system is conservative, the
two FFs are uncoupled in the physical space as high-
lighted in Fig. 6 by the independence between the red
and blue modal colors. Furthermore, like the classic

harmonic modes of Fig. 4, it exists some modulation
parameters for which the straight bi-articulated bar
becomes unstable, i.e., the spectrum of the in-phase FF
	(sn)+∑

h ihβ locks in the state space with its conju-
gate leading to a positive associated growth rate�(sn).
(We do not see here the lock-in of the out-of-phase FF
in Fig. 6 because the latter happens at higher modula-
tion frequency than the displayed one.) As illustrated
in Fig. 3c, d and displayed in Fig. 6a, FFs have a poly-
harmonic spectrum	(sn)+∑

h ihβ and can lock either
in i(β ± mβ) or in i(β/2 ± mβ). These two phenom-
ena respectively correspond to a T̄ and 2T̄ -periodic
FF that diverges exponentially and is responsible for
the steady and flip bifurcation shown for example in
Fig. 2b. The principal region of instability, i.e., the one
with the largest β range, corresponds to a lock-in of the
fundamental frequency of a FFwhen secondary regions
are related to lock-in of subharmonics.

Figure 7a displays the stability chart of the straight
bi-articulated bar with an end compressive horizontal
force in the modulation parameters space (λ, β). For
each parameters, we chose a truncation order H so that
the maximum difference δ between the N = 4 Flo-
quet multipliers computed with the eigenvector sorting
method and the ones obtained from a converged mon-
odromy matrix algorithm [30] is δ = 1 × 10−6. The
resulting minimal truncation order map, H , as a func-
tion of (λ, β) to ensure convergence is displayed in
Fig. 14a of “Appendix 4”. Colored regions, or Math-
ieu tongues, that theoretically originate at 2β/mω1 for
λ → 0withm a positive integer, correspond to parame-
ters forwhich at least one of the growth rate�(sn) of the
4 FFs is positive. Red regions are T -instability domains
associated with lock of the frequency spectrum of the
in-phase FF in β ±mβ when orange regions show 2T -
instability zones related to a β/2 ± mβ lock-in of the
in-phase FF as shown in Fig. 6. In the particular conser-
vative caseη = 0 and for the same truncation ordermap
of H given in Fig. 14a, the use of the eigenvalue sorting
algorithm leads to the exact same stability chart dis-
played in Fig. 7(a). Indeed, we observe the eigenvector
sorting method gives the N = 4 Floquet exponents sn
that are in the primitive spectral cell−β/2 ≤ sn < β/2
when in T or 2T -periodic instability regions. Figure 7b
shows the stability chart but by using no sorting algo-
rithms, i.e., by analyzing all the eigenvalues sl of the
Hill matrix to see whether �(sl) > 0. The differences
between both stability charts are highlighted in black.
Whatever the truncation order H , the truncated Hill
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(a)

(b)

Fig. 7 Stability chart of the conservative system in the (λ, β)

space for η = 0, β 
= 0 and a variable converged truncation
order H given in Fig. 14a. a T (red) and 2T -instability (orange)
regions computed through the eigenvector or eigenvalue sorting
algorithms. b Same stability chart but by analyzing all the spec-
trum of the Hill matrix, i.e., with no sorting of the eigenvectors
or eigenvalues. The black color shows supplementary instability
regionswhich are spurious numerical results due to the truncation
of the Hill matrix that would happen whatever H

matrix will always give some spurious eigenvalues that
are inherent to the harmonic balance method. Those
spurious eigenvalues are more visible for high λ and
close to the instability regions.

3.3 Asymptotic cases (β → +∞) and (β → 0)

In the asymptotic cases where β → +∞ or β → 0,
i.e., in the situations where the modulation time scale
is far from the natural time scale of the system given

(c)

(a)

(b)

1
( )
( )2

1
( )
( )2

Fig. 8 Fundamental FFs for η = 0,β = 100ω1, λ = 0.75λb and
H = 1. a Time evolution of the angles θ∗

1 (τ ) and θ∗
2 (τ ) of FF1

over the first two natural periods 2T̄0 where T̄0 = 2π/ω1. The
dash-dotted lines show the moduli of the periodic eigenfunctions
|pn(τ )| and −|pn(τ )| that envelope the almost periodic motion.
b Same as (a) but for FF2. c (left) Raw spectrum of the trun-
cated Hill matrix. The N = 4 fundamental Floquet exponents
computed by eigenvector sorting are shown with red circles. The
region −β/2 ≤ 	(sl ) < β/2 for eigenvalue sorting is shown in
gray. (right) FFT of the two quasi-harmonic FFs

here by ω1 and ω2, several qualitative and quantitative
comments can be made about the FFs.

