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Abstract A novel charge-controlled memcapacitor
3D chaotic oscillator with two unstable equilibriums is
proposed. Various dynamic properties of the proposed
system are derived and investigated to show the exis-
tence of chaotic oscillations. Fractional-order analysis
of the chaotic oscillator shows that the maximum value
for the largest positive Lyapunov exponent is exhibited
in fractional order. Adomian decomposition method is
used to discretize the fractional-order system. Field-
programmable gate arrays are used to realize the pro-
posed oscillator. In addition, random number generator
is designed by employing this novel chaotic system in
its fractional-order form.
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1 Introduction

Designing new chaotic systems with interesting fea-
tures has attracted lots of interest recently. Some of
these chaotic systems can be categorized according to
their equilibria: chaotic systems with no equilibrium
points [1,2], with only stable equilibria [3,4], with
curves of equilibria [5],with surfaces of equilibria [6,7]
and with non-hyperbolic equilibria [8,9]. Some other
examples unrelated to equilibria are chaotic systems
with multiscroll attractors [10–12], with multistability
[13–15], with different kinds of symmetry [16–18] and
with the algebraically simplest equations [19–22].

Chua [23] introduced the fourth circuit element,
popularly known as memristors, in 1971. Memristors
are considered to be highly nonlinear with nonvolatile
characteristics and can be implemented with nanoscale
technologies [24–27]. Memristor-based chaotic oscil-
lators have beenwidely investigated in the recent years.
Some examples are circuits with two HP memristors
in antiparallel [28], a current feedback op-amp-based
memristor oscillators [29] and a practical implementa-
tion of memristor-based chaotic circuits with off-the-
shelf components [30]. Also memristor-based chaotic
circuit for pseudorandom number generation has been
analyzed in a cryptography application study [31].
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Recently many researchers have discussed about
fractional-order calculus and its applications [32–34].
For example, fractional-order nonlinear systems with
different control approaches have been investigated
[35–37], and fractional-ordermemristor-based no equi-
librium chaotic and hyperchaotic systems are proposed
[38–41].

Implementation of chaotic and hyperchaotic sys-
tem using field-programmable gate arrays (FPGAs)
has been widely investigated [42–44]. Chaotic random
number generators have been implemented in FPGA
for applications in image cryptography [45] or FPGA-
implemented Duffing oscillator-based signal detectors
has been proposed [46].

In the next section, we introduce a memcapacitor-
based 3D chaotic oscillator with two unstable equi-
libriums. In Sect. 3, we analyze it carefully through
dissipativity, equilibrium points, Lyapunov exponents
(LE), Kaplan–Yorke (KY) dimension, bifurcation, and
bicoherence in detail. Section 4 deals with the cir-
cuit implementation of the memcapacitor chaotic sys-
tem. In Sects. 5 and 6, fractional-order form of chaotic
memcapacitor system and its dynamic analysis are pre-
sented. Sections 7 and 8 illustrate a FPGA-based prac-
tical application and random number generator design
with the fractional-order chaotic system. Finally, con-
clusions are given in Sect. 9.

2 Problem formulation

Many memcapacitor models with piecewise linear,
quadric and cubic functions have been discussed in the
literature [47–50]. Some interesting properties such as
hidden attractors [51–54], coexistence attractors [55–
57] and extreme multistability [58–61] were found in
the memcapacitor-based chaotic oscillators.

In this study, a novel memcapacitor chaotic oscil-
lator (NMCO) with charge-controlled memcapacitor,
discussed in [62], as shown in Fig. 1 is investigated.

