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Abstract In this workwe study the pattern of bifurca-
tions and intermittent-chaos of non-Newtonian couple-
stress shallow fluid layer subject to heating from below.
The couple-stress parameter delays onset of convec-
tion, synchronizes chaotic behavior, and decreases the
heat transfer . Some global aspects of the dynam-
ics such as homoclinic bifurcations and transition to
chaos are explored. The effects of particle size on
the intermittent-chaos regime at particular normalized
Rayleigh number, say r = 166.1, are investigated.With
the increase in couple-stress parameter, the present
Lorenz-like system synchronizes to a steady state via a
series of periodic solutions interspersed with intervals
of chaotic behaviors.

Keywords Couple-stress fluid convection · Hopf
bifurcation · Homoclinic explosion · Intermittent-
chaos · Synchronization

List of symbols

V Velocity vector of the couple-stress fluid
T Temperature field
T0 Constant temperature at the lower surface
ΔT Temperature difference of two surfaces
p Fluid pressure
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t, τ Time
g Acceleration due to gravity
h Depth of the fluid layer
μ Viscosity of the fluid
μ′ Couple-stress viscosity
κ Thermal diffusion coefficient
ρ Density of the fluid
ρ0 Reference density of the fluid
k̂ Unit vector along z-axis
α Thermal expansion coefficient
ψ Stream function
θ Temperature deviation from conduction state

temperature
Ra Thermal Rayleigh number
σ Prandtl number
cs Couple-stress parameter
k Wave number
r Normalized Rayleigh number
b A geometrical parameter (0 < b < 4)
l1 First Lyapunov quantity

1 Introduction

Investigation on the pattern of convection is very
important for understanding underlying mechanism of
chaotic evolution and its intermittent behavior. Over
several decades thermal convection for Newtonian flu-
ids has been extensively studied and focused mainly on
the stability of the fluid layer at the onset of convec-
tion [1,2]. A new direction of research in this field has
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been emerged after the pioneering work of Lorenz [3]
who used the Rayleigh–Bénard convection problem to
model equations for weather forecasting. He showed
that depending upon the Rayleigh number, the dimen-
sionless ratio of the destabilizing buoyancy force to
the stabilizing viscous force, the low-dimensional sys-
tem exhibits random, aperiodic behaviors. The system
undergoes a sequence of local and global bifurcations
at the transitional regime.

The understanding of convection patterns, bifurca-
tions, onset of chaotic motion and its control depend-
ing upon material parameters of non-Newtonian flu-
ids is important for applications in science and tech-
nology. Among available non-Newtonian fluid mod-
els, the couple-stress fluid model is very simple and
easy for analysis. This kind of fluid is realistic in dif-
ferent aspects. The couple-stress and also micropo-
lar fluids have widespread applications in medical and
engineering sciences such as lubrication technology of
loaded bearings [4–8], peristaltic transport of bio-fluids
in conduits [9–12], blood flow through stenotic arteries
[13,14], extrusion of polymer fluids (see Refs. [15–17]
for micropolar fluids), and cooling of metallic plate in a
bath. The effects of couple-stresses on fluid flows were
extensively studied by Stokes [18] in different geome-
tries. The main feature of fluid couple-stresses is to
introduce size-dependent effects on flows based on the
material constant and dynamic viscosity, which are not
present in classical viscous fluid models.

The stability of a layer of couple-stress fluid heated
from below was first studied by Ahmadi [19]. Using
linear stability theory, Banyal [20] derived a nec-
essary condition for the onset of stationary convec-
tion. A global nonlinear stability analysis for thermo-
convection of a couple-stress fluid has been studied by
Sunil et al. [21]. They showed that the critical Rayleigh
numbers at the onset of convection for both linear and
nonlinear stability analysis are exactly the same and
the couple-stress fluid is thermally more stable than
the ordinary fluid. Recently, Jawdat et al. [22] studied
numerically the effects of couple-stresses on chaotic
convection. The convection of couple-stress fluid is
delayed with increase in particle size in the fluid. At the
onset of convection there is a direct proportion between
the Rayleigh number and the couple-stress parameter
(square of the dimensionless ratio of the particle size
to the depth of the fluid layer).

The motivation of the present study is to focus the
effects of particle size on convection and transition to

chaos of couple-stress fluids subject to heating from
below. Thiswill be useful in understanding engineering
transports such as heat transfer in fluidswith long-chain
molecules, melting and solidification of liquid crystals,
polymeric suspensions, and lubrication technology
under the framework of microcontinuum hypothesis
which enables to assume each macrovolume element
to contain a microstructure, allowing polar effects such
as the presence of couple-stresses and body couple.

We explore the effects of particle size on the thermo-
convective motion of a horizontal couple-stress fluid
layer by employing a low-dimensional approach. This
leads to three-dimensional Lorenz-like model equa-
tions with four control parameters, namely the Prandtl
number σ , the normalized Rayleigh number r , the
modified couple-stress parameter c, and a geometrical
parameter b. The effects of the couple-stress parameter
on the stability, bifurcations, transition to chaos, and
intermittent-chaos are investigated. The first Lyapunov
quantity determines the stability of the bifurcating peri-
odic orbit emerging via the Hopf bifurcation. How the
system reaches the convection-less state with increas-
ing values of couple-stress parameter is shown graphi-
cally and analyzed. Analysis reveals that the synchro-
nization of chaos to a steady state takes place through
a series of periodic motions interspersed with chaotic
behavior and non-stable limit cycle.

