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Abstract This paper presents a new class of chaotic
systems with infinite number of equilibrium points like
a three-leaved clover. They signify an exciting class
of dynamical systems which represent many major
characteristics of regular and chaotic motions. These
chaotic systems belong to the general class of chaotic
systems with hidden attractors. By using a system-
atic computer search, three chaotic systems with three-
leaved-clover-shaped equilibria were found which are
classified into dissipative systems. Dynamics of the
chaotic system with the three-leaved-clover-equilibria
has been investigated by using phase portraits, bifur-
cation diagram, Lyapunov exponents, Kaplan–Yorke
dimension and Poincaré map. Moreover, an electronic
circuit implementation of the theoretical system is
designed to check its effectiveness. Random num-
ber generator design has been realized with newly
developed chaotic systems. The obtained random bit
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sequences are used for image encryption. Security anal-
ysis of image encryption processes has been performed.
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1 Introduction

In the past years, a considerable amount of literature
has been published on chaotic systems, for instance,
Lorenz’s system [1], Rössler’s system [2], Sprott’s sys-
tem [3], Chen and Ueta’s system [4], Chua’s circuit
[5], Linz and Sprott’s system [6], Lü and Chen [7],
Pehlivan and Uyaroglu [8], and so on. Since then,
chaos theory has become a significant research issue
in many chaos-based processes and information sys-
tems [9–15]. The complexity of chaotic systems has
been applied in various engineering applications from
image encryption [16–18], control and synchronization
[19–25], weak signal detection [10] and forecasting
water inrush in mines [26] to secure communication
[27–29], cryptosystem design [30], audio encryption
[31], permutation flow-shop scheduling problem [32],
parallel distributed processing [33], and chaoticMIMO
radar waveform design [34]. In the study of chaos,
it is significant to form novel chaotic systems based
on existing chaotic attractors. Chaotic systems have
extremely complex nonlinear dynamics [35,36]. The
fundamental specification of these systems is high sen-
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sitivity to parametric uncertainties and initial states. A
smooth autonomous chaotic system can exhibit attrac-
tors with different numbers of wings disregarding the
number of equilibria [37,38]. In fact, creation of com-
plex multi-wing or multi-scroll chaotic attractors from
three-dimensional autonomous systems has achieved
rapid development [39,40]. In terms of difficulty, for-
mation of a three-dimensional autonomous systemwith
a complex attractor is an important and stimulating task
in theory and practical purposes [41]. Due to the above-
mentioned properties of chaotic systems, chaos theory
is employed in various scientific researches.

It is now well recognized from a variety of inves-
tigations that equilibrium points play important roles
in theoretical design and dynamical analysis of chaotic
systems [42,43]. An equilibrium point of a dynamical
system is the real solution of the differential equation
ẋ = f (x) = 0. The conventional chaotic systems have
a countable number of equilibrium points. In recent
years, a few strange chaotic systems with uncountable
equilibriumpoints have been introduced [44]. There are
three families of chaotic systems with infinite number
of equilibria: systems with line equilibria [45–49], sys-
tems with open-curve equilibria [50,51], and systems
with closed-curve equilibria [52–54]. The considerable
properties of systems with infinite number of equilib-
ria are rare and challenging to find. It is recognized
that such systems with infinite number of equilibrium
points exhibit hidden attractors, which have been stud-
ied as an exciting research subject in the recent years
[55–58]. Nevertheless, there is still a necessity to dis-
cover new chaotic systems with different closed-curve
equilibria [59,60].

In this paper, a newchaotic systemwith infinite num-
ber of equilibria like a three-leaved clover is proposed.
Using a systematic computer search, three dissipative
chaotic systems with three-leaved-clover-shaped equi-
libria are found. To help understand the chaos genera-
tion of this system, some dynamical specifications con-
taining phase portraits, bifurcation diagram, Lyapunov
exponents,Kaplan–Yorke dimension andPoincarémap
are discussed exhaustively. Furthermore, to investigate
the applicability of the new chaotic system, an elec-
tronic circuit implementation and an RNG design are
realized and the achieved random bit sequences are
employed for image encryption. Finally, security anal-
ysis of image encryption processes has been executed.

This paper is organized as follows: In Sect. 2, the
mathematical model of the new chaotic system is pro-

posed. In Sect. 3, some discussion for the chaotic sys-
tem containing dynamical specifications such as bifur-
cation diagrams, Lyapunov exponents, Kaplan–Yorke
dimension, and Poincaré map is presented. An elec-
tronic circuit realization of the new chaotic system is
performed in Sect. 4, while its engineering applications
comprising the RNG design and image encryption are
reported in Sect. 5. Finally, the last section presents
conclusions of overall study.

