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Abstract In this paper, an extended car-following
model which depends not only on the difference of
the optimal velocity and the current velocity but also
on self-stabilizing control is presented and analyzed in
detail. The self-stabilizing control is constructed into
the newmodel by utilizing the historical traffic data (the
historical velocity and the historical optimal velocity of
the considered vehicle). We derive the stability condi-
tion of the extended model against a small perturba-
tion around the homogeneous flow. Theoretical results
reveal that the self-stabilizing control in historical opti-
mal velocity difference can further stabilize traffic sys-
tem on the basis of the self-stabilizing control in histor-
ical velocity difference. It is also derived that the time
gap between the current traffic data and the historical
ones has an important impact on the stability criterion.
We clarify the advantages of the self-stabilizing control
over the cooperatively driving control and theflexibility
in the choice of suppressing in traffic jams. Moreover,
from the nonlinear analysis to the proposed model, the
historical traffic data dependence of the propagating
kink solutions for jam waves is achieved by deriving
the modified KdV equation near critical point by using
the reductive perturbation method. Finally, theoretical
results are confirmed by direct simulations.
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1 Introduction

Well functional transportation system plays an impor-
tant role in assisting people’s daily life and has been
widely used to assess the creditworthiness of the degree
of a city’s modernization. Over the last decades, traffic
problems have attracted considerable attention where
the conflict between resource, environment and the
demand of transportation becomes more apparent. In
order to study the substance of various traffic phe-
nomenon deeply, a great number of traffic engineers,
physicists and mathematicians throw themselves into
the studies of the traffic flow dynamics in the frame of
car- following behaviors [1–11]. Recently, many new
traffic flow models and theoretical approaches have
been developed with very gratifying results [12–38].

It is observed that traffic jams occur and propagate
as density waves when car density is higher than a crit-
ical value. Traffic jams in large-size cities have become
a serious social problem attracting extensive attention
of researchers from different backgrounds. The pertur-
bation method has been used to investigate the mor-
phology of traffic jams. Kerner and Konhäuser have
found the single-pulse density wave by means of simu-
lations, while Komatsu and Sasa derived the modified
Korteweg–de Vries (KdV) equation from the optimal
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velocitymodel to represent traffic jams in termsof kink-
density wave.

In order to efficiently suppress the formation of traf-
fic jams, some efforts have been made to extend the
original optimal velocity model. An important direc-
tion improving is to consider the cooperatively driving
control which incorporates the traffic information of
other vehicles by use of the system of information and
communication technologies (ICT) in an environment
of intelligent transportation system (ITS), with exam-
ples of several typical scholars as Nagatani, Li, Tang,
Peng and Ge, etc [12–22]. However, the implementa-
tion of the cooperatively driving control highly depends
on the quality of the communication network. A vehi-
cle cannot still carry out the cooperatively driving con-
trol without the traffic data from other vehicles. In this
particular case, an alternative scheme for suppressing
traffic jams is to take advantage of traffic information
of the considered vehicle itself as a source of control of
stabilizing [39,40]. We have been moving in this direc-
tion and have developed an extended optimal velocity
model taking into account the historical velocity dif-
ference [38]. The improved model can stabilize traffic
flow only utilizing the traffic data of the considered
vehicle, i.e., the traffic flow can be stabilized only by
each vehicle’s self-stabilizing control, without helps of
the cooperatively driving control from others.

Self-stabilizing control is very crucial for the
improvement of traffic flow stability because of its
implementation dispensing with external factors. Self-
stabilizing control in historical velocity difference can
help to reduce the speed fluctuation between two suc-
cessive time points, which finally deduces to the stable
stage of whole traffic flow. But, do there exist other reg-
ulations for self-stabilizing control by using the con-
sidered vehicle’s traffic data other than traffic veloc-
ity? Can other new consideration of self-stabilizing
control further stabilize traffic system on the basis of
the self-stabilizing control in historical velocity differ-
ence? Here we shall concentrate our attention on such
direction. We find that the driver needs to continuously
adjust his optimal velocity according to the distance
to the immediately preceding vehicle in the course of
driving. The optimal velocities of each vehicle at two
successive time points should be exactly samewhen the
trafficflow is totally stable,whichgives us a hint that the
historical optimal velocity difference may be a desir-
able candidate target in further self-stabilizing control
for traffic system. These analyses indicate that the self-

stabilizing control in historical traffic data (the velocity
and the optimal velocity of the considered vehicle) is
necessary.