2 Convection model for couple-stress fluid

We consider gravity-driven thermal convection of a
shallow, horizontally unbounded layer of an incom-
pressible couple-stress fluid of depth h confined
between two thermally conducting stress-free paral-
lel planes subject to heating of the lower plane. A
Cartesian coordinate system (x, y, z) is adopted with
x-axis along the lower surface and z-axis vertically
upward. Let T0 + ΔT and T0 be the temperature on
the lower and upper surfaces, respectively. A schematic
diagram of the flow domain with boundary conditions
and other relevant thermo-physical parameters with
clockwise and anticlockwise convection rolls is dis-
played in Fig. 1.

Then, the relevant hydrodynamic motion and heat
transfer equations are written as [1,18]

ρ0
dV
dt

= −∇ p +
(
μ − μ′∇2

)
∇2V − ρgk̂ , (1)
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Fig. 1 A physical sketch of
thermo-fluid convection
problem in a shallow fluid
layer of depth h depicting
convective rolls. The upper
and lower boundaries are
held at an isothermal
temperatures T0 and
T0 + ΔT , respectively

dT

dt
= κ∇2T, (2)

where d/dt ≡ ∂/∂t + (V ·∇). By adopting the Boussi-
nesq approximation, the density variation in the buoy-
ancy term is taken as ρ = ρ0 [1 − α(T − T0)], and the
incompressibility condition is ∇ · V = 0.

Taking vector curl of (1) the pressure term is dropped
out. In two-dimensional case all flow variables become
independent of the y coordinate. Then, the velocity
vector can be expressed in terms of stream function
ψ(x, z, t) as V = (−∂ψ/∂z, 0, ∂ψ/∂x). Introducing
the layer depth h as the length scale, h2/κ as the time
scale and ΔT as the temperature scale, the evolution
equations for the perturbation field to the steady state
of Eqs. (1) and (2) are written in dimensionless form
as

∂

∂t

(
∇2ψ

)
+ ∂

(∇2ψ,ψ
)

∂(z, x)

= σ
(
1 − cs∇2

)
∇4ψ + σ Ra

∂θ

∂x
, (3)

∂θ

∂t
+ ∂(θ, ψ)

∂(z, x)
= ∂ψ

∂x
+ ∇2θ, (4)

where θ represents the (dimensionless) temperature
deviation from the conducting state temperature and
∂( f1, f2)
∂(z,x) denotes

(
∂ f1
∂z

∂ f2
∂x − ∂ f1

∂x
∂ f2
∂z

)
for arbitrary f1 and

f2.
In the above equations, the dimensionless param-

eters are σ = μ/(ρ0κ) the Prandtl number, Ra =
ρ0gαΔTh3/(κμ) theRayleighnumber, and the couple-
stress parameter cs = a2, where a = d/h and
d = (μ′/μ)1/2. The quantity d has the dimension of
length and therefore can be associated with the molec-
ular length scale of the couple-stress fluid. The dimen-

sionless quantity a represents the ratio of the particle
size to the depth of the fluid layer. Thus, for a particular
fluid layer depth, the effects of couple-stresses increase
with the particle size in the fluid. However, the molec-
ular size and flow length scale must have some limi-
tations and do not exceed the limitation of continuum
theory for constitutive equations.

Nowwe shall precise the boundary conditions of this
thermo-convective problem. Since the two bounding
surfaces are stress-free, the boundary conditions for
the dimensionless stream function ψ are written as

ψ = ∂2ψ

∂z2
= 0 on z = 0, 1. (5)

In addition, since the temperature is fixed on the bound-
aries, we have

θ = 0 on z = 0, 1. (6)

For spatiotemporal evolution, the variables ψ and θ

are expanded in Fourier series of x and z, following
Lorenz [3], as

ψ(x, z, t) =
√
2Λ
πk X (τ ) sin (kx) sin (π z)

θ(x, z, t) =
√
2Λ3

πk2Ra
Y (τ ) cos (kx) sin (π z)

− Λ3

πk2Ra
Z(τ ) sin (2π z)

⎫⎪⎪⎬
⎪⎪⎭

(7)

where Λ = π2 + k2, k being the horizontal wavenum-
ber, and τ = Λt is the rescaled time variable. Obvi-
ously, the boundary conditions (5) and (6) are satisfied.
Projecting Eqs. (3) and (4) onto the modes of Eq. (7),
we obtain the following three-dimensional nonlinear
system
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Ẋ = σ(Y − cX)

Ẏ = r X − Y − X Z
Ż = XY − bZ

⎫⎬
⎭ (8)

where dot denotes derivativewith respect to dimension-
less time τ , r = Ra/Rac is the normalized Rayleigh
number with Rac = Λ3/k2, c = 1+Λcs the modified
couple-stress parameter, and b = 4π2/Λ a geometrical
parameter lying in 0 < b < 4. In Eq. (8), the mode X
represents the velocity field and the other two modes
Y and Z describe, respectively, the change in the tem-
perature along the horizontal and vertical directions.
In the absence of fluid couple-stresses (i.e., cs = 0),
Eq. (8) reduces to Lorenz system [3] corresponding
to Newtonian fluid. Note that very recently Layek and
Pati [23] derived afive-dimensional generalizedLorenz
system for hyperbolic heat propagation in Newtonian
fluid media.