2 Mathematical model of the chaotic system

In the search for chaotic flows with infinite number
of equilibrium points, we consider the model of a
novel three-dimensional chaotic system with equilib-
rium points like a three-leaved clover as

ẋ = a1z

ẏ = − z f1(x, y, z)

ż = f2(x, y), (1)

where x , y, and z signify the state variables and
f1(x, y, z) and f2(x, y) specify the nonlinear functions
as:

f1(x, y, z) = a2x + a3y + a4z + a5x
2 + a6y

2

+ a7z
2 + a8xy + a9xz + a10yz + a11, (2)

f2(x, y) = x4 + 2x2y2 + y4 − x3 + 3xy2, (3)

where [a1, a2, . . . , a11] are the constant parameters.
The equilibrium of the general model (1) can be

found as:

z = 0,

z f1(x, y, z) = 0,

f2(x, y) = 0, (4)

where it is concluded that in the plane z = 0, the
equilibrium points of the general model (1) lay on the
surface f2(x, y) = 0. Then, it is confirmed that the
system (1) has infinite number of equilibrium points
E(x∗, y∗, 0) located on

x∗4 + 2x∗2y∗2 + y∗4 − x∗3 + 3x∗y∗2 = 0. (5)

Interestingly, Eq. (5) defines a three-leaved-clover-
shaped curve of equilibrium points, as shown in Fig. 1.

An exhaustive computer search is performed con-
sidering millions of combinations of the parameters
a1, . . . , a11 and initial conditions, seeking for the
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Fig. 1 Presentation of the
three-leaved-clover–shaped
equilibrium

Table 1 Three chaotic flows with equilibrium points like a three-leaved clover

Case Dynamics Parameters Lyapunov exponents DKY (x0, y0, z0)

CL1 ẋ = az
ẏ = − z(by + z2 + yz)
ż = x4 + cx2y2 + y4 − x3 + dxy2

a = 0.29 0.0130 ± 0.0051 2.1727 (−0.54, −0.69, 0.37)

b = 1.4 0

c = 2 −0.0753

d = 3

CL2 ẋ = az
ẏ = − z(by + x2 + cyz)
ż = x4 + dx2y2 + y4 − x3 + exy2

a = 0.3 0.0139 ± 0.0045 2.1565 (−0.29, 0.37, 0.2)

b = 1.8 0

c = d = 2 −0.0887

e = 3

CL3 ẋ = az
ẏ = − z(bx + cy + dyz)
ż = x4 + ex2y2 + y4 − x3 + f xy2

a = 0.15 0.0052 ± 0.0025 2.1217 (0.19, 0.29, −0.34)

b = 0.2 0

c = d = e = 2 −0.0423

f = 3

chaotic behavior with the largest Lyapunov exponent
greater than 0.001. Cases CL1–CL3 in Table 1 are
three chaotic systems obtained in this way. In addi-
tion to the cases CL1–CL3, dozens of chaotic systems
with more complicated structures and inessential terms
were found. Figure 2 demonstrates the strange chaotic
attractors of the cases CL1–CL3 with infinite number
of equilibria like a three-leaved clover.

Since the sum of the Lyapunov exponents of chaotic
systems CL1–CL3 is negative, one can conclude that
the new chaotic systems CL1–CL3 are dissipative. The

equilibrium points, Lyapunov exponents, and Kaplan–
Yorke dimensions are reported in Table 1 alongwith the
initial states which are close to the chaotic attractors.
As is common for strange chaotic attractors of three-
dimensional autonomous systems, the dimensions of
the attractors for the cases CL1–CL3 are only slightly
greater than 2. Among dissipative cases CL1–CL3, the
largest Kaplan–Yorke dimension is 2.1727 for CL1,
although no effort is done to tune the parameters for
high complexity.

123



942 S. Mobayen et al.

CL1

-1 -0.5 0 0.5 1
-1

0

1

2

X

Y

-1 -0.5 0 0.5 1
-0.5

0

0.5

X
Z

-1 0 1 2
-0.5

0

0.5

Y

Z

-1
0

1

-2
0

2
-0.5

0

0.5

XY

Z

CL2

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

X

Y

-1 -0.5 0 0.5 1
-0.5

0

0.5

X

Z

-0.5 0 0.5 1 1.5
-0.5

0

0.5

Y

Z

-1
0

1

-2
0

2
-0.5

0

0.5

XY

Z

CL3

-1 -0.5 0 0.5
-0.5

0

0.5

1

1.5

X

Y

-1 -0.5 0 0.5
-0.4

-0.2

0

0.2

0.4

X

Z

-0.5 0 0.5 1 1.5
-0.4

-0.2

0

0.2

0.4

Y

Z

-1
0

1

-2
0

2
-0.5

0

0.5

XY

Z

Fig. 2 Strange chaotic attractors of cases CL1–CL3

3 Discussions

In this section, we study further as a simple example
the system CL1 due to the fact that it has the biggest
value of Kaplan–Yorke dimension (DKY). By investi-
gating the effect of CL1’s parameters (b, c and d) of
nonlinear terms on system’s behavior, our simulations
indicated that CL1 system displays striking dynamics.
Firstly, the value of the parameter b is varying in the
range from 1.3 to 1.7 in order to show the dynamics
of system CL1 by obtaining the bifurcation diagram

of the variable z when the trajectories cut the plane
x = 0 with dx/dt < 0, as the control parameter b is
decreased. For this reason, the proposed system CL1
is integrated numerically using the classical fourth-
order Runge–Kutta integration algorithm. For each set
of parameters used in this work, the time step is always
�t = 0.002 and the calculations are performed using
variables and parameters in extended precision mode.
For each parameter settings, the system is integrated for
a sufficiently long time and the transient is discarded.