Figure 8 illustrates the β → +∞ scenario by
showing the two fundamental FFs of the straight bi-
articulated bar in periodic elastic state for η = 0,
λ = 0.75λb and β = 100ω1. The time evolution of
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the two angles θ∗
1 (τ ) and θ∗

2 (τ ) of the two FFs are
shown in Fig. 8a, b. For high modulation frequencies,
the harmonic contribution of the compressive force is
averaged out and the bi-articulated elastic bar behaves
like a classic effective oscillator. The two FFs asymp-
totically tend to the two classic in-phase and out-of-
phase modes of the system with natural frequencies
ω1 and ω2 as shown in the insets of Fig. 4b. Notably,
the T̄ -periodic envelopes of the almost periodic FFs,
|p(τ )| and −|p(τ )|, appear constant over the natural
period T̄0 since the small oscillations over T̄ are negli-
gible. Figure 8c displays the raw spectrum of the Hill
matrix (left) as well as the reconstructed spectrum of
the FFs (right). In the β → +∞ case, the FFs tend to
classic harmonic modes with a spectrum composed of
a single oscillation frequency. This spectrum is easily
recovered with both eigenvector and eigenvalue sorting
algorithms. Actually, both methods lead to the same
eigenvalue output as the N = 4 fundamental Floquet
exponents obtained with the eigenvector sorting algo-
rithm and represented by red circle in Fig. 8c are the
one inside the −β/2 ≤ 	(sl) < β/2.

Figure 9 illustrates the β → 0 situation by showing
the two in-phase and out-of-phase FFs of Fig. 8, but
for a very small modulation frequency β = 0.05ω1.
The time evolution of the angle θ∗

1 (τ ) of the two FFs is
shown in Fig. 9a, b. (θ∗

2 (τ ) is not displayed for a sake of
clarity). For slow modulation frequency, the end com-
pressive load quasi-statically takes all the amplitudes
between the minimum λ = −0.75λb and maximum
+0.75λb. As a consequence, the elasticity of our sys-
tem is quasi-statically modulated and the transverse
natural frequencies of the straight bi-articulated bar
appear to almost continuously vary (with a small step
β) around ω1 and ω2. We can see in Fig. 9a, b that the
motion is modulated in frequency and amplitude. The
FFTs of the two FFs are displayed on the right side of
Fig. 9c and show two broad spectrum in the vicinity
of ω1 and ω2 whose almost continuous width depend
on the modulation amplitude λ. For small β, many fre-
quencies are contained in the FFs and a high truncation
order H is needed for the spectrum of Hill’s matrix to
converge. The raw spectrum of Hill matrix is shown
in the left of Fig. 9c for H = 15. It is separated in
four distinct packets, centered around ω1, ω2,−ω1 and
−ω2, that correspond to N = 4 families of eigenvalues
sn+k = sn+ikβ where−H ≤ k ≤ +H (apart from the
edges of the packets where the computed eigenvalues
are spurious due to truncation errors). The eigenvector

(a)

(b)

(c)

Fig. 9 Fundamental FFs for η = 0, β = 0.05ω1, λ = 0.75λb
and H = 15. a Time evolution of the angle θ∗

1 (τ ) of FF1 over
the first two periods 2T̄ where T̄ = 2π/β with their envelopes
|pn(τ )| and −|pn(τ )|. b Same as (a) but for FF2. c (left) Raw
spectrum of the truncated Hill matrix. The N = 4 fundamental
Floquet exponents computed by eigenvector sorting are shown
with red circles. The region−β/2 ≤ 	(sl ) < β/2 for eigenvalue
sorting is shown in gray (right) FFT of the two FFs

sorting algorithm finds the N = 4 fundamental Flo-
quet exponents, highlighted by red circles, that corre-
spond to the most converged eigenvalues (center of the
packets). Because of the small modulation frequency
β, the eigenvalue sorting algorithm is far from being
converged for H = 15 as only two, yet not converged,
eigenvalues relative to the first FFs are located in the
−β/2 ≤ 	(sl) < β/2 region. For the two eigenval-
ues associated with the spectrum packet around ω2 and
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−ω2 to enter that region, more than H = 100 would
be needed. In the limit situation β → 0, the eigen-
value sorting algorithm is not adapted to efficiently
compute the FFs and their spectrum, on the contrary
to the eigenvector sorting method that computes the
most converged fundamental Floquet exponents and
FFs whatever β. In the non-conservative case studied
in next section, the same kind of convergence issue will
happen in the determination of instability regions asso-
ciated with Neimark–Sacker bifurcation when using
the eigenvalue sorting algorithm.

4 Non-conservative case (η = 1)

In this section, we analyze the influence of the mod-
ulation loading parameters β and λ on the transverse
vibrational modes of the Ziegler column under a non-
conservative end positional loading (η = 1). We start
with the classic case of a constant compressive force,
i.e., for β = 0, and study the influence of periodicity
when β 
= 0 on the modes and stability.