In this paper, we improve a historical velocity
self-stabilizing control model to considering two self-
stabilizing control methods and study the effect of the
historical traffic data on the traffic behavior.We explore
the newmodel’s ability against a small perturbation and
compare it with the existing traffic flow model con-
sidering cooperatively driving control. In addition, we
apply nonlinear analysis to the improved model and
derive themodifiedKdVequation near the critical point
by means of the perturbation method. We conduct the
direct simulations to verify the results of theoretical
analysis.

This paper is organized as follows. In Sect. 2,
the improved optimal velocity model is proposed to
consider the historical velocity and historical optimal
velocity for the purpose to self-stabilizing control. The
linear stability analysis of the proposed model is con-
ducted, and the stability condition is obtained and dis-
cussed in Sect. 3. The self-stabilizing control depen-
dence of the kink solution for traffic jams is obtained
from the method of nonlinear analysis in Sect. 4.
Numerical simulations are carried out in Sect. 5 to vali-
date the analytic results of theory. Finally, we conclude
our paper in Sect. 6.

2 Car-following model with self-stabilizing control

As basic and important representatives of micro-
scopic approaches, car-following theories have been
given considerable attention over past decades. Car-
following model describes traffic flow at high level of
detail from the point of individual drivers and vehi-
cles. Bando et al. presented a favorable and famous car-
following model called optimal velocity model (OVM)
[1], which is a time-continuous model whose acceler-
ation equation is given by

dvn(t)

dt
= a[V (�xn(t)) − vn(t)] (1)

where a is the sensitivity of a driver. The basic idea
of the model is that each vehicle controls the accel-
eration dvn(t)/dt of itself at time t to reduce the dif-
ference between the current velocity vn(t) and an opti-
mal velocityV (�xn(t)), which depends on the distance
�xn(t) of the immediately preceding vehicle.
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Without loss of generality, the optimal velocity func-
tion V (�xn(t)) is a monotonically increasing function
and it has an upper bound. According to the original
OVM, the optimal velocity function takes a hyperbolic
tangent function as

V (�xn(t)) = vmax

2
[tanh(�xn(t) − hc) + tanh(hc)]

(2)

where hc = 5 is the safety distance and vmax = 2 is the
maximal velocity.

Here, we will pursue the mode of self-stabilizing
control that suppresses traffic jams induced by small
perturbations via the data of the considered vehicle’s
own. We consider the historical velocity and historical
optimal velocity of each vehicle as a potentially useful
factor for stabilizing traffic flow and reducing traffic
jams in the process of the interaction among vehicles.
The stabilizing mode with the help of motion informa-
tion of the considered vehicle belongs to the category
of self-stabilizing control, which eliminates the depen-
dence of the adjacent vehicles. In order to explore the
effect of self-stabilizing control in historical trafficdata,
we develop an extended optimal velocitymodel, whose
dynamics equation is

dvn(t)

dt
= a [V (�xn(t)) − vn(t)]

+ λ [V (�xn(t)) − V (�xn(t − t0))]

+m [vn(t) − vn(t − t0)] (3)

where t0 is the time gap between the current time t and
the historical time t − t0 and �Vn = V (�xn(t)) −
V (�xn(t − t0)) represents the self-stabilizing control
in the historical optimal velocity difference between
the current optimal velocity V (�xn(t)) and the histor-
ical optimal velocity V (�xn(t−t0)) of the nth vehicle.
�vn = vn(t)− vn(t − t0) is the self-stabilizing control
in the historical velocity difference of the considered
vehicle. We expect the historical optimal velocity dif-
ference term �Vn can further affect the traffic stability
in suppressing traffic jams based on the self-stabilizing
control in historical velocity difference, and they are
introduced into our extended model with the constant
coefficients λ and m.