123



New class of chaotic systems with equilibrium points like a three-leaved clover 943

Fig. 3 Bifurcation diagram of z versus b of the system CL1, for
a = 0.29, c = 2 and d = 3

The bifurcation diagram and the three Lyapunov
exponents of the system CL1 are presented in Figs. 3
and 4, respectively. Here, Lyapunov exponents are cal-
culated with the Wolf’s algorithm [61]. As can be seen
from Figs. 3 and 4, there is the presence of a classi-
cal period-doubling route to chaos when decreasing
the value of the parameter b. For b ≥ 1.476, sys-
temCL1generates periodical oscillations. For instance,
period-1, period-2, period-4, and period-8 oscillations
of systemCL1 are illustrated in Fig. 5, respectively. For
b < 1.476, system CL1 displays more complex behav-
iors, for example chaos (see the strange attractors of
system CL1 in Fig. 2). The Poincaré map of system
CL1 in y–z plane, when x = 0 with dx/dt < 0 (see
Fig. 6), also indicates the properties of chaos. Finally,
it is noted that the system is unbounded for b < 1.216.

Similarly, we have changed the value of the parame-
ter c and d to discover the dynamics of systemCL1. The
bifurcation diagrams of system CL1 for c ∈ [1.7, 3.1]
and d ∈ [2.5, 3.2] are reported in Fig. 7. As shown in
Fig. 7, the presence of a classical period-doubling route
to chaos is observed when decreasing the value of the
parameter c and increasing the value of the parame-
ter d. Furthermore, the corresponding spectrums of the
three Lyapunov exponents by varying the parameter c
and the parameter d are shown in Fig. 8. It can be seen
that the bifurcation diagrams well coincide with the
spectrum of the Lyapunov exponents.

4 Circuit realization

The classical approach for the verification of the fea-
sibility of theoretical chaotic models is the physical

Fig. 4 Lyapunov exponents of the system CL by varying the
parameter b, for a = 0.29, c = 2, and d = 3

realization through electronic circuits [62–66]. Further-
more, the circuital realization of chaotic systems has
been applied in numerous engineering applications, for
example in secure communications [67,68], liquidmix-
ing [69], robotics [70], image encryption process [71],
audio encryption scheme [31], target detection [72], or
random signal generation [73,74]. For this reason, ana-
log and digital approaches have been applied to realize
chaotic oscillators by using different kinds of electronic
devices such as common off-the-shelf electronic com-
ponents [75,76], integrated circuit technology [77,78],
microcontroller [79], or field-programmable gate array
(FPGA) [80–82].

Therefore, in this section, we will confirm the fea-
sibility of one of the proposed systems CL1–CL3 by
discussing its circuital realization by using the general
operational amplifier-based approach. In more details,
the system which has been chosen in this work is the
system CL1. The three state variables (x, y, z) of the
system CL1 have been rescaled as X = 10x,Y = 5y,
and Z = 10z, in order to avoid the limitations of the
components of electronic circuit. Therefore, the sys-
tem CL1 is transformed into the following equivalent
system:

Ẋ = 0.29Z

Ẏ = − Z

(
1.4

10
Y + Z2

200
+ YZ

100

)

Ż = X4

1000
+ 2X2Y 2

250
+ Y 4

62.5
− X3

100
+ 3XY2

25
(6)

Figure 9 shows the schematic of the circuit for real-
izing the system (6). As shown in this figure, the cir-
cuit includes nine resistors, three capacitors, four oper-
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Fig. 5 Four views of periodic behaviors of the system CL1: a period-1 oscillation (b = 1.65), b period-2 oscillation (b = 1.55), c
period-4 oscillation (b = 1.49), d period-8 oscillation (b = 1.48), for a = 0.29, c = 2 and d = 3

Fig. 6 Poincaré map of system CL1 in the y–z plane, for a =
0.29, b = 1.4, c = 2 and d = 3

ational amplifiers (TL081), and eleven analogmultipli-
ers (AD633). In this point, we should mention that the
most common nonlinearities in chaotic oscillators are
polynomials or the products of two state variables, as
it happened in system CL1. For this reason, nonlinear
circuits designed from a mathematical chaotic system
usually require analog multipliers, such as AD633. In
fact, despite the accuracy of analog devices, the non-
ideal effects are always present. The nonidealities of
the analog multipliers may lead to further nonlinear
terms, which will be considered as parasitic effects
[83]. However, in this work, the parasitic effects of the
analogmultipliers have been neglected because accord-
ing to our study, they do not affect significantly circuit’s
behavior in regard to the expected behavior from the
numerical simulation.
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Fig. 7 Bifurcation diagrams of a z versus c and b z versus d, of
the system CL1

ByapplyingKirchhoff’s circuit laws into thedesigned
circuit, we get the following circuital equation:

Ẋ = 1

RC

(
R

R1
Z

)

Ẏ = 1

RC

(
− R

R210V
YZ − R

R3100V
Z3

− R

R4100V 2 YZ
2
)

Ż = 1

RC

(
R

R51000V 3 X
4 + R

R61000V 3 X
2Y 2

+ R

R71000V 3 Y
4 − R

R8100V 2 X
3

+ R

R9100V 2XY
2
)

(7)

In system (7), X , Y , and Z correspond to the volt-
ages on the integrators (U2–U4), respectively, while
the power supply is ± 15VDC. System (7) is normal-
ized by using τ = t/RC . It can thus be suggested that

Fig. 8 Lyapunov exponents of the system CL1, by varying a the
parameter c and b the parameter d

system (7) is equivalent to system (6), with R
R1

= 0.29,
R
R2

= 1.4, R
R3

= 1
2 ,

R
R4

= 1, R
R5

= 1, R
R6

= 8,
R
R7

= 16, R
R8

= 1, and R
R9

= 12. So, the values of
circuit components are: R = 10 k�, R1 = 66.666 k�,
R2 = 7.143 k�, R3 = R4 = R5 = R8 = 1 k�,
R6 = 12.5 k�, R7 = 0.625 k�, R9 = 0.833 k�, and
C1 = C2 = C3 = C = 1 nF. The designed circuit
has been implemented in Multisim, and PSpice results
are reported in Fig. 10. It is easy to see the agreement
between the circuit’s simulation results (Fig. 10) and
numerical results (Fig. 2).