The present nonlinear system (8) possesses two
important properties. First, it is invariant under the
transformation (X,Y, Z) → (−X,−Y, Z). Second,
the flow divergence ∇ · (Ẋ , Ẏ , Ż) = −(1 + b + cσ)

is negative always. So, the system is dissipative and its
solutions are bounded in the phase space.

3 Bifurcations from the steady solutions

In this section, we study the stability and bifurca-
tions of the system (8) at its equilibrium or fixed
points. The equilibrium points (or constant solutions
or steady solutions) of (8) can be obtained by solv-
ing the equations Ẋ = 0, Ẏ = 0, Ż = 0, i.e.,
Y = cX , r X − Y − X Z = 0, XY = bZ , which, after
simplification, give a trivial solution E0 = (0, 0, 0)
and two symmetric non-trivial equilibrium solutions
E± = (±√

b(r − c)/c,±√
bc(r − c), r − c). Physi-

cally, the trivial solution E0 represents the conducting
state (state of no convection) of the couple-stress fluid
layer, while the non-trivial solutions E± correspond to
the steady convective state of the fluid layer.

The stability of the system (8) at the trivial equilib-
rium point E0 can be obtained by linearizing it about
E0 and taking trial solutions of the form exp (sτ). This
gives the characteristic equation

det

⎛
⎝

s + cσ −σ 0
−r s + 1 0
0 0 s + b

⎞
⎠ = 0. (9)

From Eq. (9), we have one characteristic root (eigen-
value) as s = −b and the other two eigenvalues satisfy

s2 + (1 + cσ)s + σ(c − r) = 0. (10)

The stability of E0 can be determined by the signs of
the eigenvalues. It is stable if all of the three eigenvalues
have negative real part; it is unstable if the real part of at
least one eigenvalue is positive. The system undergoes
a bifurcation at E0 if it has either a zero eigenvalue
or a pair of purely imaginary eigenvalues. Physically,
a bifurcation in the thermo-convective motion corre-
sponds to an onset of instability in the fluid layer.

Sinceb is positive, the eigenvalue s = −b is negative
always and so the onset of instability in the static solu-
tion E0 depends on the roots of Eq. (10) only. Setting
s = 0 in (10), an exchange of stability (onset of station-
ary convection) takes place at the normalized Rayleigh
number rp = c and it becomes rp = 1 for Newtonian
fluids (cs = 0). In this work, the parameters k and σ

are taken as π/
√
2 and 10, respectively. Then, b = 8/3

and rp = c = 1 + (3/2)π2cs . Since the roots of (10)
are always real, the system cannot exhibit overstable
motion (oscillatory onset of convection). So the onset
of instability sets in only via stationary modes (pitch-
fork bifurcation), when r increases rp. In the neighbor-
hood of the bifurcation point rp the system has three
steady solutions. One is the static solution E0 which
is always unstable for r > rp, and the other two are
the finite amplitude convective solutions E± existing
only when r > rp. Using normal form theory [24,25],
the non-trivial solutions are supercritical (stable) in the
neighborhood of the pitchfork bifurcation point.

For stability of the convective solutions E± beyond
rp, we consider only the positive solutions since they
are symmetric in nature. For linear stability of E+, we
first apply a small perturbation to E+ as follows:

x2 = X − x0, y2 = Y − cx0, z2 = Z − (r − c), (11)

where x0 = √
b(r − c)/c. Using (11) into Eq. (8), the

perturbation equations are obtained as

ẋ2 = σ y2 − cσ x2
ẏ2 = cx2 − y2 − x0z2 − x2z2
ż2 = cx0x2 + x0y2 − bz2 + x2y2

⎫⎬
⎭ (12)

with the origin as an equilibriumpoint. Linearizing (12)
about the origin and assuming exponential evolution in
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Chaotic thermal convection of couple-stress fluid layer 841

time for the perturbation admits the following cubic
equation for the eigenvalues

s3 + a1s
2 + a2s + a3 = 0, (13)

where a1 = 1 + b + cσ , a2 = br/c + σbc, and a3 =
2bσ(r − c).

Following Routh–Hurwitz stability criteria, the nec-
essary (but not sufficient) condition [26] for linear sta-
bility of E+ is that the quantities a1, a2, a3, and f
are all positive, where f = a1a2 − a3. Under this
condition, the eigenvalues from Eq. (13) have nega-
tive real part. The instability sets in when at least one
eigenvalue crosses the origin (for real eigenvalues) or a
pair of eigenvalues cross the imaginary axis (for com-
plex eigenvalues) to the positive half-plane. In the for-
mer case, the coefficient a3 must change its sign first,
whereas for the latter case the quantity f changes its
sign first [26].