The optimal velocity reflects a driver’s desiring
speed when he drives on a motorway at a given head-
way. The velocity denotes the shifting of the displace-
ment of the considered vehicle. The recorded data of
a vehicle show the optimal velocity, and the velocity

of all vehicles are running at a constant speed when
the traffic flow is stable. The self-stabilizing control
terms on the right-hand side of Eq. (3) are expected
to enhance the performance in suppressing traffic jams
and reduce the time cost from an unstable state to a
stable one. The traffic flow can be stabilized only by
each vehicle’s self-stabilizing control, without help of
the cooperatively driving control from others.

3 Linear stability analysis

Small disturbance in speed or headway appears in the
running of the vehicle flow inevitably, which induces
heavy traffics with density waves naturally. Linear sta-
bility analysis method is usually used to analyze the
traffic flowmodel’s ability against a small perturbation.
Here, we analyze the proposed car-following model
in a linear approach of stability analysis and explore
whether the self-stabilizing control in historical optimal
velocity difference can further stabilize traffic system
on the basis of the self-stabilizing control in historical
velocity difference.

In order to carry out the stability analysis easily, we
introduce the linear analyzing process of the extended
traffic flow model briefly. First of all, we change the
expressing form of Eq. (3) as follows:

fn(�xn(t), vn(t),�xn(t − t0))

= a [V (�xn(t)) − vn(t)]

+ λ [V (�xn(t)) − V (�xn(t − t0))]

+m[vn(t) − vn(t − t0)] (4)

A desired traffic flow is based on the situation that
all vehicles move at the same velocity. The evolu-
tion of the traffic flow which is added a small distur-
bance could reach a stable equilibrium situation finally
if the stability criterion is met, in which the speed
of the considered vehicle is given by vn = ven and
its headway is given by �xn(t) = �xn(t − t0) =
�xen . Moreover, the acceleration of each vehicle should
be zero as expressed as fn(�xen,�ven,�xen) = 0.
It is assumed that δ�xn(t),δvn(t) and δ�xn(t − t0)
are small deviations from the steady-state solution:
�x j (t) = �xej + δ�x j (t),v j (t) = Vj (�xej ) + δv j (t)
and�x j (t − t0) = �xej + δ�x j (t − t0). Based on that,
we conduct the first-order Taylor expansion of Eq. (4)
and obtain the following form:
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dδv (t)

dt
= fn

(
�xen,�ven,�xen

)

︸ ︷︷ ︸
=0

−(m − a)δvn (t)

+ (a + λ)V ′(�xen)δ�xn (t)

− λV ′(�xen)δ�xn (t − t0) − mδvn (t − t0)

(5)

Supposed that δ�xn(t) = �Xneinω+kt ,δvn(t) =
Vneinω+kt and δ�xn(t− t0) = �xneinω+k(t−t0), where
Vn and �Xn are constant. Considering that �xn(t) =
xn−1(t) − xn(t) and d�x

dt = vn−1 − vn , we can obtain:

�X j = Vj−1e−iω − Vj

k
(6)

Substituting Eq. (6) into Eq. (5), we can get:

Vn
(
k2 − (m − a)k + (a + λ)V ′(�xen)

− λV ′(�xen)e
−kt0 + kme−kt0

)

= Vn−1e
−iω

(
(a + λ)V ′(�xen) − λV ′(�xen)e

−kt0
)

(7)

In our model, the traffic flow is homogeneous flow,
so all vehicles have the same velocity in the stationary
situation. That is Vn = Vn−1.We can simplify Eq. (7)as
follows:

k2 + (m − a)k + (a + λ)V ′(�xen)

− λV ′(�xen)e
−kt0 + kme−kt0

= e−iω
(
(a + λ)V ′(�xen) − λV ′(�xen)e

−kt0
)

(8)

Solving Eq. (8) with k, we only consider the case of
the k with ω varying. It is concluded from Eq. (8) that
when ω → 0, λ → 0. Let us derive the long wave
expansion of k, which is determined by order around
iω. Then extending a power series solution k = iωk1+
(iω)2k2 + · · · , e−iw = 1 − iw − w2

2! , and e−kt0 = 1 +
(− kt0) + (−kt0)2

2! , and substitute them into Eq. (8), the
first- and second-order iω are obtained.We set the first-
order o(w)and the second o(w2)terms as zero.