In Fig. 1 R, L , G and C represent resistance,
inductances, conductance and capacitance, respec-
tively. Cm is the memcapacitor as discussed in [62,63].
The current flowing through the circuit is iG , iR, iCm , iL

applying Kirchhoff’s law to the circuit shown in Fig. 1,
dqCm
dt = VC

R + (
G − 1

R

)
VCm

C dVC
dt = (VCm −VC )

R − iL

L diL
dt = VC

(1)

Fig. 1 Memcapacitor-based chaotic oscillator

whereqCm represents thememcapacitor charge, andVC

and VCm represent voltage across capacitor and mem-
capacitor, respectively. Voltage of a charge-controlled
memcapacitor can be written as:

VCm = (α − βσ)qCm (2)

where α and β are memcapacitor parameters such that
α − βσ is the inverse of memcapacitance (C−1

m ) and

σ = σ0 + ∫ ∫
t t0(t)dt . If Eq. (2) is substituted into

Eq. (1), it can be seen that Eq. (1) has four state vari-
ables namely: qCm , VC , σ and iL . If the initial value
of σ is taken very small (i.e., close to zero), then
σ ≈ ∫ t

t0
qcm(t)dt . By taking time integral of Eq. (1),

the number of state variable can be reduced to three.
The time integral of Eq. (1) is

dσ
dt = ϕC

R + (
G − 1

R

)
ϕCm

C dϕC
dt = (ϕCm −ϕC)

R − qL

L dqL
dt = ϕC

(3)

where σ ≈ ∫ t
t0

qcm(t)dt , ϕc = ∫
vc(t)dt , ϕcm =∫

vm(t)dt and qL = ∫
ıL(t)dt .

The time integral of memcapacitor voltage can be
written as:

ϕcm =
∫

vcm(t)dt = ασ − 1

2
βσ 2 (4)

By substituting time integral of memcapacitor voltage
given in Eq. (4) into Eq. (3), the following equation
system is obtained

dσ
dt = ϕC

R + (
G − 1

R

)
(ασ − 1

2βσ 2)

C dϕC
dt =

(
ασ− 1

2βσ 2−ϕC

)

R − qL

L dqL
dt = ϕC

(5)
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Fig. 2 a x − y plane, b x − z plane and c y − z plane phase portraits of system (3) when a1 = 1.638, a2 = − 0.963, a3 = 4.5, a4 = 0.7,
a5 = − 0.4 and a6 = − 1.75

The state variables of Eq. (5) are σ, ϕC and qL . Let
us define new state variables as x = σ, y = ϕc and
z = −RqL and let us define τ = t

RC .

dx

dτ
= a1x + a2x2 + a3y

dy

dτ
= a4x + a5x2 − y + z

dz

dτ
= a6y (6)

where the parameters are defined as a1 = Cα(RG −
1), a2 = −Cβ

2 (RG − 1), a3 = C, a4 = α, a5 =
−β

2 , a6=− R2C
L and for the values of L = 0.13H, C =

3.57F, G = 2.1, ?R = 211�,α = 0.7F−1 and
β = 0.8F−1c−1s−1, and the NMCO system shows
chaotic oscillations and the corresponding parameter
values are derived as, a1 = 1.638, a2 = − 0.936, a3 =
4.5, a4 = 0.7, a5 = − 0.4 and a6 = − 1.75. The initial
conditions are chosen as [0.001, 0.001, 0.001]. Figure 2
shows the 2D phase portraits of system (6).

3 Dynamic analysis of hyperchaotic memcapacitor
oscillator (NMCO)

The dynamic properties of the NMCO system namely
dissipativity, equilibrium points, eigenvalues, Lya-
punov exponents (LE) andKaplan–Yorke (KY) dimen-
sion are derived and discussed in this section.

3.1 Dissipativity, equilibrium points, Lyapunov
exponents and Kaplan–Yorke dimension

The divergence of Eq. (3) is
∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
= a1 + 2a2x − 1 (7)

This shows that it is dissipative if <x> be smaller
than 1−a1

2a2
, where <x> represents the arithmetic aver-

age of x . Hence, the system volume is going to be
reduced to zero, and the NMCO system (3) converges
to a strange attractor of the system asymptotically. By
equatingX = 0, theNMCOsystem (3) shows two equi-
libriumpoints E1 = [0, 0, 0] and E2 = [−a1/a2, 0, 0].
By calculating the characteristic equation of the sys-
tem, it can be seen that both equilibria are unstable.
The Jacobian method is employed in calculation of the
LEs of the NMCO system. The numerical value of LEs
of the NMCO system are

L1 = 0.105, L2 = 0, L3 = − 2.1734 (8)

Since there is a positive LE in (5), the NMCO system
(3) has chaotic solutions. The sumof LEs of theNMCO
system (3) is given below which is negative.