4.1 Constant elastic state (β = 0)

In the particular case β = 0, the applied compressive
dimensionless load P̄(τ ) = λ cos(βτ) and therefore
the periodically time-varying Jacobian J(τ ) of Eq. (5)
are independent of time. The Hill matrix of Eq. (10)
truncated to the order H reduces to a block diagonal
matrix with only the fundamental part of the Jacobian
J0 as shown in Eq. (11). In this section, since η = 1,
the Jacobian J0 reads,

J0 =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

− 3
2

15
14 0 0

3 − 33
14 0 0

⎤

⎥⎥
⎦ + λ

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
8
7 − 5

7 0 0
− 12

7
12
7 0 0

⎤

⎥⎥
⎦ . (13)

We can infer from the shape of the Jacobian in Eq. (13)
that the problem is now non-conservative as the bottom
left 2 × 2 block matrix of J0 depending on λ is non-
symmetric. Whether we compute the whole spectrum
of J0, i.e., the truncated Hill matrix for H = 0, or we
use the eigenvector sorting algorithm for H > 0 (like in
the conservative case, the eigenvalue sorting algorithm
cannot be used for β = 0), one numerically approx-
imates N = 4 FFs for a given modulation parameter
λ.

(a)

(b)

Fig. 10 Evolution of the spectrum of the two Floquet forms (or
classic harmonic modes) as a function of loading parameter λ

for η = 1 and β = 0. a Evolution of the natural frequencies of
the bi-articulated bar in compression. b Evolution of the growth
rate of the two modes. The gray regions in (a, b) indicate that the
trivial state θ01 (τ ) = θ02 (τ ) = 0 is locally unstable

Figure 10 shows the plot of the evolution of the
computed spectrum of the N = 4 fundamental FFs
as a function of dimensionless compressive load λ/λ f

where λ f is the already mentioned flutter load. At
λ = 0, the unloaded straight bi-articulated bar has two
classic in-phase and out-of-phase vibrational modes
with natural frequency ω1 and ω2, respectively. Unlike
the conservative case, the two harmonic FFs are cou-
pled for η = 1 and influence each other so that their
spectra eventually lock-in. As the compressive load λ

grows, the frequency of the in-phase mode increases
when the one of the out-of-phase mode decreases. At
λ = λ f , the spectra of the two physical FFs lock in a
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finite 	(sn) > 0, inducing a positive growth rate �(sn)
of the resulting locked mode (for λ > λ f , only one in-
phase mode subsists in the physical space which sepa-
rates in an unstable and stable one in the state space).
This destabilizationmechanism corresponds to the flut-
ter instability case shown in Fig. 3b that is responsible
for the Hopf bifurcation illustrated in Fig. 2c. Increas-
ingλ further, the spectra of the remainingFF lock again,
this time in the state space and on 	(sn) = 0. This sec-
ond situation is qualitatively similar to the instability by
divergence shown in Figs. 3a and 4 for the conservative
case. The flutter instability only happens on a range of
loading parameter λ and evolves toward a divergence
instability for sufficiently high compressive loads.

4.2 Periodic elastic state (β 
= 0)

When β 
= 0, the straight Ziegler column is in a peri-
odic elastic state and its perturbed motion is governed
by Eq. (5) with a T̄ -periodic Jacobian J(τ ) where
T̄ = 2π/β. The truncated matrix has therefore the
shape of a tridiagonal matrix by block as shown in
Eq. (12), but since η = 1 in this section, the funda-
mental and first harmonic contributions of J(τ ) now
read

J0 =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

− 3
2

15
14 0 0

3 − 33
14 0 0

⎤

⎥⎥
⎦ and J1 = λ

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
8
7 − 5

7 0 0
− 12

7
12
7 0 0

⎤

⎥⎥
⎦ .

(14)

We use the eigenvector sorting algorithm on the spec-
trum of the truncated Hill matrix with J0 and J1 given
in Eq. (14) to compute the N = 4 FFs of the straight
Ziegler column under a given end following compres-
sive load P̄(τ ) = λ cos(βτ).

Figure 11a, b displays the perturbed angles θ∗
1 (τ )

and θ∗
2 (τ ) of two fundamental FFs, in the form yn(τ ) =

pn(τ )esnτ , about the trivial spatial state θ01 (τ ) =
θ02 (τ ) = 0 for η = 1, β = 1.55ω1, λ = 0.75λ f

and H = 5. Like in the conservative case η = 0 illus-
trated in Fig. 5, the FFs are the almost periodic gener-
alization of the classic harmonic modes shown in the
insets of Fig. 5b. For β 
= 0, the eigenfunction pn(τ )

is periodic and the moduli |pn(τ )| and −|pn(τ )| enve-
lope the oscillation. In the non-conservative case with
η = 1, the following end compressive force modulates

(c)

(a)

(b)

1
( )
( )2

1
( )
( )2

Fig. 11 Vibratory response for η = 1, β = 1.55ω1, λ = 0.75λ f
and H = 5. a Time evolution of the angles θ∗

1 (τ ) and θ∗
2 (τ ) of

the first fundamental FF y1(τ ) = p1(τ )es1τ over the first two
periods 2T̄ where T̄ = 2π/β. The dash-dotted lines show the
moduli of the periodic eigenfunctions |pn(τ )| and −|pn(τ )| that
envelope the almost periodic motions. b Same as (a) but for
the second fundamental FF (only θ∗