o(ω) = 0 ⇒ k1 = −V ′(�xen) (9)

o(ω2) = 0 ⇒ −k2
k21

(
V ′(�xen)

) = 1

2

(
1

V ′(�xen)

)2

− 1

aV ′(�xen)
− t0a(λ + m)V ′(�xen)(

aV ′(�xen)
)2 (10)

Stability condition indicates that the real value R(k) of
k should be R(k) ≤ 0, So it could be presented that
k1 ≤ 0, k2 ≥ 0. It is obvious that k1 ≤ 0 is satisfied
absolutely in the extended car-following model. The
key point of the stability condition is k2 ≥ 0, which
makes Eq. (10) satisfy

−k2
k21

(
V ′(�xen)

) = 1

2

(
1

V ′(�xen)

)2

− 1

aV ′(�xen)

− t0a(λ + m)V ′(�xen)(
aV ′(�xen)

)2 ≤ 0 (11)

One is convinced that k2 ≥ 0 is always guaranteed if

1

2

(
1

V ′(�xen)

)2

− 1

aV ′(�xen)

− t0a(λ + m)V ′(�xen)(
aV ′(�xen)

)2 > 0 (12)

According to Eq. (12), the stability condition for the
traffic flow with self-stabilizing control in historical
optimal velocity difference is presented as follows:

V ′(�xen) <
a

2(1 − t0(λ + m))
(13)

Comparing stability criterion Eq. (13) with that of only
considering the self-stabilizing control in the histori-
cal velocity difference [38], we can find that the stable
region of the extended model is enlarged to the region

a

2(1 − t0m)
< V ′(�xen) <

a

2(1 − t0(λ + m))
(14)

Obviously, considering the historical optimal velocity
difference, the traffic flow can be further stabilized on
the basis of the self-stabilizing control in the historical
velocity difference of the considered vehicle, which
means double self-stabilizing control model provides
a better performance in jams suppressing than single
self-stabilizing control.

Stability criterion (13) gives the critical boundary
between the stable region and the unstable one, which
brings us a choice to discuss the relationship on the
traffic stability and self-stabilizing control. We have
derived that the stability of the traffic system can be
enhanced with the increasing in the sum of two con-
trol coefficients λ and m. Figure 1 indicates the neutral
stability lines in the space (�xen, a) for different λ+m
with the time gap t0 = 1.0 s. The apex of each curve
denotes the critical point as shown in Fig. 1, the region
above the neutral stability line is stable region while
the region below the line falls into the unstable region
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Fig. 1 Neutral stability
lines in the
headway-sensitivity space
for different (λ + m) with a
fixed value of time gap
t0 = 1.0 s
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as a small disturbance is intervened into uniform traf-
fic flow. From Fig. 1, we can conclude that the critical
points and the neutral stability lines become lower grad-
ually with the increasing in (λ + m) which means that
the self-stabilizing control in the historical traffic data
(the optimal velocity and the velocity of the considered
vehicle) can improve the stability of traffic system.

Figure 2 shows the neutral stability curves for differ-
ent time gap t0, where the control coefficients satisfy
λ + m = 0.2. Obviously, the time gap also has an
important influence on the traffic stability, and the sta-
bility regions are enlarged with the increasing of the
time gap t0, which is similar to that of only considering
the self-stabilizing control model in historical velocity
difference [38]. However, an important conclusion can
be drawn that the stability improvement for the increas-
ing in the sum of the two control coefficients and the
time gap is limited. Traffic flow would return to the
unstable state if the product of λ + m and t0 satisfies
(λ + m)t0 > 1.