5 Engineering application (RNG design and image
encryption)

In this section, an RNG algorithm is designed using
the developed chaotic systems, and the random num-
bers obtained from the RNG algorithm are applied to
NIST-800-22 [84] randomness tests. Then, an image
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Fig. 9 Schematic of the circuit including nine resistors, three capacitors, four operational amplifiers, and eleven analog multipliers.
The power supplies of all operational amplifiers and analog multipliers are ± 15VDC
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Fig. 10 PSpice chaotic
attractors of the designed
circuit in a X -Y plane, b
X -Z plane, and c Y -Z plane
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Fig. 10 continued

encryption algorithm with random bit sequences gen-
erated by the RNG algorithm is presented, and image
encryption application is performed. Tests have been
conducted to demonstrate the level of security of the
image encryption process performed.

5.1 Design of RNG algorithm and NIST tests results

The random bit sequences to be used in the encryp-
tion process are very important for the security of the
encryption. Chaotic systems are widely used in random
number generation because of their rich dynamics. The
design steps of the RNG algorithm are given below.

Step 1 Enter initial conditions and system parame-
ters for each chaotic system
CL1 ⇒ (−0.54, −0.69, 0.37), CL2 ⇒ (−0.29,
0.37, 0.2), CL3 ⇒ (0.19, 0.29, −0.34);
Step 2 Determination of sampling interval (�h =
0.5);
Step 3 Analysis of chaotic system using RK4 algo-
rithm;
Step 4 Using the sampling step interval, obtain the
float value from the analyzed system;

Step 5 Convert 32-bit binary value to float value;
Step 6 Selecting the LSB-10 bit from the 32-bit
number array and adding it to the random number
sequence;
Step 7 For each phase until a 1 million-bit number
sequence is obtained, repeat range step 3–6;
Step 8BitwiseXORoperation of 1M. bit sequences
generated for each phase;
Step 9 Applying NIST tests to the obtained 1 M.
random bit sequences;

The RNG algorithm described above is applied sep-
arately for each chaotic system, and NIST tests are
applied by obtaining different random bit sequences
from each chaotic system. NIST 800-22 tests are used
to determine the randomness degrees of random bit
sequences. In NIST 800-22 tests, random number
sequences are subjected to 16 different tests. To have
sufficient randomness of the sequence of bits, it must
pass all tests. Table 2 shows theNIST800-22 test results
of the bit sequences obtained from the XOR operation
of the random bit sequences obtained from the x, y, and
z phases of three different chaotic systems. According
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Table 2 NIST-800-22 test results of RNGs based on CL systems

Statistical Tests CL1 CL2 CL3 Result

Frequency (monobit) test 0.520873 0.17446 0.68768 Succesful

Block-frequency test 0.76462 0.68078 0.22397 Succesful

Cumulative-sums test 0.63380 0.13966 0.63380 Succesful

Runs test 0.29444 0.56721 0.78088 Succesful

Longest-run test 0.71467 0.20211 0.87729 Succesful

Binary matrix rank test 0.94092 0.18814 0.32573 Succesful

Discrete Fourier transform test 0.66624 0.15227 0.71357 Succesful

Nonoverlapping templates test 0.783508 0.04629 0.08552 Succesful

Overlapping templates test 0.63813 0.34304 0.61684 Succesful

Maurer’s universal statistical test 0.06464 0.12314 0.74249 Succesful

Approximate entropy test 0.67279 0.62586 0.59645 Succesful

Random-excursions test (x = − 4) 0.98268 0.93372 0.67386 Succesful

Random-excursions variant test (x = − 9) 0.70965 0.165966 0.75193 Succesful

Serial test-1 0.17813 0.633643 0.70001 Succesful

Serial test-2 0.30113 0.615642 0.66190 Succesfull

Linear complexity test 0.94499 0.01083 0.62377 Succesfull

to the test results, the bit sequences obtained from each
chaotic system have passed all tests.

5.2 Image encryption algorithm and its applications

After the RNG algorithm design, the encryption pro-
cess is performed using the obtained random bit
sequences. The image pixel values to be encrypted in
the encryption algorithm are converted into a binary bit
sequence. With these values, bit sequences obtained
from the developed RNG algorithm are subjected to
XOR processing and encryption is performed. Three
different encryption processes have been performed
with random bit sequences obtained from each chaotic
system. In Fig. 11a, 256 * 256 size pepper.jpg origi-
nal image is shown. Fig. 11b–d shows the results of
cryptography performed with random bit sequences
fromCL1,CL2, andCL3 chaotic systems, respectively.
Figure 11e shows the decrypted image resulting from
decryption. Comparing the results in Fig. 11, it can be
said that the encryption and decryption processes have
been successfully performed for all the processes.