2 (τ ) is shown for a sake of
clarity). c Time evolution of the angles θ∗

1 (τ ) and θ∗
2 (τ ) of the

free vibratory response y(τ ) of Eq. (5) for the initial conditions
θ∗
1 (0) = 1 and θ∗

2 (0) = θ̇∗
1 (0) = θ̇∗

2 (0) = 0. The response has
been computed either with a classic direct iterative ODE solver
or by recombining the FFs

both FFs as illustrated in Fig. 11a, b where the ampli-
tude modulation of the periodic |p1(τ )| and |p2(τ )| are
of similar intensity. The superposition property of the
normal forms still holds in the non-conservative case
and is highlighted in Fig. 11c. For a given set of ini-
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(a)

(b)

Fig. 12 Evolution of the spectrum of the N = 4 fundamental
FFs as a function ofβ/ω1 for η = 1 and λ = 0.75λ f . a Evolution
of the frequency spectrum location of the FFs,	(sn)+∑

h ihβ. b
Evolutionof the growth rate of theFFs,�(sn). The gray regions in
(a, b) indicate that the straight Ziegler column is locally unstable

tial condition, the perturbation y(τ ) solution of Eq. (5)
computed with a classic direct time ODE solver is in
perfect agreement with the solution recombined from
FFs with Eq. (6).

Figure 12 shows the evolution of the N = 4 spec-
tra sn + ∑

h ihβ of the computed FFs as a function of
β/ω1 for λ = 0.75λ f and H = 25. Similarly to Figs. 4,
6 and 10, the frequency spectra 	(sn) + ∑

h ihβ vary
with the modulation parameters λ and β and can even-
tually lock-in. Because the FFs have a poly-harmonic
spectrum and η = 1, it exists several ranges of fre-
quency modulation β where the spectra of two differ-
ent FFs are locked in frequencies that are not positive
integer multiple of β/2 (those are the regions where
the red and blue colors in Fig. 12 mix and where every
growth rates�(sn) are different from zero in Fig. 12b).

Those situations are qualitatively illustrated in Fig. 3e
and are responsible for the Neimark–Sacker bifurca-
tion illustrated in Fig. 2d. The wider region of instabil-
ity responsible for those secondary Hopf bifurcations
corresponds to a lock-in of the fundamental harmonic
of the two different FFs when the other ones are due
to lock-in of subharmonics. It is interesting to note that
in the main instability region (far right of Fig. 12), the
spectra of the two FFs ultimately lock in i(β/2 ±mβ)

when increasing β, i.e., the system undergoes a 2T -
instability. This main instability is already observed in
Fig. 6.

Figure 13a displays the stability chart of the straight
Ziegler column with an end compressive positional
following force in the modulation parameters space
(λ, β). Like in Fig. 7, the displayed stability chart
obtained with the eigenvector sorting algorithm has
been validated through the computation of the mon-
odromy matrix and its Floquet multipliers in the time
domain [30], leading to a map of truncation order H
in the (λ, β) space shown in Fig. 14b of “Appendix
4”. The system exhibits instability tongues that cor-
respond to parameters for which at least one of the
growth rates �(sn) of the N = 4 fundamental FFs is
positive. Here, green regions are associated with sec-
ondary Hopf bifurcations and correspond to modula-
tion ranges where the two physical FFs are locked in
frequencies that are not integer multiple of β/2 when
the orange region shows the 2T -instability situation
related to a β/2±mβ lock-in of the fundamental of the
resulting in-phase FF in the state space as illustrated
in Fig. 12. Like in the conservative case in Fig. 7, the
analysis of the full spectrum of Hill’s matrix (no sort-
ing) leads to a wrong stability diagram displayed in
Fig. 13b. Moreover, unlike for T and 2T -instability
regions, the eigenvalue sorting algorithm, represented
by the stability chart of Fig. 13c, is not giving the cor-
rect Neimark–Sacker instability regions for the optimal
truncation order of Fig. 14b. The reason is that for some
modulation parameters and at this optimal truncation
order, the sorted Floquet exponents sn that are in the
primitive spectral cell −β/2 ≤ sn < β/2 are not yet
converged because they are not the fundamental ones
responsible for the Neimark–Sacker lock-in instability.
On the contrary, the FFs computedwith the eigenvector
sorting algorithm are the fundamental ones, a property
that is crucial when dealing with secondary Hopf bifur-
cations or stable FFs for small β as explained in Sect. 3.
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(a)

(c)

(b)

Fig. 13 Stability chart of the non-conservative system in the
(λ, β) space for η = 1, β 
= 0 and a variable converged trun-
cation order H given in Fig. 14b. a Neimark–Sacker instability
(green) and 2T -instability (orange) regions computed through
the eigenvector sorting algorithm. b Same stability chart but
by analyzing the raw spectrum of the Hill matrix. The black
color shows supplementary instability regions, a spurious numer-
ical artifact inherent to the truncated Hill matrix. c Same sta-
bility chart but by using the eigenvalue sorting algorithm. The
black color indicates supplementary instability regionswhere the
eigenvalue sorting algorithm is not yet converged for the trunca-
tion order of Fig. 14b