In order to illustrate the advantages of the proposed
model better, we compare the self-stabilizing control
method with the cooperatively driving control in opti-
mal velocity. Peng et al. [13] presented a car-following
model which considers the optimal velocity difference
of the two adjacent vehicles utilizing the communica-
tion system of transportation system. To have a better
comparison, we simplify their model as follows:

dvn(t)

dt
= a[V (�xn) − vn(t)]

+ k[V (�xn+1) − V (�xn)] (15)

where k is the control coefficient of the optimal veloc-
ity difference of the considered vehicle and its imme-
diately preceding one. The stability criterion of model
(15) is derived as

V ′(�xen) <
a

2
+ k (16)

Comparing stability criteria (16) and (13), two findings
can be summarized as follows:

(1) Although two vehicle control modes can improve
the stability of traffic flow, the cooperatively driv-
ing control of each vehicle relies heavily on end-
less supplies of the optimal velocity data from the
preceding one. Once the real-time communication
environment cannot be guaranteed, Peng’s control
mode is hard to be carried on. The self-stabilizing
control mode has the unparalleled advantage on
the dependence on external data compared with
cooperatively driving control.

(2) Self-stabilizing control mode offers greater flex-
ibility and scaling for implementing. The pro-
posed car-following model has two variable and
adjustable factors, while cooperatively driving
control model has only one regulator. In other
words, in the case of limited control strength λ
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Fig. 2 Neutral stability
lines in the
headway-sensitivity space
for different time gap t0,
where two coefficients
satisfy λ + m = 0.2
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(or m), self-stabilizing control can still suppress
traffic jams by adjusting the time gap t0.

4 Nonlinear analysis

In the part of linear stability analysis, we get stability
criterion (13), in which we can know that the traffic sta-
bility can be improved by each vehicle’s self-stabilizing
control. In this section, we conduct nonlinear analysis
about the proposedmodel.When stability criterion (13)
is not met, the vehicle flow will form density waves
at some particular position on road. Nonlinear wave
equation can be derived to describe the kink-antikink
solution of these density waves. In order to examine the
self-stabilizing control dependence of the kink solution
for traffic jams, the nonlinear analysis is carried out to
study the slowly varying behavior for the long waves
in the unstable region, with the help of a small posi-
tive scaling parameter ε. The simplest way to describe
the long wavelength modes is the long-wave expan-
sion.

It is convenient to rewrite Eq. (3) by using the asym-
metric forward difference as follows:

x j (t + 2τ) − x j (t + τ)

= τV (�x j )+λτ 2
[
V
(
�x j (t)

)−V
(
�x j (t−t0)

)]

+mτ
[
x j (t + τ) − x j (t)

− x j (t + τ − t0) + x j (t − t0)
]

(17)

We introduce slow scales for space variable j and time
variable t , and define the slow variables X and T for
0 < ε ≤ 1 as follows:

X = ε( j + bt), T = ε3t (18)

where b is a constant to be determined. We can set the
headway as follows:

�x j = h + εR (X, T ) (19)

and further rewrite the Eq. (17) as:

�x j (t + 2τ) − �x j (t + τ)

= τ
[
V (�x j+1) − V (�x j )

]

+ λτ 2
[
V
(
�x j+1(t)

) − V
(
�x j (t)

)

− V
(
�x j+1(t − t0)

) + V
(
�x j (t − t0)

)]

+mτ
[
�x j (t + τ)

−�x j (t) − �x j (t + τ − t0) + �x j (t − t0)
]

(20)

Substituting Eqs. (18) and (19) into Eq. (20), and mak-
ing the Taylor expansions to the fifth order of ε, one
can obtain the following nonlinear partial differential
equation:
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ε2
(−b + V ′) ∂x R + ε3

(
−3

2
b2τ + V ′

2
+ (λ + m)b2τ t0

)
∂2X R

+ ε4
{
−∂T R +

(
−7b3τ 2

6
+ V ′

6
+ λτ

6

[
3bt0 − 3b2t20

]
+ mb3

6

[
3τ 2t0 − 3τ t20

])
∂3X R − V ′′′

6
∂X R

3
}

+ ε5

⎧
⎪⎪⎨

⎪⎪⎩

(
2mbτ t0 − 3bτ − λτV ′t0

)
∂T ∂X R −

[
15b4τ 3
24 − V ′

24 − λτ
24

[−3(bt0)3 + 6(bt0)2 − 3bt0
]

+mb4
24

[
4τ 3t0 − 6τ 2t20 + 4τ t30

]

]

∂4X R

+
(
V ′′′
12 + V ′′′bt0λτ

6

)
∂2X R

3

⎫
⎪⎪⎬

⎪⎪⎭
= 0

(21)

where V ′ = V ′(hc) and V ′′′ = V ′′′(hc).
By taking b = V ′, the second- and third-order terms

of ε are eliminated from Eq. (21). We consider the
neighborhood of the critical point τc:
τ