Thus, depending on the quantities a3 and f one
can find the critical Rayleigh number at the onset of
instability in the convective solutions. Since r > c for
the convective solutions, we have a3 > 0 always. So,
the possibility of existence of instability now depends
on f alone. In this case, the system undergoes a
Hopf bifurcation in the neighborhood of E+ provided
the coefficients a j ( j = 1, 2, 3) satisfy the relation
a1a2 − a3 = 0, which gives the critical normalized
Rayleigh number at the onset of the Hopf bifurcation
as rh = σc2(3 + b + cσ)/(cσ − b − 1), provided
σ > (1 + b)/c. At the Hopf bifurcation point rh ,
the linearized system has a pair of purely imaginary
eigenvalues s± = ±iω (i = √−1 ) with the frequency

of oscillation ω =
√

2σbc(1+cσ)
cσ−b−1 . The third eigenvalue

s3 = −(1+b+cσ) is real and negative. Appearance of
Hopf bifurcation at r = rh indicates that an infinites-
imal perturbation to the steady convective state of the
fluid layer may result in oscillatory motion in the sys-
tem.

4 Sub- and supercritical Hopf bifurcations

By knowing how the solution E+ loses its stability via
Hopf bifurcation as r is increased through the critical
value rh , one can categorize the Hopf bifurcation into
two types, namely supercritical and subcritical Hopf
bifurcations. By supercritical Hopf bifurcation, it gen-

erally means that the bifurcation destabilizes the equi-
librium point E+ to a unique small-amplitude stable
limit cycle whose periodic orbit can be detected numer-
ically. On the other hand, for subcritical Hopf bifurca-
tion no such small-amplitude limit cycle will be cre-
ated after the bifurcation. In this case, E+ loses its
stability by absorbing a saddle limit cycle. A quan-
tity that determines the type of the Hopf bifurcation is
the first Lyapunov quantity, usually denoted by l1(see
Kuznetsov [27] for details). The Hopf bifurcation is
supercritical if l1 < 0 and subcritical when l1 > 0.
For l1 = 0, we have codimension-2 degenerate Hopf
bifurcation.

In order to determinewhether theHopf bifurcation is
sub- or supercritical we follow the technique described
in Hassard et al. [28] based on normal form theory.
First, we fix the parameter r at the Hopf bifurcation
point rh . The eigenvectors corresponding to the eigen-
values s+ = iω and s3 = −(1 + b + cσ) are obtained
as

e+ =
⎛
⎜⎝

1
c + i ω

σ
ω2−i(1+cσ)ω

σ x0

⎞
⎟⎠ and e3 =

⎛
⎜⎝

− σ
1+b
1

b(1+b+cσ)
(1+b)x0

⎞
⎟⎠ ,

respectively, where x0 =
√

b(1+cσ)(1+b+cσ)
(cσ−b−1) .

Let us now apply the transformation (x2, y2, z2)′ =
A(x1, y1, z1)′ to Eq. (12), where ‘′’ denotes transposi-
tion and the matrix A is given by

A = (Re e+,−Im e+, e3)

=
⎛
⎜⎝

1 0 − σ
1+b

c −ω
σ

1
ω2

σ x0
(1+cσ)ω

σ x0
b(1+b+cσ)

(1+b)x0

⎞
⎟⎠ .

This gives the following normalized system

ẋ1 = −ωy1 + F1(x1, y1, z1)
ẏ1 = ωx1 + F2(x1, y1, z1)
ż1 = −(1 + b + cσ)z1 + F3(x1, y1, z1)

⎫⎬
⎭ (14)

The functions F1, F2, and F3 in (14) are given by

F1(x1, y1, z1) = lx0
1 + b

P(x1, y1, z1)

− l(1 + cσ)

x0(1 + b)2
Q(x1, y1, z1),

F2(x1, y1, z1) = lx0(1 + b + cσ)

ω(1 + b)
P(x1, y1, z1)

+ l
ω2 + b(1 + b + cσ)

x0ω(1 + b)2
Q(x1, y1, z1),
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F3(x1, y1, z1) = lx0
σ

P(x1, y1, z1)

− l(1 + cσ)

(1 + b)σ x0
Q(x1, y1, z1),

where P , Q, and l are as follows:

P(x1, y1, z1) = {(1 + b)x1 − σ z1}
(cσ x1 − ωy1 + σ z1) ,

Q(x1, y1, z1) = {(1 + b)x1 − σ z1}{
(1 + b)ω2x1 + ω(1 + b)(1 + cσ)y1

+ bσ(1 + b + cσ)z1} ,

and l = 1/
(
ω2 + (1 + b + cσ)2

)
.