L1 + L2 + L3 = − 2.065 < 0 (9)

The dissipativity of the NMCO system (3) can be
shown with Eq. (6). The KY dimension of the NMCO
system (3) is

DK Y = 2 + L1 + L2

|L3| = 2.048, (10)

which is fractional.

3.2 Bifurcation

To understand the parameter dependence of theNMCO
system, we derive and investigate the bifurcation plots.
By changing all of its six parameters, this NMCO sys-
tem exhibits a familiar period doubling to enter chaos.
However, for simplicity, only bifurcation diagram and
Lyapunov exponents diagramwith changing parameter
a1 are shown in Fig. 3.
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Fig. 3 a Bifurcation
diagram of system (3) with
respect to parameter a1
(ymax are the local maxima
of y signal and the initial
values are (0.1, 0.1, 0.1))
and b Lyapunov exponents
of system (3) with respect to
parameter a1. The rest of
the parameters are
a2 = − 0.963, a3 = 4.5,
a4 = 0.7, a5 = − 0.4 and
a6 = − 1.75

3.3 Bicoherence

Higher-order spectra have been used to study the non-
linear interactions between frequency modes [64,65].
Let x(t) be a stationary random process defined as,

x(t) =
N∑

n=1

Ane jωn t + A∗
ne− jωn t (11)

where w is the angular frequency, n is the frequency
modal index and An are the complex Fourier coeffi-
cients. The power spectrum can be defined as,

P(ωk) = E[Aωk A∗
ωk

] (12)

and discrete bispectrum can be defined as,

B(ωk, ω j ) = E[Aωk Aω j A∗
ωk+ω j

] (13)

If the modes are independent, then the average triple
products of Fourier components is zero resulting in a
zero bispectrum [64]. The study of bicoherence is to

give an indication of the relative degree of phase cou-
pling between triads of frequency components. There
are two main reasons to employ bicoherence analysis.
The first one is obtaining information about deviations
due to Gaussianity and suppressing colored Gaussian
noise. The second one is that signals with asymmet-
ric nonlinearities can be detected and identified with
bicoherence analysis. It is a third-order spectrum as
it can be seen in Eq. (10), while as it can be seen in
Eq. (9) power spectrum is a second order. Power spec-
trum and bispectrum can be defined as X ′ ( f ) ∗ X ( f )

and X
(

f j
)∗ X ( fk)∗ X ′ ( f j + fk

)
, respectively, where

X ( f ) represents Fourier transform of x(t) and X ′ ( f )

represents Fourier transformof conjugate of x(t). It can
be understood that the bispectrum is a complex function
of two frequencies ( f j , fk). Bicoherence is square of
amplitude. To calculate the bispectrum, the time series
are divided into M parts and each part has length of N.
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Fig. 4 Bicoherence plot of
NMCO system for state x
with sampling frequency of
1.5 KHz

Then, their Fourier transforms and biperiodogram are
calculated. Finally, they are averaged over all segments.
Although the inputs of bicoherence functions are two
different frequencies and their summation, the output
of the function is one-dimensional. Hence, bicoherence
can be considered as a function of sum of two frequen-
cies. Pezeshki [66] gives autobispectrum of a chaotic
system. Autobispectrum is calculated from the Fourier
coefficients.

B(ω1, ω2) = E[A(ω1)A(ω2)A∗(ω1 + ω2)] (14)

where wn is the radian frequency and A is the Fourier
coefficients. The square of bicoherence can be written
as

b(ω1, ω2) = |B(ω1, ω2)|2 /P(ω1)P(ω2)P(ω1 + ω2)

(15)

where P(ω1) and P(ω2) are the power spectrums at f1
and f2.