5.3 Security analysis results

In this section, the security analysis results of the
encryption processes are presented. Security analy-

sis reveals the quality of the encryption process. His-
togram, correlation, entropy, and linear-differential
attack (NPCR–UACI) analyses of cryptographic oper-
ations are performed in security analysis. Firstly, his-
togram distributions of cryptographic processes are
examined. Figure 12 shows histogram distribution
graphs of original, encrypted, and decrypted pictures.
Following the encryption process, the number of pixel
values in the image is almost equal, indicating that a
good encryption is being performed. When the results
in Fig. 12 are examined, it is seen that the encryption
results of four different systems have a good histogram
distribution.

Correlation coefficient analysis [85] examines the
relationship between random variables in the encryp-
tion process. This relationship should not be linear. The
correlation coefficient is calculated using the following
equation. In the equation, x and y represent the values
of two adjacent pixels in the image, and N is the number
of selected pixel pairs.

E(x) = 1

N

N∑
i=1

xi ,

D(x) = 1

N

N∑
i=1

(xi − E(x))2,
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Fig. 11 a Original image b CL1 encrypted image c CL2 encrypted image d CL3 encrypted image e decrypted image

cov(x, y) = 1

N

(
N∑
i=1

(xi − E(x))(yi − E(y))

)
,

rxy = cov(x, y)√
D(x)D(y)

. (8)

The correlation graphs of the original and decrypted
image are shown in Fig. 13a and f, respectively. These
two graphs show that they are the same. Figure 13
shows the correlation distribution graphs of the encryp-
tion processes. Table 3 shows the correlation coefficient
values of the encryption processes. When the graphs
and the correlation coefficients are evaluated together,
it is seen that the encryption processes have a good
correlation distribution.

The complexity of the encrypted data is another
criterion that gives information about the quality
of the encryption. In information entropy analysis,
the complexity of the encrypted data is determined.
The formula used in information entropy analysis is

given below. The optimal information entropy value
is accepted as 8 [86]. The closer the information is
to the entropy value of 8, the better the quality of the
encryption. In Table 3, information entropy values of
all encryption processes are given. It seems that all of
these values are very close to 8.

ShanEn(x) = −
N∑
i=1

(pi (x))
2(log2 pi (x))

2. (9)

Number of pixels change rate (NPCR) and unified aver-
age changing intensity (UACI) [87] are cryptanalysis
methods that are used to detect the resilience of the
encryption process to differential attack attacks. The
relation between the original and encrypted image is
determined by the NPCR method. The equations used
for NPCR calculation are given below. TheNPCR opti-
mal value is determined to beNPCRopt = 99.61% [88].
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Fig. 12 The results of histogram analysis, a original image, b CL1 encrypted image, c CL2 encrypted image, d CL3 encrypted image,
e decrypted image

Fig. 13 The results of correlation analysis, a original image, b CL1 encrypted image, c CL2 encrypted image, d CL3 encrypted image,
e decrypted image
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Table 3 The security analysis results of encryption operations

CL1 CL2 CL3

Information entropy 7.9558 7.9557 7.9538

Correlation 0.5197 0.5204 0.5176

NPCR 99.6353 99.5865 99.5789

UACI 29.5263 29.5724 29.7033

Table 3 shows that the NPCR values of the encryption
processes performed in the study are very close to the
optimum value.

NPCR(A, B) =
⎛
⎝∑

i, j

D(i, j)/N

⎞
⎠ × 100%

D(i, j) =
{
1 if A(i, j) �= B(i, j)
0 if A(i, j) = B(i, j)

(10)

The equation used to calculate the UACI value, which
expresses the average intensity between two images,
is given below. UACI optimal value is determined as
UACIopt = 33.46% [88].When the UACI values of the
encryption processes in Table 3 are examined, it is seen
that these values are very close to the optimal values.

UACI(A, B)

= 1

N

⎛
⎝∑

i, j

(|A(i, j) − B(i, j)|) /2L − 1

⎞
⎠ × 100%

(11)

Remark 1 It is very important to show that the gen-
erated chaotic systems can be applied to engineering
problems aswell as the production, analysis, and exam-
inationof dynamic behaviors of chaotic systems. In par-
ticular, chaotic systems are widely used in the design of
random number generators and data security. However,
there are many studies that only refer such applications
[16–18,46,73,84,85,88]. In this study, RNGand image
encryption applications were performed in this section
to demonstrate the usefulness of different chaotic sys-
tems (CL1, CL2 and CL3) in engineering applications,
and good enough results were obtained. Consequently,
it was shown that the proposed chaotic systems can be
employed in engineering applications.