τc
= 1 + ε2 (22)

Equation (21) can be rewritten as follows:

ε4
{
−∂T R +

(
−7b3τ 2c

6
+ V ′

6
+ λτc

6

[
3bt0 − 3b2t20

]
+ mb3

6

(
3τ 2c t0 − 3τct

2
0

))
∂3X R − V ′′′

6
∂X R

3
}

+ ε5

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
λb2τct0V ′ − 3

2b
2τc

)
∂2X R +

(
V ′′′
12 + V ′′′bt0λτc+2mbτct0

6

)
∂2X R

3

−
[

15b4τ 3c
24 − V ′

24 − λτc
24

[−3(bt0)3 + 6(bt0)2 − 3bt0
]

+mb4
(
4τ 3c t0−6τ 2c t

2
0+4τct30

)

24

]

∂4X R

+ (
2mbτct0 − 3bτc − λτV ′t0

)
[(

− 7b3τ 2c
6 + V ′

6 + λτc
6

[
3bt0 − 3b2t20

]

++mb3
(
3τ 2c t0−3τct20

)

6

)

∂4X R − V ′′′
6 ∂2X R

3

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= 0 (23)

The coefficients of ∂3X R, ∂X R3, ∂2X R, ∂4X R, ∂2X R
3 is set

as −g1, g2, g3, g4, g5, respectively. Equation (24) can
be rewritten

ε4
[
∂T R − g1∂

3
X R + g2∂X R

3
]

+ ε5
[
g4∂

4
X R + g3∂

2
X R + g5∂

2
X R

3
]

= 0 (24)

In order to derive the regularized mKdV equation with
higher-order correction, we make the following trans-
formations for Eq. (24) :

T ′ = −
(

−7b3τ 2c
6

+ V ′

6
+ λτc

(
3bt0 − 3b2t20

)

6
+ mb3

(
3τ 2c t0 − 3τct20

)

6

)

T (25)

R′ = −
(

−7b3τ 2c + V ′ + λτ
(
3bt0 − 3b2t20

) + mb3
(
3τ 2c t0 − 3τct20

)

V ′′′

) 1
2

R (26)

Thus we obtain the standard mKdV equations:

∂T ′ R′ = ∂3X R
′ − ∂X R

′3 − εM
[
R′] (27)

where

M
[
R′] = 1

g1

[
g3∂

2
X R

′ + g4∂
4
X R

′ + g1g5
g2

∂2X R
′3
]

(28)

Equation (27) is the mKdV equation with an O (ε) cor-
rection term on the right-hand side. If we ignore the
O (ε) terms in Eq. (24), we get the mKdV equation
with a kink solution as the desired solution

R′
0

(
X, T ′) = √

c tanh

√
c

2

(
X − cT ′) (29)

Next, assuming that R′(X, T ′) = R′
0(X, T ′) + εR′

1
(X, T ′), we take into account the O (ε) correction. In
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order to determine the selected value of the propagation
velocity c for the kink solution, it is necessary to satisfy
the solvability condition

(
R′
0, M[R′

0]
) ≡

∫ +∞

−∞
dXR′

0M[R′
0] = 0 (30)

where M[R′
0] = M[R′] for Eq. (28).

Byperforming the integration,weobtain the selected
velocities

c = 5g2g3
2g2g4 − 3g1g5

(31)

We can obtain the value of propagation velocity for any
vehicle by substituting the value g1, g2, g3, g4, g5 into
Eq. (31).

We can obtain the solution of the mKdV equation
as:

R (X, T ) =
√
g1c

g2
tanh

[√
c

2
(X − cg1T )

]
(32)

From the extended OVM, We can know V ′ = vmax/2
and V ′′′ = −vmax, and the corresponding amplitude c
of the kink–antikink soliton solution is computed by

A =
√
g1c

g2

∣∣∣∣
τ

τc
− 1

∣∣∣∣ (33)

The kink–antikink solution represents the coexisting
phase consisting of the freely moving phase with low
density and the jammed phase with high density. Their
headways are given by�x = hc ± A.