The normal form theory requires the evaluation of the
following quantities for Eq. (14),

g11 = 1

4

[
∂2F1
∂x21

+ ∂2F1
∂y21

+ i

(
∂2F2
∂x21

+ ∂2F2
∂y21

)]

= l

2
(α1 + iβ1),

g02 = 1

4

[
∂2F1
∂x21

− ∂2F1
∂y21

− 2
∂2F2

∂x1∂y1

+ i

(
∂2F2
∂x21

− ∂2F2
∂y21

+ 2
∂2F1

∂x1∂y1

)]

= l

2
(α2 + iβ2),

g20 = 1

4

[
∂2F1
∂x21

− ∂2F1
∂y21

+ 2
∂2F2

∂x1∂y1

+ i

(
∂2F2
∂x21

− ∂2F2
∂y21

− 2
∂2F1

∂x1∂y1

)]

= l

2
(α3 + iβ3),

G21 = 1

8

[
∂3F1
∂x31

+ ∂3F1
∂x1∂y21

+ ∂3F2
∂x21∂y1

+ ∂3F2
∂y31

+ i

(
∂3F2
∂x31

+ ∂3F2
∂x1∂y21

− ∂3F1
∂x21∂y1

− ∂3F1
∂y31

)]

= 0,

h11 = 1

4

(
∂2F3
∂x21

+ ∂2F3
∂y21

)

= l

2
α4,

h20 = 1

4

(
∂2F3
∂x21

− ∂2F3
∂y21

− 2i
∂2F3

∂x1∂y1

)

= l

2
(α4 + iβ4),

G110 = 1

2

[
∂2F1

∂x1∂z1
+ ∂2F2

∂y1∂z1

+ i

(
∂2F2

∂x1∂z1
− ∂2F1

∂y1∂z1

)]
= l

2
(α5 + iβ5),

G101 = 1

2

[
∂2F1

∂x1∂z1
− ∂2F2

∂y1∂z1

+ i

(
∂2F2

∂x1∂z1
+ ∂2F1

∂y1∂z1

)]
= l

2
(α6 + iβ6),

where α j , β j , j = 1, 2, . . . , 6 are given below

α1 = x0cσ − (1 + cσ)ω2/x0,

α2 = α1 − (1 + cσ)
(
ω2 + b(1 + b + cσ)

)
/x0

+ x0(1 + b + cσ),

α3 = α1 + (1 + cσ)
(
ω2 + b(1 + b + cσ)

)
/x0

− x0(1 + b + cσ),

α4 = x0c(1 + b) − ω2(1 + b)(1 + cσ)/(σ x0),

α5 = 2x0σ − 2bσ(1 + cσ)(1 + b + cσ)/(x0(1 + b)),

α6 = 2σ(1 + cσ)ω2/(x0(1 + b))

− 2x0cσ
2/(1 + b),

and

β1 = x0cσ(1 + b + cσ)/ω

+ ω(ω2 + b(1 + b + cσ))/x0,

β2 = β1 − ω(1 + cσ)2/x0 − x0ω,

β3 = β1 + ω(1 + cσ)2/x0 + x0ω,

β4 = ω(1 + b)(1 + cσ)2/(σ x0) + x0ω(1 + b)/σ,

β5 = − x0σ(cσ + b + 1)(cσ − b − 1)

ω(1 + b)

− σ
(
ω4 − b2(1 + b + cσ)2

)

x0ω(1 + b)

− x0ωσ

1 + b
− σω(1 + cσ)2

x0(1 + b)
,
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Chaotic thermal convection of couple-stress fluid layer 843

β6 = − x0σ(cσ + b + 1)(cσ − b − 1)

ω(1 + b)

− σ
(
ω4 − b2(1 + b + cσ)2

)

x0ω(1 + b)

+ x0ωσ

1 + b
+ σω(1 + cσ)2

x0(1 + b)
.

Now solving the equations s3w11 = −h11 and (s3 −
2iω)w20 = −h20, we have

w11 = l

2(1 + b + cσ)
α4,

and w20 = l

2
{
(1 + b + cσ)2 + 4ω2

} (α7 + iβ7),

where α7 = (1+b+cσ)α4 +2ωβ4 and β7 = (1+b+
cσ)β4 − 2ωα4. Using the above quantities, we obtain

g21 = G21 + 2G110w11 + G101w20

= l2

4(1 + b + cσ)
{
(1 + b + cσ)2 + 4ω2

}
×(α8 + iβ8),

where

α8 = 2
{
(1 + b + cσ)2 + 4ω2

}

α4α5 + (1 + b + cσ)(α6α7 − β6β7),

and β8 = 2
{
(1 + b + cσ)2 + 4ω2

}

α4β5 + (1 + b + cσ)(α6β7 + α7β6).

Finally, we calculate

C1(rh) = i

2ω

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+ g21

2

= l2

8

[
α8

(1 + b + cσ)(4ω2 + (1 + b + cσ)2)

− α1β3 + β1α3

ω
+ i

{
α1α3 − β1β3

ω

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0001

0.0002

0.0003

0.0004

cs

l 1

Fig. 2 Variation of the first Lyapunov quantity l1 with the
couple-stress parameter cs

− 2
(
α2
1 + β2

1

)
− α2

2 + β2
2

3

+ β8

(1 + b + cσ)(4ω2 + (1 + b + cσ)2)

}]
.