(a)

(b)

Fig. 14 Optimal spectral truncation order map Hconv in the β, λ

space to ensure convergence. a Conservative case η = 0. bNon-
conservative scenario η = 1

5 Conclusions

The presented study has shown how to practically
implement and compute the vibrational modes, or Flo-
quet Forms (FFs), of a structure in periodic elastic state
through the archetypal example of a Ziegler column
subjected to an end harmonic compressive force. The
latter has been used to compare the classic spectral
methods that exist to compute the FFs through Hill’s
matrix. Our results highlighted the absolute necessity
to sort the spectrum of Hill’s matrix and the benefit of
the eigenvector sorting algorithm that selects the fun-
damental FFs, which are the most converged ones. We
also showed the similarities and differences between
the classic harmonic modes about equilibria and the
almost periodic FFs about periodic stationary states.
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Mathematically and physically, FFs can be seen as a
poly-harmonic generalization of harmonic modes. At
high-frequency modulation, FFs tend to effective clas-
sic vibrationalmodes as themodulated state is averaged
to its fundamental part. On the contrary, at low fre-
quency modulation, a spectral leakage occurs and FFs
contain an almost continuous frequency spectrum,with
a finite bandwidth. In the particular case of zero fre-
quency modulation, FFs are equivalent to classic har-
monicmodes where the natural frequencies is specified
by the phase of the periodic elastic state.

The spectral calculation of FFs could be used in
many engineering systems, from rotating machineries
with geometric imperfections to the transverse vibra-
tions of slender structures with compressive or ten-
sile periodic stresses. For practical purposes in com-
putational mechanics though, further numerical devel-
opments would be needed for a computation of the
converged spectrum of large Hill matrices in reason-
able CPU time.Notably, the current eigenvector sorting
algorithm applies on the full raw spectrum, an imprac-
tical situation for high-dimensional systems. It would
therefore be crucial to find a way to include this sort-
ing algorithm at the level of the eigenvectors calcula-
tion in order to reduce the spectrum computation to the
first few physical fundamental FFs. Another possibility
would be to take advantage of the nature of the eigen-
value problem and use domain decomposition methods
as well as parallelization techniques to improve com-
putational times. Along the development of the modal
analysis of structures in periodic states, FFs should be
tested as a reduction basis for linear and nonlinear prob-
lems in structural vibration or as preferential directors
in predictor–corrector algorithms. Another important
application lies in the insight given by FFs on dynamic
instabilities as shown numerically in this manuscript.
Notably, it could be interesting to use the frequency
lock-in of FFs as an experimental instability precursor
for structures in period states. An experimental Ziegler
column [3] would be a relevant test bench to assess the
feasibility of instability detections through the spectral
signature of FFs.

Appendix 1: Equation of motion of the Ziegler col-
umn

With the help of Newton’s second law applied on the
two rotating rigid bars parameterizedby θ1(t) and θ2(t),

it is possible to establish the nonlinear equation of
motion of the Ziegler column described in Fig. 1. By
equating the quantity of acceleration Abar1 and Abar2

on the one side, to the sum of the external moments
Mbar1 and Mbar2, on the bar 1 and 2, respectively,
on the other side, we obtain a system of two nonlinear
ordinary differential equations:

Abar1 = d

dt

(
∂T
∂θ̇1

)
− ∂T

∂θ1
= Mk

1 + Mc
1 + MP

1

Abar2 = d

dt

(
∂T
∂θ̇2

)
− ∂T

∂θ2
= Mk

2 + Mc
2 + MP

2

(15)

In Eq. (15), T (θ1, θ2, θ̇1, θ̇2) is the kinetic energy of the
system of two rotating rigid bars reading

T = 8

3
ml2θ̇21 + 2

3
ml2θ̇22 + 2ml2θ̇1θ̇2 cos (θ1 − θ2) .

(16)

ThemomentsMk
1 andMk

1 represent the restoring elas-
tic moments due to the rotational springs and read, in
bar 1 and 2, respectively:

Mk
1 = kθ1 + k(θ1 − θ2) and Mk

2 = k(θ2 − θ1). (17)

The momentsMP
1 andMP

2 are due to the end external
harmonic force F(t) and read, in bar 1 and 2, respec-
tively:

MP
1 = 2l A cos(Ωt)

[ − cos(θ1) sin(ηθ2)

+ sin(θ1) cos(ηθ2)
]

MP
2 = 2l A cos(Ωt)

[ − cos(θ2) sin(ηθ2)

+ sin(θ2) cos(ηθ2)
]

(18)

If η = 0 (in the case of a force remaining horizontal
upon deformation of the structure), the moments MP

1
and MP

2 can be derived from the gradient of a poten-
tial energy, and the system is said to be conservative, or
periodically conservative as the value of the moments
is periodically varying with time. If η = 1 (in the case
of moments depending on the position of the structure
in space), the previous property is not true and the sys-
tem is non-conservative. Replacing Eqs. (16)–(18) into
Eq. (15), one obtains the nonlinear system of equation
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of motions of the two degrees of freedom as expressed
in Eq. (1).