5 Numerical simulation

Theoretical analyses have shown that the traffic flow
canbemore stable by consideringdouble self-stabilizing
control, under the limited condition of (λ +m)t0 < 1 .
On the basis of the linear stability analysis, simulations
are conducted to verify the correctness of the theoret-
ical results in Sect. 3. In order to simplify many pro-
cesses for the analysis in specifying boundary condi-
tions, we perform simulations under a periodic bound-
ary condition.We assume a platoon of vehicles runs in a
ring road according to the extended model considering
the self-stabilizing control in historical traffic data. We
solve Eq. (3) numerically with optimal velocity func-
tion Eq. (2) by the method of the fourth-order-Runge–
Kurra.

A small disturbance induced by a vehicle is intro-
duced for the purpose of analyzing the stability for the
proposed model of traffic flow. At the beginning, all

Fig. 3 Space-time
evolutions of the headway
profile after a sufficient time
t = 9.9 × 105 according to
the proposed model for a
λ + m = 0.0, b
λ + m = 0.05, c
λ + m = 0.1, and d
λ + m = 0.15, respectively.
(t0 = 1.0, a = 1.5)
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Fig. 4 Snapshots of
headway configuration of
all vehicles at time steps
t = 9.9 × 105 for a
λ + m = 0.0, b
λ + m = 0.05, c
λ + m = 0.1, and d
λ + m = 0.15, respectively.
(t0 = 1.0, a = 1.5)
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vehicles run on a single lane without overtaking and
inflowing, with the same initial headway and veloc-
ity. It is assumed that all vehicles run with the initial
arrangement as follows:

�x j (0) = �x j (1) = 5.0m, ( j 
= 50, 51) (34)

�x j (0) = �x j (1) = 5.0 − 0.1, ( j = 50) (35)

�x j (0) = �x j (1) = 5.0 + 0.1, ( j = 51) (36)

where the total number of vehicle is N = 100.
Firstly, we fix t0 = 1.0 to demonstrate the effect

of self-stabilizing control on the traffic stability. The
inequality of (λ+m)t0 < 1 should be guaranteed when
we choose different sums of two control coefficients λ

and m. In Fig. 3, the patterns a–d show the space-time
evolution of the headway for λ + m = 0.0, 0.05, 0.1
and 0.15, respectively, where the sensitivity a = 1.5. In
patterns a–c, the traffic flow is unstable while density
waves appearing, since stability criterion (13) is unsat-
isfied for given parameters. The traffic flow state added

a small disturbance transits from the initial uniform
flow to the inhomogeneous kink-antikink traffic jams,
which corresponds to the nonlinear analytical results
in Sect. 4. In addition, the amplitude of the headway
waves decreases with increasing of the sum of two con-
trol coefficient as shown in Fig. 4, in which all subplots
correspond to those in Fig. 3, respectively. When the
sum of two control coefficients is further increased to
λ + m = 0.15, the kink-antikink density waves not
occur in the pattern d of Figs. 3 and 4. It means that
the traffic stability becomes better and better with more
self-stabilizing control in historical traffic data, which
is consistent with the theoretical analysis.

Next, we choose λ +m = 0.15 to explore the effect
of the time gap t0 on the stability of traffic system of
single lane.Also, the condition (λ+m)t0 < 1 should be
met when the time gap t0 is set in the simulations. The
patterns a–d in Fig. 5 show the space-time evolution of
the headway after a sufficient time steps t = 9.9× 105
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Fig. 5 Time evolutions of
the headway profile
according to the proposed
model for a t0 = 0.0, b
t0 = 0.3, c t0 = 0.6, and d
t0 = 1.0, respectively.
(λ = 0.15, a = 1.5)
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for the time gap t0 = 0.0, 0.3, 0.6 and 1.0, respec-
tively, where the sensitivity a = 1.5. In patterns a–c,
the traffic flow is unstable because stability criterion
(13) is not satisfied. The kink-antikink headway waves
occur as the form of traffic jams propagating backward.
When the time gap changes to the value of t0 = 1.0,
the traffic system is stable with the headway waves dis-
appearing and the traffic flow stay uniform flow over
the whole time space. Figure 6 gives the snapshot of
the headway profile at time t = 9.9× 105 with all sub-
plots corresponding to those in Fig. 5, respectively. We
can observe that the amplitude of the headway wave
decreases with increasing the time gap t0. It demon-
strates sufficiently that the time gap has an important
effect on the traffic flow stability, and the whole traf-
fic can be stabilized with the increasing in time gap.
This result is in good agreement with the theoretical
analysis.