Figures 4 and 5 show the bicoherence contours of
the FONMCO system for state x and all states together,
respectively. Yellow-colored parts show the multifre-
quency components contributing to the power spec-
trum. As it is shown in Figs. 4 and 5, the cross-
bicoherence is nonzero and non-constant; hence, the

state relationship is nonlinear. As shown in Fig. 4, the
spectral power is very low as compared to the spec-
tral power of all states together (Fig. 5) indicating the
existence of multifrequency nodes. Also Fig. 5 shows
the nonlinear coupling (straight lines connecting mul-
tiple frequency terms) between the states. The yellow
shades/lines and non-sharpness of the peaks and the
structure around the origin in figures indicate that the
nonlinear relation of the states x, y, z is not of the
quadratic nonlinearity. The most two dominant fre-
quencies ( f1, f2) are selected to obtain bicoherence
contour. As a reference frequency, the sampling fre-
quency ( fs) is selected. To derive the power spectrum
for individual frequencies, direct FFT is used and Han-
kel operator is used as the frequency mask. Hanning
window is used as the FIR filter to separate the fre-
quencies [40].

4 Circuit implementation of the memcapacitor
chaotic system

There are many works in the literature related to elec-
tronic circuit designs [67–77]. In this section, the cir-
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Fig. 5 Bicoherence plot of
NMCO system for all states
with sampling frequency of
1.5 KHz

cuit design of memcapacitor chaotic system (3) is
differently implemented in the oscilloscope as real-
time engineering application. The chaotic memcapac-
itor in this work has been exhibited noise-like behav-
iors because its signal values are very low as shown in
Fig. 2. So, chaotic system are firstly scaled to increase
the signal values for electronic circuit application.

For scaling process, let X = 5x , Y = 5y, Z = 5z,
and then, setting the original state variables x, y, z as X ,
Y , Z the scaled chaotic memcapacitor system becomes
as follows.⎧
⎨

⎩

ẋ = a1x + a2x2 + a3y X = 5x
ẏ = a4x + a5x2 − y + z ⇒ Y = 5y
ż = a6y Z = 5z

⎫
⎬

⎭
⇒

x = X/5
y = Y/5
z = Z/5

(16)

X = 5x, Y = 5y, Z = 5z (17)

Finally, scaled chaotic memcapacitor system are
given by

Ẋ = a1X + a2X2

5
+ a3Y

Ẏ = a4X + a5X2

5
− Y + Z

Ż = a6Y (18)

In Fig. 6 are shown the new phase portraits of scaled
memcapacitor oscillator with increased amplitude val-
ues. After these processes, we can do electronic circuit
design as real-time application.

The designed electronic circuit of the scaled mem-
capacitor chaotic system is given in Fig. 7. The circuit
consists of basic electronic components such as resis-
tors, capacitor, op-amps and multipliers.

R1 = 244 k�, R2 = 213 k�, R3 = 89 k�, R4 =
R5 = 100 k�, R6 = 570 k�, R7 = 500 k�, R8 =
R9 = 400 k�, R10 = R11 = 100 k�, R13 = 228 k�,
R14 = R15 = 100 k�, C1 = C2 = C3 = 1 nF, Vn =
− 15 V, Vp = 15 V were chosen. The oscilloscope
outputs of memcapacitor chaotic system are shown in
Fig. 8 for x − y, x − z and y − z planes.

Also, the experimental circuit of the chaotic mem-
capacitor circuit is shown in electronic card in Fig. 9
for x − z plane.

5 Fractional-order NMCO system (FONMCO)

In this section, modeling of the fractional-order form
of the hyperchaotic memcapacitor oscillator (FON-
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Fig. 6 2D and 3D phase portraits of the scaled memcapacitor oscillator (3): a x − y, b x − z, c y − z, d x − y − z

MCO) is introduced. Grunwald–Letnikov, Riemann–
Liouville andCaputo [32–34] are the usually employed
methods for the fractional-order differential opera-
tor. In the study, Grunwald–Letnikov (GL) method is
employed and given as

a Dq
t f (t) = lim

h→0

⎧
⎪⎪⎨

⎪⎪⎩

1

hq

[
t−q

h

]

∑

j=0

(−1) j
(

q
j

)
f (t − jh)

⎫
⎪⎪⎬

⎪⎪⎭

= lim
h→0

{
1

hq



q
h f (t)

}
(19)

where D refers to the fractional-order generalization,



q
h f (t) is generalized difference, h is the step size, a

and t are limits, and q is the fractional order of the
differential equation.