Appendix 2: Derivation of the complex Hill matrix

In this section, we explain how to derive the Hill matrix
of the time-periodic linearized equation of motion
Eq. (5), ẏ(τ ) = J(τ )y(τ ), in the complex domain.
The first step consists in rewriting the T̄ -periodic Jaco-
bian of size N = 4, J(τ ) = J(τ + 2π/β), in a
complex Fourier series. In our particular case of a
Ziegler column submitted to a harmonic end compres-
sive load, J(τ ) can be expanded in the closed form
J(τ ) = J0 + J−1e−iβτ + J1eiβτ where J0, J1 and J−1

are given in Eq. (5).
According to Floquet theory, Floquet forms (FFs)

are the N = 4 particular fundamental solutions y(τ ) in
the form y(τ ) = p(τ )esτ where p(τ ) = p(τ + T̄ ) and
s is a complex number. Since the eigenfunction p(τ )

is T̄ -periodic, the FF can also be expanded in the com-
plex Fourier series y(τ ) = ∑+∞

h=−∞ phe(ihβ+s)τ and
the associated velocity ẏ(τ ) read ẏ(τ ) = ∑∞

h=−∞(s +
ihβ)phe(s+ihβ)τ .

Replacing the expanded expressions of y(τ ), ẏ(τ )

and J(τ ) in Eq. (5), one can recast the equation of
motion from the time domain to the frequency domain
such that

0 = J(τ )y(τ ) − ẏ(τ )

0 =
∞∑

h=−∞

[
J0phe(s+ihβ)τ + J−1phe(s+i(h−1)β)τ

+ J1phe(s+i(h+1)β)τ − (s + ihβ)phe(s+ihβ)τ
]

(19)

From Eq. (19), by taking into account that the esτ can
be factorized and removed, it is now straightforward
to apply the harmonic balance method. The latter is
based on the property that in order for the sum of all
harmonics eihβτ for h = −∞ . . . + ∞ to be balanced
to zero, the sum of the contributions in front of each
harmonics eihβτ has to be balanced to zero. For prac-
tical purposes, this remark leads to several vectorial
algebraic equations of dimension N = 4. For the first
five harmonics − 2, − 1, 0, 1 and 2, those equations
read:

e−2iβτ : J−1p−1 +(J0 − (s − 2iβ))p−2 +J1p−3 = 0
e−iβτ : J−1p0 +(J0 − (s − iβ))p−1 +J1p−2 = 0
e0iβτ : J−1p1 +(J0 − s)p0 +J1p−1 = 0
eiβτ : J−1p2 +(J0 − (s + iβ))p1 +J1p0 = 0
e2iβτ : J−1p3 +(J0 − (s + 2iβ))p2 +J1p1 = 0

(20)

Equation (20) is an eigenvalue problem, truncated
to the order H = 2, that can be transformed in the
matrix form of Eq. (10),

(
H2 − s1

)
q2 = 0 where

H2 is the Hill matrix truncated to the order H = 2,
given in Eq. (12), s is the complex eigenvalue of H2

and q2 = {
p−2 p−1 p0 p1 p2

}T
is the associated eigen-

vector. Note that the construction of the complex Hill
matrix for higher truncated order H follows the exact
same reasoning shown for H = 2. The problem we
encounter when the eigenvalue problem Eq. (20) is
truncated, e.g., to the order H = 2 in the form of the
Hill matrixH2, is that we have to drop the contributions
p−3 and p3. The consequence is that Eq. (20) is only
approximated because some equations are not correct
anymore. This is the reason why a sorting algorithm
is necessary to compute the Floquet forms of the Hill
matrix.

In the general case of a more complex periodic Jaco-
bian than the harmonic one, we dealt with in this arti-
cle, the latter cannot be expanded in a closed-form
Fourier series but rather in the general form of Eq. (9),
J(τ ) = ∑+∞

k=−∞ Jkeikβτ . In this scenario, the afore-
mentioned spectral expansions of y(τ ) and ẏ(τ ) remain
the same, but the product J(τ )y(τ ) changes, so that
Eq. (19) now becomes

0 =
+∞∑

h=−∞

∞∑

k=−∞
(Jkph−k − (s + ihβ)ph)eihβτ . (21)

Equation (21) is an infinite value problem that can be
recast in the matrix form (H∞ − s1)q∞ = 0 where
H∞ is the general complex infinite Hill matrix whose
form is given in Eq. (10) for a truncation order H = 2.