The nature of the Hopf bifurcation for the normalized
system (14) can be determined by the first Lyapunov
quantity [27]

l1(cs) = ReC1(rh)

ω

= l2

8

[
2(4ω2 + (1 + b + cσ)2)α4α5 + (1 + b + cσ)2(α4α6 − β4β6) + 2ω(1 + b + cσ)(β4α6 + α4β6)

ω(1 + b + cσ)(4ω2 + (1 + b + cσ)2)

−α1β3 + β1α3

ω2

]
. (15)

The stability of the Hopf bifurcation depends on the
sign of l1. The determination of the sign of l1 from
(15) is very difficult analytically because of its compli-
cated expression. So numerical simulations are desir-
able for the sign of l1 over the parameter range. The
variation of l1 with the couple-stress parameter cs is
displayed graphically in Fig. 2. As shown, the value of
l1 decreases with the increase in couple-stress parame-
ter cs , but it never reaches zero value. Hence, the Hopf
bifurcation at r = rh is always subcritical type, like in
Lorenz system. However, as cs is increased, the hard-
ness of the stability boundary at r = rh gradually
decreases (hard to soft bifurcations). The quantity rh
is increasing nonlinearly with couple-stress parameter
cs . So it delays the transition to chaotic convection.

5 Nonlinear behaviors: homoclinic explosion and
the transition to chaos

So far we have discussed the effects of couple-stress
parameter on the stability of the steady solutions and
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Fig. 3 The oscillatory
decaying phase trajectories
(projected onto the X–Y
plane) to the equilibrium
points E± for the
parameters values: a
r = 35, cs = 0.1 and b
r = 35, cs = 0.3
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Fig. 4 Existence of
homoclinic orbits for a
r = 43.4092, cs = 0.1, and
b r = 295.755, cs = 0.5
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local bifurcation scenarios for the Lorenz-like system
(8). In this section, we explore some global aspects of
the dynamics, viz. homoclinic bifurcation and the tran-
sition to chaos. In nonlinear dynamics, a homoclinic
bifurcation and the corresponding changes in dynam-
ics are crucially important. This global behavior leads
to change in deterministic dynamics from being robust
and predictable to being chaotic [29].

Consider the range of the normalizedRayleigh num-
ber r between rp and rh . Within this range, one can
find a point (say rs) beyond which all the trajectories
started near the origin on its unstable manifold decay
spirally toward one of the equilibrium points E±. The
trajectories on the positive half-space decay toward the
point E+, while those on the negative half-space decay
toward E− (Fig. 3 illustrates flow trajectories behav-
iors).

As r is increased, the amplitude of oscillation of
the flow trajectories becomes larger and larger with r
until it reaches a critical value, r0, beyond which the
trajectories that attracted to E+ now cross over this
point and move toward the point E− and vice versa.

An interesting feature is observed when r attains the
critical value r0. At this point, the trajectories started
near the origin on its unstable manifold attracted to its
stable manifold, creating a closed orbit surrounding the
point E+ or E−, which connects the origin with itself
(see Fig. 4). Such an orbit is called a homoclinic orbit.
The bifurcation associated with a homoclinic orbit at
the origin for r = r0 is known as the homoclinic bifur-
cation or ‘homoclinic explosion’ [30]. It is a global
bifurcation at the origin that cannot be revealed by the
linearization technique. Note that homoclinic bifurca-
tions play a role where the transition to chaos occurs
immediately for a critical value of the parameter (see
Broer and Takens [31] and references therein). The
values of r0 at the onset of the homoclinic bifurca-
tion are listed in Table 1 for increasing values of cs .
The critical value increases with the increase in cs ,
resulting in the delay of homoclinic bifurcation of the
system.

For r just above r0, the system has non-stable peri-
odic orbit surrounding either of the points E± in a
strange invariant set created through the homoclinic
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Table 1 Approximate values of r0 for increasing couple-stress
parameter cs

cs r0 (Critical value for homoclinic orbit)

0.0 13.926 (Lorenz system)

0.1 43.4092

0.2 87.102

0.3 143.98045

0.4 213.617

0.5 295.755

0.6 390.21273

0.7 496.855

0.8 615.576

0.9 746.2927

1.0 888.934

bifurcation. For r near r0, the periodic orbit is found to
pass very close to the origin. But it moves away from
the origin decreasing its period of oscillation with r .

Eventually, it shrinks to the equilibrium point E+ or
E− when r is increased to rh .

For the flow trajectory beyond the critical value for
homoclinic orbit, r0, we see that as r increases the tra-
jectory wanders randomly around the non-trivial equi-
librium points E±, eventually decays to either of them.
The average time interval of wandering is finite; it
expands with r . Finally, the time interval tends to infin-
ity when r attains another critical value r1(< rh). Fig-
ure 5a–c display the phase portrait on the X -Y plane
and time history (X versus τ ), which clearly indicate
the chaotic and decaying behaviors for three differ-
ent values of r at fixed value of cs . For r = r1, the
trajectory of the strange attractor wanders chaotically
around the points E±. It takes infinitely large time to
decay toward the equilibrium points. This phenomenon
of chaotic wandering before the onset of the subcritical
Hopf bifurcation was reported by Kaplan and Yorke
[32] and by Yorke and Yorke [33], and they termed it
as ‘preturbulence’ [32], or ‘metastable chaos’ [33].