From stability criterion (13) of the extended model,
the conclusion can be addressed that the effect of the
self-stabilizing control on traffic stability should satisfy
certain condition that the product of λ+m and t0 is less
than 1. It means our proposed model cannot support a
stable traffic flow against small disturbances when the

product is greater than 1. We can perform simulation
to verify the conclusion by choosing the parameters of
λ +m and t0 to meet the condition that (λ +m)t0 > 1.
Figure 7 shows the space-time evolutionof the headway
after the time steps t = 9.9×105 with the control coef-
ficient λ+m = 1.0 and the time gap t0 = 1.5. It can be
easily found that the homogeneous steady flow finally
evolves to drastic changes of the headwaywaves finally
which is in good agreement with theoretical analysis.

Theoretical analysis shows that the self-stabilizing
control mode comes greater flexibility than that of
cooperatively driving control. Here, we choose the
same control strength for the cooperatively driving con-
trol and the self-stabilizing control to investigate the
suppressing performance of jam waves induced by a
small disturbance. The time-space evolution of all vehi-
cles for the cooperatively driving control and the self-
stabilizing control, are denoted by Fig. 8a–c, respec-
tively. The data are obtained by recording the positions
of vehicles during 990,000–1,000,000 steps. The con-
trol factor in subplot (a) is chosen for the cooperatively
driving control with k = 0.125, and two control factors
in subplot (b) are selected for the self-stabilizing control
with λ+m = 0.125 and t0 = 0.5. It is obvious that the

123



Stabilization analysis and modified KdV equation 1123

Fig. 6 Snapshots of
headway configuration of
all vehicles at time steps
t = 9.9 × 105 a t0 = 0.0, b
t0 = 0.3, c t0 = 0.6, and d
t0 = 1.0, respectively.
(λ = 0.15, a = 1.5)
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Fig. 7 The space-time
evolution of the headway
after the time steps
t = 9.9 × 105 with the
control coefficient
λ + m = 1.0 and the time
gap t0 = 1.5
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stop-and-go waves appear on both simulations, for the
reason that the control strength is not great enough to
meet with stability criteria (13) and (16). However, we
can observe that the stop-and-go wave which appears
in subplot (b) is increasingly suppressed in subplot (c)

and disappears in subplot (d), with another regulator
t0 changing from t0 = 0.5 to t0 = 1.5, which fully
verified that the self-stabilizing control is more flexible
to eliminate traffic jams in the case of limited control
strength.
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Fig. 8 Time-space evolutions of all vehicle for the cooperatively
driving control (a) and the self-stabilizing control (b–d). (space
evolutions of all vehicle for the cooperatively driving) k = 0.125;

(b) λ + m = 0.125, t0 = 0.5; (c) λ + m = 0.125, t0 = 1.0;(c)
λ + m = 0.125, t0 = 1.5

6 Summary

In this paper, we proposed an extended car-following
model which takes into account of the self-stabilizing
control in historical traffic data: the historical optimal
velocity and the historical velocity of the considered
vehicle. Linear stability analysis of the proposedmodel
was conducted by the traditional theoretical deriva-
tion and finds that the traffic flow can be stabilized
by the self-stabilizing control in the historical traffic
data, just like the cooperatively driving control. It was
also found that the time gap between the current time
and the historical time has a significant effect on the
stability criterion. We also summarized the strengths
of the self-stabilizing control in the implementation,
in comparison with cooperatively driving control. In
addition, from the nonlinear analysis to the proposed
model, the historical optimal velocity and historical
velocity dependence of the propagating kink solutions
for jam waves was obtained by deriving the modified

KdV equation near critical point by using the reductive
perturbation method. Finally, theoretical results were
confirmed by direct simulations.
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