Appendix 3: Derivation of the real Hill matrix

It exists some situations where the presence of the pure
imaginary number “i” in the complex Hill matrix is
a problem. An alternative is to deal with a real Hill
matrix, although the formalism is more complicated.
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The difference with “Appendix 2” is simply to expand
the time-periodic equation of motion Eq. (5), ẏ(τ ) =
J(τ )y(τ ), in real Fourier series.

In our particular case of a harmonic modulation, the
T̄ -periodic Jacobian simply reads

J(τ ) = 1

2
J0c + J1c cos(βτ) (22)

where the expressions of J0c and J
1
c are given in Eq. (5).

The N = 4 Floquet forms y(τ ) given in the complex
domain in Eq. (8) can be expressed by the real expan-
sion

y(τ )=
(
1

2
a0+

∞∑

h=1

[
ah cos(hβτ) + bh sin(hβτ)

])
esτ

(23)

and the associated time derivative reads

ẏ(τ ) =
(
1

2
a0s +

∞∑

h=1

[(
sah + hβbh

)
cos(hβτ)

+
(
sbh − hβah

)
sin(hβτ)

])
esτ (24)

Replacing the expanded expressions of y(τ ), ẏ(τ ) and
J(τ ) of Eqs. (22)–(24) in Eq. (5), we can recast the
equation ofmotion from the time domain to the spectral
domain

0 = J(τ )y(τ ) − ẏ(τ )

0 =
∞∑

h=1

[(1
2
J0ca

h − sah − hβbh
)
cos(hβτ)

]

+
∞∑

h=1

[(
1

2
J0cb

h − sbh + hβah
)
sin(hβτ)

]

(
1

2
J0c − s

)
a0

2
+ J1c

(
a0
2

cos(βτ)

+
∞∑

h=1

[
ah

2

(
cos

(
(1 + h)βτ

) + cos
(
(1 − h)βτ

))

+bh

2

(
sin

(
(1 + h)βτ

) − sin
(
(1 − h)βτ

))] )

(25)

Like for Eq. (19) and (20), the harmonic balance
method allows us to recast the problem in 2H + 1

algebraic equations of dimension N by independently
equating to zero all the constant terms in cos(0βτ),
the first harmonics cos(βτ) and sin(βτ), the sec-
ond harmonics cos(2βτ) and sin(2βτ) and so on. By
putting those equations in a matrix form, we obtain
an eigenvalue problem

(
HH − s1

)
qH = 0 where

HH is the N × (2H + 1)-dimensional square real
Hill matrix truncated at order H , s and qH are the
N × (2H + 1) complex eigenvalues and eigenvec-
tors of HH , respectively. If we order the eigenvec-

tor in the form qH = { 1
2a

0 a1 . . . aH b1 . . . bH
}T

,
the real Hill matrix reads, e.g., for H3 and q3 =
{ 1
2a

0 a1 a2 a3 b1 b2 b3
}T

:

H3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
2J

0
c J1c 04 04 04 04 04

J1c
1
2J

0
c

1
2J

1
c 04 −β14 04 04

04 1
2J

1
c

1
2J

0
c

1
2J

1
c 04 −2β14 04

04 04 1
2J

1
c

1
2J

0
c 04 04 −3β14

04 β14 04 04 1
2J

0
c

1
2J

1
c 04

04 04 2β14 04 1
2J

1
c

1
2J

0
c

1
2J

1
c

04 04 04 3β14 04 1
2J

1
c

1
2J

0
c

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(26)

When replacing the eigenvalues s and associated
eigenvectors q of the real Hill matrix in the real
Fourier expansion of the fundamental solutions given in
Eq. (23), one gets a numerical approximation of the FFs
of the systems.But like in the complex domain, because
of truncation errors, the N = 4 families of (2H + 1)
computed solutions y(τ ) do not all converge to the FFs
and a sorting algorithm is needed. The computed eigen-
values are the same whether it comes from the real
or complex Hill matrix. Consequently, the eigenvalue
algorithm still holds with the real Hill matrix: by keep-
ing the N eigenvalues inside the spectral primitive cell
−β/2 ≤ 	(sl) < β/2, the latter (with their associated
eigenvectors) will eventually lead to N converged FFs
as H is increased. The eigenvector sorting algorithm
that allows to compute the N fundamental FFs also
holds with the real Hill matrix. It still consists in com-
puting the weighted means wl = ∑

h |phl |/
∑

h |phl |
for −H ≤ h ≤ H and keeping the spectrum asso-
ciated with the N weighted means that belong to the
primitive cell −1/2 ≤ wl < 1/2. The only supple-
mentary step to compute wl with the real Hill matrix is
that we need the complex/real transformation formulas
p0 = a0/2 for h = 0 and p−h = (ah + ibh)/2 or
ph = (ah − ibh)/2 for h > 0.
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In the general case of a periodic modulation, the T̄ -
periodic Jacobian would read

J(τ ) = 1

2
J0c +

∞∑

h=1

[
Jhc cos(hβτ) + Jhs sin(hβτ)

]
.