Equation (16) can be written as

(t−L) Dq
t f (t) = lim

h→0

⎧
⎨

⎩
h−q

N (t)∑

j=0

b j ( f (t − jh)

⎫
⎬

⎭
(20)

where b j is binomial and given as

b j =
(
1 − a + q

j

)
b j−1 (21)

In theory, calculation of fractional-order differential
equation requires use of infinite memory, but in prac-
tice, the equation given below is used for the calcula-
tion.

N (t) = min

{[
t

h

]
,

[
L

h

]}
(22)

where L and h represents the memory length sampling
time, respectively.
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Fig. 7 Electronic circuit of the scaled chaotic memcapacitor system

Using (16)–(19), the FONMCO system is derived
as,

dqx x

dtqx
= a1x + a2x2 + a3y

dqy y

dtqy
= a4x + a5x2 − y + z

dqz z

dtqz
= a6y (23)

where qx , qy, qz are the fractional orders of the FON-
MCO system. The 2D phase portraits of the FONMCO
system is given Fig. 10. The system parameters and the
initial values are as same as in the system discussed in
Sect. 2.
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A chaotic memcapacitor oscillator with two unstable equilibriums 965

Fig. 8 2D phase portraits of the chaotic memcapacitor on the oscilloscope. The initial conditions and parameter values are taken as in
Sect. 2: a x − y, b x − z, c y − z

Fig. 9 Experimental circuit
of the chaotic memcapacitor
circuit

Fig. 10 2D phase portraits of the FONMCO system, q = 0.992
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Fig. 11 Fractional-order bifurcation plot

6 Dynamic analysis of the FONMCO chaotic
systems

6.1 Bifurcation with fractional order

Some of the FONMCO system dynamic properties
such as LEs and bifurcation remain similar to the that
of the NMCO chaotic systems [38,39] if qx , qy, qz >

0.983. For a fractional-order system, investigation of
bifurcation with fractional order is very important. As
shown in Fig. 11, bifurcation of the FONMCO system
for change in fractional order shows that the systems’
chaotic oscillations remain if qi > 0.983 and when
q = 0.992 the largest positive Lyapunov exponent is
L1 = 0.118, while for the integer-order case the largest
Lyapunov exponent is L1 = 0.105. Figure 12a–f shows
the 2D phase portraits in X −Y plane for different frac-
tional orders.

6.2 Stability analysis

6.2.1 Commensurate order

For a q-order commensurate FONMCO system, the
system shows chaotic oscillations if

|arg(eig(JE ))| = |arg(λi )| >
qπ

2
where JE is the Jacobian matrix at the equilibrium E
and λi are the eigenvalues of the FONMCO system
for i = 1, 2, 3. The eigenvalues must be in the unstable
region and stability condition for the FONMCO system

is q > 2
π
tan−1

( |Imλ|
Reλ

)
. The NMCO system shows two

equilibrium at E1 = [0, 0, 0] and E2 = [− 1.75, 0, 0],

and the characteristic equation for the commensurate
orders q = 0.99 for the equilibrium point E1 is given
by λ297 + 3λ199 + 2.638λ198 + 3λ101 + 5.276λ100 +
0.238λ99 + λ3 + 2.638λ2 + 0.238λ + 2.8665 and at
E2 is λ297 +3λ199 −0.638λ198 +3λ101 −1.276λ100 +
3.262λ99 + λ3 − 0.638λ2 + 3.262λ − 2.8665.