Fig. 5 Phase portrait (on
X -Y plane) (left) and time
history (X vs. time τ )
(right) of the solution of (8)
for cs = 0.1 at different
reduced Rayleigh numbers
a r = 68, b r = 74, c
r = 76. As displayed, the
time interval of random
oscillation increases with r .
After the chaotic oscillation,
the flow trajectory decays
spirally to the equilibrium
point E−
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Table 2 Approximate values of r1 for increasing couple-stress
parameter cs

cs r1 (Critical value for strange attractor)

0.0 24.06 (Lorenz system)

0.1 76.8407

0.2 153.45

0.3 263.04

0.4 380.95

0.5 544.41

0.6 742.698

The numerically computed values of r1 (listed in
Table 2) increase with the couple-stress parameter cs ,
which clearly indicates the suppression effects of fluid
couple-stresses on the chaotic evolution of the present
system.

6 Intermittency, intermittent-chaos, and
synchronization of couple-stress fluid convection

Intermittency is a typical route of chaos in deterministic
nonlinear systems. It is characterized by long periods of
regular motion interrupted by random, aperiodic short-
duration bursts. These chaotic bursts become more fre-
quent in course of time evolution [25,34]. The intermit-
tency phenomenon in the Lorenz system was first stud-
ied numerically by Pomeau and Manneville [35]. They
showed that the Lorenz system exhibits an intermittent
transition to chaos at the critical normalized Rayleigh

number rT ≈ 166.06. In this section, we investigate the
effects of couple-stress parameter cs on the dynamics
of the intermittent-chaos at r = 166.1 > rT .

We now focus our attention on the bifurcation dia-
gram of the system. Figure 6 displays the bifurcation
diagram representing the local extrema of Z in the post-
transient solution of Z(t) at r = 166.1 as a function
of the couple-stress parameter cs . The white stripes in
the bifurcation diagram correspond to periodic win-
dows.

In this connection we define Poincaré map which
is useful for analyzing complex dynamics of non-
linear systems. There exists a map where each state
(φ, φ̇) is connected to the next state P(φ, φ̇). In other
way, whenever φ(t) is a solution of the system, one
obtains P(φ(tn), φ̇(tn)) = (φ(tn+1), φ̇(tn+1)), n =
0, 1, 2, . . .. This map is called the Poincaré return map
or period map or stroboscopic map. However, for con-
struction of bifurcation diagram from Poincarémap the
selection of appropriate Poincaré section is very impor-
tant [30,36].

It is clear from the bifurcation diagram that the
sequence of events throughwhich the chaotic motion at
cs = 0 synchronizes to a steady state as cs is increased.
In the broad spectrumof the chaotic regimes, there exist
periodic motions of certain periods. The periods can be
determined by using the Poincaré return map. Here all
post-transient return maps are constructed on the plane
Z = 165. The evolutions of the flow trajectories for
intermittent-chaos (at r = 166.1) with increasing val-
ues of cs are represented graphically in Figs. 7, 8, 10,
11, 12, and 13.

Fig. 6 Bifurcation diagram
(Z vs. cs ) of the
intermittent-chaos at the
normalized Rayleigh
number r = 166.1
representing the local
extrema of Z in the
post-transient solution of
Z(t) as a function of the
couple-stress parameter cs .
The other parameters are
fixed at σ = 10, b = 8/3.
The white stripes
correspond to the periodic
windows
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Fig. 7 Phase portrait of the
intermittent-chaos(at
r = 166.1) projected onto
the X -Y plane (left) and the
corresponding Poincaré
map (right) for the
couple-stress parameter:
a cs = 0.0, b cs = 0.001

Figure 7a presents the Poincaré returnmap depicting
intermittent-chaos at r = 166.1 and cs = 0. As shown,
two hooks appear on the Poincaré section. Actually, the
hooks in the Poincaré map correspond to the contrac-
tion of nearby solution trajectories which causes one
or more unstable periodic orbits to become stable. As
a result, the system undergoes homoclinic explosion to
a stable periodic orbit which can be detected numeri-
cally as cs is increased (see Sparrow [30], Vadasz and
Olek [36]). As expected, a periodic solution is obtained
at cs = 0.001 displayed in Fig. 7b, and the orbit is of
period-4.

Above cs ≈ 0.0036, the solution becomes chaotic
again. For cs = 0.005, the chaotic attractor is displayed
graphically in Fig. 8a. The chaotic solution can also be
confirmed by calculating the Lyapunov exponents [37].
Being three-dimensional, the present nonlinear system
has three Lyapunov exponents (LEs). A chaotic attrac-
tor of (8) is quantified by Lyapunov spectra with a pos-
itive Lyapunov exponent. For periodic/quasi-periodic
attractors, the largest LE is zero. For fixed point attrac-

tors, all the three LEs are negative [37]. The variation
of the two leading Lyapunov exponents, say λ1,2, with
the couple-stress parameter cs ε[0, 0.22], is displayed
graphically in Fig. 9a. In this range of cs , the Kaplan–
Yorke dimension (or the Lyapunov dimension) can be
easily calculated. This enables one to estimate the frac-
tal dimension of the underlying attractor displayed in
the figures. The Kaplan–Yorke dimension of an attrac-
tor of system (8) with Lyapunov exponents λ1 ≥ λ2 ≥
λ3 is defined as DKY = m +

∑m
j=1 λ j

|λm+1| , where m is the

largest positive integer such that
∑m

j=1 λ j ≥ 0 [38]. If
no such positive integer m exists, then DKY = 0. The
variation of DKY with cs is presented graphically in
Fig. 9b.