(27)

In this situation, the linear equation of motion ẏ(τ ) −
J(τ )y(τ ) = 0, expanded in the real spectral domain,
becomes much more complicated. However, the har-
monic balance method can still be applied, leading
to an eigenvalue problem

(
HH − s1

)
qH = 0. The

expression of the real Hill matrix HH is yet more
complicated than the one of Eq. (26) in the harmonic
modulation case. If decomposed in a sum of block
matrices and by ordering the eigenvector in the form

qH = { 1
2a

0 a1 . . . aH b1 . . . bH
}T

, HH reads:

HH =
⎡

⎣
1
2J

0
c Jc Js

JTc
[
Kc + Tc

] [
Ks − Ts

]

JTs
[
Ks + Ts

] [
Tc − Kc

]

⎤

⎦ (28)

where

Jc =
{
J1c J

2
c . . . JHc

}
and Js =

{
J1s J

2
s . . . JHs

}

are (N × HN )-dimensional block vectors (JTc and JTs
are the transpose of the above block vectors, not of the
full matrices Jc and Js meaning one has to be careful
to not transpose the matrices Jhc and Jhs in the process
but simply ordering them in a column block vector),

Kc,s = 1

2

⎡

⎢⎢⎢⎢⎢
⎣

J2c,s J3c,s J4c,s . . . JH+1
c,s

J3c,s J4c,s J5c,s . . . JH+2
c,s

J4c,s J5c,s J6c,s . . . JH+3
c,s

...
...

...
. . .

...

JH+1
c,s JH+2

c,s JH+3
c,s . . . J2Hc,s

⎤

⎥⎥⎥⎥⎥
⎦

are (NH × NH)-dimensional block matrices with
harmonic contributions of the Jacobian either on cosine
or sine, and where

Tc = 1

2

⎡

⎢⎢⎢⎢⎢
⎣

J0c J1c J2c . . . JH−1
c

J1c J0c J1c . . . JH−2
c

J2c J1c J0c . . . JH−3
c

...
...

...
. . .

...

JH−1
c JH−2

c JH−3
c . . . J0c

⎤

⎥⎥⎥⎥⎥
⎦

and

Ts = 1

2

⎡

⎢⎢⎢⎢⎢
⎣

2β14 J1s J2s . . . JH−1
s

−J1s 4β14 J1s . . . JH−2
s

−J2s −J1s 6β14 . . . JH−3
s

...
...

...
. . .

...

−JH−1
s −JH−2

s −JH−3
s . . . 2Hβ14

⎤

⎥⎥⎥⎥⎥
⎦

are (NH×NH)-dimensional blockmatrices.Although
seemingly complicated if compared to the general com-
plex Hill matrix given in Eq. (10) that is the sum of
a complex block diagonal matrix and a real Toeplitz
block matrix, the general real Hill matrix is relatively
easy to numerically implement. Indeed, it is composed
ofKc andKs which are Hankel block matrices, Tc that
is a Toeplitz matrix and Ts that is the sum of a real
block diagonal matrix and a Toeplitz matrix. Applying
the eigenvector sorting algorithmon the realHillmatrix
HH of Eq. (28) allows to compute the N fundamental
FFs of a system in a general periodic state.

Appendix 4: Spectral convergence of the stability
charts

The stability charts of Figs. 7 and 13 have been com-
puted and validated with a classic monodromy matrix
algorithm in the time domain [30]. For each parame-
ter (β, λ), the N = 4 Floquet multipliers of the Mon-
odromymatrixwere computedwith a sufficiently small
time step to ensure convergence and served as a refer-
ence solution. The Hill matrix was then constructed for
various increasing truncation order H . For each H , the
Floquet multipliers ρ′

n were obtained from the N = 4
fundamental Floquet exponents sn computed with the
eigenvector sorting algorithm explained in Sect. 2.2,
thanks to the relation ρ′

n = esn T̄ where T̄ = 2π/β is
the dimensionless period of the considered perturbed
elastic state. We defined a converged spectral trunca-
tion order Hconv as theminimal H for which the N = 4
differences |ρ′

n − ρn| were not exceeding 1 × 10−6.
The map of the converged truncation order Hconv in
the (β, λ) space is given in Fig. 14a, b for η = 0 and
η = 1, respectively.

The number of required harmonics Hconv is gener-
ally larger as the modulation amplitude λ is enhanced
and the frequency modulation β is decreased. Also
more harmonics are required in the instability regions
than in the stable ones. Those converged truncation
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order maps are the optimal ones when using the eigen-
vector sorting algorithm. If no sorting, the stabilitymap
would not converge, and if using the eigenvalue sort-
ing algorithm, one could need higher truncation order
Hconv, especially for small β or in the non-conservative
case. Note finally that it appears from Fig. 14 that more
harmonics are needed in the non-conservative case than
in the conservative one. This trend is, however, exag-
gerated as most of the numerical data converge for less
than H = 25, and only a very thin region, located
around β/ω1 ≈ 0.75 and corresponding to a 2T̄ insta-
bility of the second FF, needs H = 50.
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