6.2.2 Incommensurate order

The FONMCO system shows chaotic oscillations for
the given condition below.
π

2M
− mini (|arg(λi)|) > 0

where M is the least common multiple (LCM) of the
fractional orders. If qx = 0.99, qy = 0.99, qz =
0.98, qw = 0.98, then M = 100. The character-
istic equation of the system at the equilibriums is
det(diag[λMqx , λMqy , λMqz ] − JE ) = 0; then, we get
det(diag[λ99, λ99, λ98] − JE ) = 0 and the characteris-
tic equation at equilibrium point E1 is λ296 + λ199 +
3λ198 + 1.638λ197 + 2λ101 + 4.638λ100 + 1.876λ99 +
λ3+2.638λ2+0.238λ+2.8665 and at the equilibrium
point E2 is λ296 +λ199 +3λ198 −1.638λ197 +2λ101 +
1.362λ100 + 1.624λ99 + λ3 − 0.638λ2 + 3.262λ −
2.8665. For the values of parameters mentioned in
Sect. 2, the solution of the characteristic equation is
approximated to λ296 = 1.848 and whose argument is
zero and which is the minimum argument, and hence,
the stability necessary condition becomes π

200 − 0 > 0
which solves for 0.0157 > 0.

7 FPGA implementation of the FONMCO systems

The three main approaches to solve fractional-order
chaotic systems are frequency-domain method [78],
Adomian decomposition method (ADM) [79] and
Adams–Bashforth–Moulton (ABM) algorithm [80].
Among these threemethods, ADM is themost advanta-
geous one for obtaining accurate results with less com-
putational power [81,82]. Hence, the proposed FON-
MCO system is implemented in FPGA by applying
ADMscheme. Themost challenging issue in the FPGA
realization of the FONMCO system is that there is no
available block for the fractional-order integrator in the
systemgenerator [39–41].Because theADMalgorithm
converges fast [82,83], for obtaining FONMCOsystem
solution the first 6 terms are taken. For real cases, it is
impossible to find the accurate value of x when t takes
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A chaotic memcapacitor oscillator with two unstable equilibriums 967

Fig. 12 2D phase portrait (X − Y plane) of FONMCO system for different fractional orders a q = 0.999, b q = 0.995, c q = 0.992,
d q = 0.990, e q = 0.985, f q = 0.983

larger values [84]. Hence, a discretization method in
time is designed. That is to say, for a time interval of
ti (initial time) to tf (final time), we divide the interval
into (tn, tn+1) and we get the value of x(n + 1) at time
tn + 1 by applying x(n) at time tnn using the relation
x(n + 1) = F(x(n)) [84]. We use the ADM method
[79,84] to discretize the fractional-order CA system
for implementing in FPGA. The fractional-order dis-
crete form of the dimensionless state equations for the
FONMCO system can be given as,

xn+1 =
6∑

j=0

p j
1

h jq


 ( jq + 1)

yn+1 =
6∑

j=0

p j
2

h jq


 ( jq + 1)

zn+1 =
6∑

j=0

p j
3

h jq


 ( jq + 1)
(24)

where p j
i are theAdomianpolynomialswith i = 1, 2, 3

and p01 = xn, p02 = yn, p03 = zn . The Adomian first
polynomial is derived as,

p11 = a1 p01 + a2 p01 p01 + a3 p20

p12 = a4 p01 + a5 p01 p01 − p02 + p30

p13 = a6 p20 (25)

The Adomian second polynomial is derived as,

p21 = a1 p11 + a2
[

p01 p11 + p11 p10
]

+ a3 p21

p22 = a4 p11 + a5
[

p01 p11 + p11 p10
]

− p12 + p31

p23 = a6 + p21 (26)

The Adomian third polynomial is derived as,

p31 = a1 p21 + a2
[

p01 p21 + p21 p01

+
(2q + 1)


2(q + 1)

[
p11 p11 + p11 p11

]]
+ a3 p22

p32 = a4 p21 + a5
[

p01 p21 + p21 p01

+
(2q + 1)


2(q + 1)

[
p11 p11 + p11 p11

]]
− p22 + p32

p33 = a6 p22 (27)

The Adomian fourth polynomial is derived as,

p41 = a1 p31 + a2
[

p01 p31 + p31 p01

+ 
(3q + 1)


(q + 1)
(2q + 1)