6 Conclusion

In this paper, a new class of three-dimensional
autonomous chaotic systems with equilibrium points
like a three-leaved clover is presented. Dynamical
specifications of these chaotic systems are demon-
strated by the bifurcation diagrams, Lyapunov expo-
nents, Kaplan-Yorke dimension, and Poincaré map.
These chaotic flows belong to the recently proposed
class of chaotic systems with hidden attractors. We
hope that this paper can stimulate for the further study
on chaotic systems with infinite number of equilibrium
points like a three-leaved clover. A newRNGalgorithm
is designed using chaotic systems developed in the
study, andNIST800-22 randomness tests are applied to
randombit sequences generated by theRNGalgorithm.
It has been found that all random bit sequences gener-
ated have high randomness and all NIST tests pass.
Image encryption with random bit sequences is per-
formed, and security analysis of the encryption process
is performed. When security analysis results are evalu-
ated, it is concluded that secure encryption is performed
with bit sequences with high randomness. As a future
work, the real circuit of the proposed system, due to its
rich dynamical behavior, will be built for using it in a
real “chaotic” application (encryption scheme). More-
over, it should be noted that the powerful robust control
approaches such as robust tracking and model follow-
ing [89–95], robust PID feedback [96,97], disturbance-
observer-based robust control [98–101], robust linear
matrix inequality (LMI) [102–106], robust H∞ con-
trol [107–109], sliding mode control [110–118], adap-
tive robust fuzzy control [119–124], terminal sliding
mode control [125–131], and robust backstepping con-
trol [132–134] can be employed for the control or syn-
chronization of this class of chaotic systems in the
future researches.
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69. ŞAHİN, S., GÜZELİŞ, C.: A dynamical state feedback
chaotification method with application on liquid mixing. J.
Circuits, Syst. Comput. 22(07), 1350059 (2013)

70. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: A chaotic
path planning generator for autonomous mobile robots.
Robot. Auton. Syst. 60(4), 651–656 (2012)

71. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Image
encryption process based on chaotic synchronization phe-
nomena. Sig. Process. 93(5), 1328–1340 (2013)

123

https://doi.org/10.1177/0142331217731617
https://doi.org/10.1177/0142331217731617
https://doi.org/10.1177/1077546317740021
https://doi.org/10.1177/1077546317740021


New class of chaotic systems with equilibrium points like a three-leaved clover 955

72. Wang, B., Xu, H., Yang, P., et al.: Target detection and
ranging through lossy media using chaotic radar. Entropy
17(4), 2082–2093 (2015)

73. Fatemi-Behbahani, E., Ansari-Asl, K., Farshidi, E.: A new
approach to analysis and design of chaos-based random
number generators using algorithmic converter. Circuits,
Syst. Signal Process. 35(11), 3830–3846 (2016)

74. Yalcin, M.E., Suykens, J.A., Vandewalle, J.: True random
bit generation from a double-scroll attractor. IEEE Trans.
Circuits Syst. I Regul. Pap. 51(7), 1395–1404 (2004)

75. Elwakil, A., Ozoguz, S.: Chaos in pulse-excited resonator
with self feedback. Electron. Lett. 39(11), 831–833 (2003)

76. Piper, J.R., Sprott, J.C.: Simple autonomous chaotic cir-
cuits. IEEE Trans. Circuits Syst. II Express Briefs 57(9),
730–734 (2010)

77. Trejo-Guerra, R., Tlelo-Cuautle, E., Jimenez-Fuentes,
J.M., et al.: Integrated circuit generating 3-and 5-scroll
attractors. Commun. Nonlinear Sci. Numer. Simul. 17(11),
4328–4335 (2012)

78. Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, M.,
et al.: Multiscroll floating gate-based integrated chaotic
oscillator. Int. J. Circuit Theory Appl. 41(8), 831–843
(2013)

79. Pano-Azucena, A.D., Rangel-Magdaleno, J.J., Tlelo-
Cuautle, E., et al.: Arduino-based chaotic secure communi-
cation system using multi-directional multi-scroll chaotic
oscillators. Nonlinear Dyn. 87(4), 2203–2217 (2017)

80. Koyuncu, I., Ozcerit, A.T., Pehlivan, I.: Implementation of
FPGA-based real time novel chaotic oscillator. Nonlinear
Dyn. 77(1–2), 49–59 (2014)

81. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena,
A.D., et al.: FPGA realization of multi-scroll chaotic oscil-
lators. Commun. Nonlinear Sci. Numer. Simul. 27(1), 66–
80 (2015)

82. Tlelo-Cuautle, E., Pano-Azucena, A.D., Rangel-
Magdaleno, J.J., et al.: Generating a 50-scroll chaotic
attractor at 66 MHz by using FPGAs. Nonlinear Dyn.
85(4), 2143–2157 (2016)

83. Buscarino, A., Corradino, C., Fortuna, L., et al.: Non-
ideal behavior of analog multipliers for chaos generation.
IEEE Trans. Circuits Syst. II Express Briefs 63(4), 396–
400 (2016)

84. Rukhin, A., Soto, J., Nechvatal, J., et al.: A Statistical Test
Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications. Booz-Allen and Hamilton
Inc, Mclean (2001)

85. Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption
using chaotic logisticmap. ImageVis. Comput. 24(9), 926–
934 (2006)

86. Shannon, C.E.: Communication theory of secrecy systems.
Bell Labs Tech. J. 28(4), 656–715 (1949)

87. Biham, E., Shamir, A.: Differential cryptanalysis of DES-
like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

88. Wang, Y., Wong, K.W., Liao, X., et al.: A chaos-based
image encryption algorithm with variable control parame-
ters. Chaos, Solitons Fractals 41(4), 1773–1783 (2009)

89. Mobayen, S., Majd, V.J.: Robust tracking control method
based on composite nonlinear feedback technique for lin-
ear systems with time-varying uncertain parameters and
disturbances. Nonlinear Dyn. 70(1), 171–180 (2012)