The two hooks in the return map (see Fig. 8a) indi-
cate the existence of periodic orbits via homoclinic
explosion. A period-8 periodic orbit is obtained at
cs = 0.007 (see Fig. 8b). Similarly, other periodic
orbits can be found by varying the control parameter cs .
All these periodic orbits emerge via homoclinic explo-
sions.
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Fig. 8 Evolution of the
flow trajectory of the
intermittent-chaos (at
r = 166.1) projected onto
the X -Y plane (left) and the
corresponding Poincaré
map (right) for a
cs = 0.005, b cs = 0.007

Fig. 9 Variation of a the
Lyapunov exponents λ1,2
and b the Kaplan–Yorke
dimension DKY with the
couple-stress parameter cs
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Fig. 10 Phase portrait of
the intermittent-chaos(at
r = 166.1) projected onto
the X -Y plane (left) and the
corresponding return map
(right) for a cs = 0.012,
b cs = 0.01486

A period-3 periodic orbit is obtained for cs =
0.01486 (see Fig. 10b). Also, period-6 periodic solu-
tions are found at cs = 0.101 (see Fig. 11b), cs =
0.0186, cs = 0.11003, and cs = 0.174758. Note that
when cs exceeds the value cs = 0.174758, a chaotic
solution emerges again. In this case, however, the return
map contains no hook, as illustrated in Fig. 12 for
cs = 0.2.

An interesting result is obtained when cs attains the
value cs = 0.209802. At this point, a semi-stable limit
cycle emerges in the system which signifies a synchro-
nization of the chaotic motion to a steady state. The
projection of the limit cycle on the X–Y plane is pre-
sented in Fig. 13a. For further increase in cs , the limit
cycle disappears and the solution becomes steady for
ever. The trajectory of the steady-state solution pro-
jected onto the X -Y plane is displayed in Fig. 13b for
cs = 0.22.

Finally, with increasing couple-stress parameter the
synchronization of intermittent-chaos to a steady state
takes place via a series of periodicmotions interspersed
with chaos. However, the chaotic solution of the system

at r = 28 below cs ≈ 0.009 directly synchronizes to a
steady state.

7 Summary and concluding remarks

This is a study exploring the effects of particle size on
thermo-convective motion of horizontal couple-stress
fluid layer heated from below under a low-dimensional
approach represented by Lorenz-like equations. The
stability, local and global bifurcations, transition to
chaos, intermittent-chaos, and synchronization to steady
state are analyzed for this system. The main results are
summarized below:

(i) The equilibrium solution E0 undergoes a super-
critical pitchfork bifurcation when r reaches the
critical value rp = c, and for r > rp, the solution
E0 becomes unstable and two non-trivial solu-
tions E± are born.

(ii) The solutions E± are stable as long as r < rh ,
where rh = σc2(3+ b + cσ)/(cσ − b − 1), σ >

(1+b)/c . At r = rh , the convective solutions E±
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Fig. 11 Phase trajectory of
the intermittent-chaos (at
r = 166.1) projected onto
the X -Y plane (left) and the
corresponding Poincaré
section at Z = 165 (right)
for the couple-stress
parameter: a cs = 0.09,
b cs = 0.101

Fig. 12 Evolution of the
flow trajectory of the
intermittent-chaos (at
r = 166.1) projected onto
the X -Y plane (left) and the
corresponding return map
(right) for the couple-stress
parameter cs = 0.2

undergo a Hopf bifurcation, resulting a transition
from stationary to oscillatory convection.

(iii) Using first Lyapunov quantity, the Hopf bifurca-
tion is of subcritical type. However, the hardness
of the stability boundary at r = rh decreases with
the couple-stress parameter cs .

(iv) For global aspects of dynamics of the nonlinear
system (8) we found that between rp and rh there
exists a critical normalized Rayleigh number, r0,
where the system exhibits homoclinic loops con-
necting the originwith itself and the systemunder-
goes a homoclinic bifurcation in the neighbor-
hood of the origin.
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Fig. 13 Phase trajectory at
the final state at particular
r = 166.1 projected onto
the X -Y plane when
a cs = 0.209802, and
b cs = 0.22

(v) Beyond r0, the trajectory wanders randomly
around the equilibrium points E± and decays
eventually to either of them. The average time
interval of wandering expands with increasing r ,
and finally, it becomes infinitely large when r
attains another critical value r1(< rh).

(vi) The synchronization of intermittent-chaos takes
place via a series of periodic motion interspersed
with intervals of chaotic behaviors. The saddle
limit cycles are formed finally, and the system
reaches the motionless conduction state.

Finally, the modeled system is useful in engineering
transports such as heat transfer in fluidswith long-chain
molecules, melting and solidification of liquid crystals,
polymeric suspension, lubrication technology, and bio-
fluid transports.
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