[
p21 p11 + p21 p11

]]

p42 = a4 p31 + a5
[

p01 p31 + p31 p01
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Fig. 13 RTL schematics of
the FONMCO system
implemented in Kintex 7
(Device =
7k160t Package =
fbg484 S). The sampling
time of the system is kept at
0.01 s to minimize the time
slack errors. The entire
system is configured for a
32-bit operation

+ 
(3q + 1)


(q + 1)
(2q + 1)

[
p21 p11 + p21 p11

]]

− p32 + p33

p43 = a6 p23 (28)

The Adomian fifth polynomial is derived as,

p51 = a1 p41 + a2
[

p41 p01 + p01 p41

+ 
(4q + 1)


(q + 1)
(3q + 1)

[
p31 p11 + p11 p13

]]

+ a3 p24

p52 = a4 p41 + a5
[

p41 p01 + p01 p41

+ 
(4q + 1)


(q + 1)
(3q + 1)

[
p31 p11 + p11 p13

]]

−p42 + p43
p53 = a6 p42 (29)

The Adomian sixth polynomial is derived as,

p61 = a1 p51 + a2
[

p51 p01 + p01 p51

+ 
(5q + 1)


(q + 1)
(4q + 1)

[
p41 p11 + p11 p41

]]

+ a3 p25

p62 = a4 p51 + a5
[

p51 p01 + p01 p51

+ 
(5q + 1)


(q + 1)
(4q + 1)

[
p41 p11 + p11 p41

]]

− p52 + p35

p63 = a6 p25 (30)

where h = tn + 1− tn and 
()̇ is the gamma function.
The fractional-order discretized system (21) is then
implemented in FPGA, and the necessary Adomian
polynomials are calculated using (22)–(27). For imple-
menting in FPGA, the value of h is taken as 0.001 s
and the initial values are fed into the forward register
with fractional order q = 0.992 for FONMCO system.
Figure 13 shows the RTL schematics of the FONMCO
system implemented in Kintex 7. Figure 14a shows
the power consumed by FONMCO system for order
q = 0.992, and Fig. 14b shows the power consumed
for various fractional orders and it can be seen thatmax-
imum power is consumed when the FONMCO system
exhibits the largest Lyapunov exponent. Table 1 shows
the resources consumed with the consumed clock fre-
quencies, and Fig. 15 shows the 2D phase portraits of
the FPGA-implemented FONMCO system.

8 Random number generator with FONMCO
system

Random numbers are used in many areas, e.g., video
games, encryption, drawing of lots and weather fore-
cast simulations [85–87]. In the literature, jitter [88],
metastable [89] and chaotic systems [70,72,76,90–95]
are also used as a source of entropy. In the paper, a
design of random number generator (RNG) is realized
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Fig. 14 a Power consumed by FONMCO system for q = 0.998,
b power consumed by FONMCO system for various fractional
orders. It can be seen that maximum power of 0.204 W is con-

sumed for order q = 0.998 when the FONMCO system shows
the largest Lyapunov exponents

Table 1 Resource consumption of FPGA-implemented FONMCO system

Resource Utilization Available Utilization (%) Clock frequency
Available (Mhz) Used (Mhz)

LUT 1220 101,400 1.20 500 188

FF 192 202,800 0.09 500 162

DSP 8 600 1.33 250 97

IO 97 285 34.04 300 115

BUFG 1 32 3.13 300 87

Fig. 15 2D phase portraits of the FPGA-implemented FONMCO system. The initial conditions and parameter values are taken as in
Sect. 2, and the order of the system is q = 0.992; a X–Y plane, b X–Z plane, c Y–Z plane
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Table 2 NIST-800-22 test results of 3D memcapacitor chaotic system-based RNG