90. Mobayen, S.: Robust tracking controller for multivariable
delayed systems with input saturation via composite non-
linear feedback. Nonlinear Dyn. 76(1), 827–838 (2014)

91. Mobayen, S.: Finite-time robust-tracking and model-
following controller for uncertain dynamical systems. J.
Vib. Control 22(4), 1117–1127 (2016)

92. Mobayen, S.: Design of a robust tracker and disturbance
attenuator for uncertain systems with time delays. Com-
plexity 21(1), 340–348 (2015)

93. Golestani,M.,Mobayen, S., Tchier, F.:Adaptivefinite-time
tracking control of uncertain non-linear n-order systems
with unmatched uncertainties. IET Control Theory Appl.
10(14), 1675–1683 (2016)

94. Mobayen, S., Tchier, F.: A novel robust adaptive second-
order sliding mode tracking control technique for uncer-
tain dynamical systems with matched and unmatched dis-
turbances. Int. J. Control Autom. Syst. 15(3), 1097–1106
(2017)

95. Mobayen, S., Tchier, F., Ragoub, L.: Design of an adaptive
tracker for n-link rigid roboticmanipulators basedon super-
twisting global nonlinear sliding mode control. Int. J. Syst.
Sci. 48(9), 1990–2002 (2017)

96. Aguilar-Lopez, R., Martinez-Guerra, R.: Partial synchro-
nization of different chaotic oscillators using robust PID
feedback. Chaos, Solitons Fractals 33(2), 572–581 (2007)

97. Zhang, H., Shi, Y., Mehr, A.S.: Robust static output feed-
back control and remote PID design for networked motor
systems. IEEETrans. Industr. Electron. 58(12), 5396–5405
(2011)

98. Chen, M., Wu, Q., Jiang, C.: Disturbance-observer-based
robust synchronization control of uncertain chaotic sys-
tems. Nonlinear Dyn. 70(4), 2421–2432 (2012)

99. Lin, J.-S., Liao, T.-L., Yan, J.-J., Yau, H.-T.: Synchro-
nization of unidirectional coupled chaotic systems with
unknown channel time-delay: adaptive robust observer-
based approach. Chaos, Solitons Fractals 26(3), 971–978
(2005)

100. Aguilar-López, R., Martínez-Guerra, R.: Synchronization
of a class of chaotic signals via robust observer design.
Chaos, Solitons Fractals 37(2), 581–587 (2008)

101. Chen, M., Shao, S.-Y., Shi, P., Shi, Y.: Disturbance-
observer-based robust synchronization control for a class
of fractional-order chaotic systems. IEEE Trans. Circuits
Syst. II Express Briefs 64(4), 417–421 (2017)

102. Mobayen, S.: Design of LMI-based slidingmode controller
with an exponential policy for a class of underactuated sys-
tems. Complexity 21(5), 117–124 (2016)

103. Majd, V.J.,Mobayen, S.: An ISM-basedCNF tracking con-
troller design for uncertainMIMO linear systemswithmul-
tiple time-delays and external disturbances.NonlinearDyn.
80(1–2), 591–613 (2015)

104. Mobayen, S.: An LMI-based robust tracker for uncertain
linear systems with multiple time-varying delays using
optimal composite nonlinear feedback technique. Nonlin-
ear Dyn. 80(1–2), 917–927 (2015)

105. Mobayen, S.: Optimal LMI-based state feedback stabi-
lizer for uncertain nonlinear systems with time-varying
uncertainties anddisturbances.Complexity 21(6), 356–362
(2016)

106. Mobayen, S., Tchier, F.: An LMI approach to adaptive
robust tracker design for uncertain nonlinear systems with

123



956 S. Mobayen et al.

time-delays and input nonlinearities.NonlinearDyn. 85(3),
1965–1978 (2016)

107. Vafamand, N., Asemani, M.H., Khayatiyan, A.: A robust
L 1 controller design for continuous-time TS systems with
persistent bounded disturbance and actuator saturation.
Eng. Appl. Artif. Intell. 56, 212–221 (2016)

108. Asemani, M.H., Yazdanpanah, M.J., Majd, V.J., Golabi,
A.: H∞ control of TS fuzzy singularly perturbed systems
using multiple Lyapunov functions. Circuits, Syst. Signal
Process. 32(5), 2243–2266 (2013)

109. Asemani, M.H., Majd, V.J.: A robust H∞-tracking design
for uncertain Takagi–Sugeno fuzzy systems with unknown
premise variables using descriptor redundancy approach.
Int. J. Syst. Sci. 46(16), 2955–2972 (2015)

110. Mobayen, S.: Design of CNF-based nonlinear integral slid-
ing surface for matched uncertain linear systems with mul-
tiple state-delays.NonlinearDyn.77(3), 1047–1054 (2014)

111. Mobayen, S.:An adaptive chattering-free PID slidingmode
control based on dynamic sliding manifolds for a class of
uncertain nonlinear systems. Nonlinear Dyn. 82(1–2), 53–
60 (2015)

112. Mobayen, S., Baleanu, D.: Linear matrix inequalities
design approach for robust stabilization of uncertain non-
linear systems with perturbation based on optimally-tuned
global sliding mode control. J. Vib. Control 23(8), 1285–
1295 (2017)

113. Mobayen, S.: A novel global sliding mode control based
on exponential reaching law for a class of underactuated
systems with external disturbances. J. Comput. Nonlinear
Dyn. 11(2), 021011 (2016)

114. Mobayen, S., Tchier, F.: A new LMI-based robust finite-
time sliding mode control strategy for a class of uncertain
nonlinear systems. Kybernetika 51(6), 1035–1048 (2015)

115. Mobayen, S., Baleanu, D.: Stability analysis and controller
design for the performance improvement of disturbed non-
linear systems using adaptive global sliding mode control
approach. Nonlinear Dyn. 83(3), 1557–1565 (2016)

116. Aghababa, M.P.: Robust stabilization and synchronization
of a class of fractional-order chaotic systems via a novel
fractional sliding mode controller. Commun. Nonlinear
Sci. Numer. Simul. 17(6), 2670–2681 (2012)

117. Mobayen, S., Tchier, F.: Design of an adaptive chattering
avoidance global sliding mode tracker for uncertain non-
linear time-varying systems. Trans. Inst. Meas. Control,
0142331216644046 (2016)

118. Mobayen, S., Tchier, F.: Robust global second-order slid-
ing mode control with adaptive parametertuning law for
perturbed dynamical systems. Trans. Inst. Meas. Control
(2017). https://doi.org/10.1177/0142331217708832

119. Liu, Y.-J., Zheng, Y.-Q.: Adaptive robust fuzzy control for
a class of uncertain chaotic systems. Nonlinear Dyn. 57(3),
431–439 (2009)

120. Hwang, E.-J., Hyun, C.-H., Kim, E., Park, M.: Fuzzy
model based adaptive synchronization of uncertain chaotic
systems: robust tracking control approach. Phys. Lett. A
373(22), 1935–1939 (2009)

121. Poursamad, A., Davaie-Markazi, A.H.: Robust adaptive
fuzzy control of unknown chaotic systems. Appl. Soft
Comput. 9(3), 970–976 (2009)

122. Wang, J., Qiao, G.-D., Deng, B.: Observer-based robust
adaptive variable universe fuzzy control for chaotic system.
Chaos, Solitons Fractals 23(3), 1013–1032 (2005)

123. Chen, C.-S., Chen, H.-H.: Robust adaptive neural-fuzzy-
network control for the synchronization of uncertain
chaotic systems. Nonlinear Anal. Real World Appl. 10(3),
1466–1479 (2009)

124. Mushage,B.O., Chedjou, J.C.,Kyamakya,K.:An extended
Neuro-Fuzzy-based robust adaptive sliding mode con-
troller for linearizable systems and its application on a new
chaotic system. Nonlinear Dyn. 83(3), 1601–1619 (2016)

125. Mobayen, S.: Fast terminal sliding mode controller design
for nonlinear second-order systems with time-varying
uncertainties. Complexity 21(2), 239–244 (2015)

126. Mobayen, S.: Fast terminal sliding mode tracking of non-
holonomic systems with exponential decay rate. IET Con-
trol Theory Appl. 9(8), 1294–1301 (2015)

127. Mobayen, S.: Finite-time tracking control of chained-form
nonholonomic systemswith external disturbances based on
recursive terminal sliding mode method. Nonlinear Dyn.
80(1–2), 669–683 (2015)

128. Mobayen, S., Javadi, S.: Disturbance observer and finite-
time tracker design of disturbed third-order nonholonomic
systems using terminal sliding mode. J. Vib. Control 23(2),
181–189 (2017)

129. Mobayen, S.: An adaptive fast terminal sliding mode con-
trol combinedwith global slidingmode scheme for tracking
control of uncertain nonlinear third-order systems. Nonlin-
ear Dyn. 82(1–2), 599–610 (2015)

130. Mobayen, S., Tchier, F.: Nonsingular fast terminal sliding-
mode stabilizer for a class of uncertain nonlinear systems
based on disturbance observer. Sci. Iran. 24(3), 1410–1418
(2017)

131. Bayat, F.,Mobayen, S., Javadi, S.: Finite-time tracking con-
trol of nth-order chained-form non-holonomic systems in
the presence of disturbances. ISA Trans. 63, 78–83 (2016)

132. Ji, D., Jeong, S., Park, J.H.,Won, S.: Robust adaptive back-
stepping synchronization for a class of uncertain chaotic
systems using fuzzy disturbance observer. Nonlinear Dyn.
69(3), 1125–1136 (2012)

133. Peng, C.-C., Chen, C.-L.: Robust chaotic control of Lorenz
system by backstepping design. Chaos, Solitons Fractals
37(2), 598–608 (2008)

134. Peng, Y.-F.: Robust intelligent backstepping tracking con-
trol for uncertain non-linear chaotic systems using H∞
control technique. Chaos, Solitons Fractals 41(4), 2081–
2096 (2009)

123

https://doi.org/10.1177/0142331217708832

	New class of chaotic systems with equilibrium points like a three-leaved clover
	Abstract
	1 Introduction
	2 Mathematical model of the chaotic system
	3 Discussions
	4 Circuit realization
	5 Engineering application (RNG design and image encryption)
	5.1 Design of RNG algorithm and NIST tests results
	5.2 Image encryption algorithm and its applications
	5.3 Security analysis results

	6 Conclusion
	Acknowledgements
	References