NIST statistical tests P-value (X ) P-value (Y ) P-value (Z ) Result

Frequency (monobit) test 0.1056 0.4839 0.4952 Passed

Block-frequency test 0.5412 0.8796 0.4001 Passed

Cumulative-sum test 0.1775 0.3271 0.6904 Passed

Runs test 0.9803 0.9732 0.7335 Passed

Longest run test 0.7585 0.8621 0.3281 Passed

Binary matrix rank test 0.4237 0.9268 0.8370 Passed

Discrete fourier transform test 0.6332 0.4741 0.5029 Passed

Non-overlapping templates test 0.0276 0.2708 0.0352 Passed

Overlapping, templates test 0.6090 0.3848 0.4222 Passed

Maurer’s universal statistical test 0.3216 0.8306 0.0373 Passed

Approximate entropy test 0.6010 0.4870 0.8824 Passed

Random-excursion test 0.2640 0.7444 0.1577 Passed

Random-excursion variant test 0.7681 0.5860 0.4165 Passed

Serial test 1 0.8636 0.4839 0.2218 Passed

Serial test 2 0.6986 0.5465 0.6423 Passed

Linear-complexity test 0.9946 0.9512 0.9155 Passed

with FONMCO whose entropy source is a chaotic sys-
tem. The chaotic system used in the paper is fractional
order and to the best knowledge of authors there is no
this type of study in the literature. The fractional-order
chaotic system used in random number generation is
as follows.

dqx x

dtqx
= a1x + a2x2 + a3y

dqy y

dtqy
= a4x + a5x2 − y + z

dqz z

dtqz
= a6y (31)

qx , qy and qz values are fractional order of the system
and all of these values are taken as 0.992. The phase
portraits of the system are shown in Fig. 10. The both
parameter values and initial conditions of the system
are as same as in the non-fractional-order memcapaci-
tor system.

Randomnumber generator design stepswith fractional-
order chaotic system are as given in Algorithm 1. As it
is given in the algorithm, for random number genera-
tion, order of the chaotic system and its parameter and
initial values are needed. Any change in these parame-
ters will result in generation of different random num-

bers. The addition of fractional order to the random
number generation is an important factor for security.
If the generated random numbers are used in encryp-
tion, the fractional order of the chaotic system has to
be known exactly to regenerate the same random num-
bers. As a next step, after entering initial and parameter
values, time step is determined in order to discretize
time series of the fractional-order chaotic system and
then discretized with RK4 which is differential equa-
tion solving method.

After the discretizationprocess, the obtainedfloating-
based x, y and z outputs is converted into 32-bit binary
number; hence, random number generation process is
realized. For the random number generation, the last
16 bits of output x, the last 12 bits of output y and the
last 16 bits of output z are taken.

To evaluate the performance of the generated num-
ber series, NIST-800-22 tests [96] are employed. The
NIST test is the most widely used test to evaluate ran-
domness of the number series. In order to be considered
successful in passing theNIST-800-22 tests, the P value
must be greater than 0.001 for the all tests. The NIST-
800-22 tests results of generated numbers from x , y
and z outputs are given in Table 2.
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Algorithm 1 Random Number Generation Algorithm Pseudo Code

1: Start 
2:  Entering system parameters and initial condition of chaotic systems 
3:  Entering system fractional orders for x, y and z 
4:  Sampling with determination h value 
5:  while (least 1MBit data) do
6: Solving the chaotic system using RK4 algorithm
7: Obtaining time series as float numbers (x, y and z)
8: Convert float to 32 bit binary numbers 
9:  Select LSB-16 bit least binary numbers from RNG from x phase

10:  Select LSB-12 bit least binary numbers from RNG from y phase
11:  Select LSB-16 bit least binary numbers from RNG from z phase
12:  end while
13:  The implementation of NIST Tests for each 1MBit  data 
14:  if (test results == passed) then
15: Successful results 

16:  else test results == false
17: Go to step 9. 
18:  end if
19:  Ready tested random numbers for different RNG applications 
20:  End 

}{

Δ

9 Conclusions

A memcapacitor chaotic oscillator with two unsta-
ble equilibrium points is proposed and investigated.
Dynamic properties of the proposed system are inves-
tigated. The fractional-order model of the proposed
chaotic oscillator is derived and analyzed. The largest
Lyapunov exponent of the system is found to exist in
the fractional order. Adomian decomposition method
is used to discretize the fractional-order system for
implementing in FPGA. The fractional-order FPGA-
implemented chaotic oscillator is investigated, and the
power consumption analysis confirms the existence of
the systems’ largest Lyapunov exponent in its fractional
order.
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