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Abstract By incorporating the “backward looking”
effect and traffic interruption probability, we put for-
ward an improved lattice model. Applying linear sta-
bility analysis, linear stability criterion is derived. The
mKdV equation is deduced through nonlinear the-
ory, which demonstrates that the solution of mKdV
equation can describe traffic congestion. Furthermore,
numerical simulation shows that the two factors can
enhance traffic flow stability in the driving process.

Keywords Traffic flow · mKdV equation · Traffic
interruption probability · “Backward looking” effect

1 Introduction

Recently, due to the serious traffic problems with
the growing number of vehicles on the road, traffic
jam problem has increasingly captured the attention
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of scholars with different backgrounds. Consequently,
plenty of traffic flowmodels have been constructed [1–
7] to solve the traffic problems, including car-following
models [8–16], cellular automation models [17–21],
macro-trafficmodels [22–26] and lattice hydrodynamic
models [27,28]. Nagatani [29] firstly developed a lat-
tice hydrodynamic model. What’s more, the mKdV
equation is derived byNagatani’s original lattice hydro-
dynamic model. Later, an increasing number of novel
lattice hydrodynamic models [30–43] have been pro-
posed by taking the other factors into consideration
such as “backward looking” effect, driver’s memory
during a period of time, driver’s desired average flux
and traffic interruption probability.

In recent years, many scholars have taken into
account the effect of the traffic interruption probabil-
ity. Tang et al. [44,45] considered this factor in traffic
flow models. Subsequently, by considering the factor,
Redhu and Gupta [46] derived a novel lattice hydrody-
namic model. Furthermore, Peng et al. [47] and Sun et
al. [48] researched this factor in lattice hydrodynamic
model. However, the “backward looking” effect wasn’t
taken into consideration in these models.

In this paper, the extended lattice hydrodynamic
model is formulated by incorporating the “backward
looking” effect and the influence of traffic interruption
probability. The new model will be presented in the
following section. The linear and nonlinear analyses of
the new model are carried out in Sects. 2 and 3, respec-
tively. Section 4 explores numerical simulations, and
Sect. 5 draws conclusions.
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Fig. 1 Phase diagram in
parameter space (ρ, a)
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2 The extended lattice hydrodynamic model

On the basis of original lattice hydrodynamic model,
an extended model is put forward by incorporating the
“backward looking” effect and traffic interruptionprob-
ability as follows:

ρ j (t + τ)v j (t + τ)

= ρoVF(ρ j+1(t)) + λ1 p j+1 · H(ρ̄ − ρ j−1(t))

×H(ρ j−1(t) − ρc) · ρoVB(ρ j−1(t))

+ (1 − p j+1)λ2(ρ j+1v j+1 − ρ jv j ), (1)

∂tρ j + ρo(ρ jv j − ρ j−1v j−1) = 0, (2)

where H (·) represents the Heaviside function, ρ̄ is
approaching to 1 and ρC indicates safety density. If ρ̄

is less than the density, the “backward looking” influ-
ence will not play its role. Furthermore, as the safety
density is greater than the density, the “backward look-
ing” influence will also not play its role. τ represents
the delay time and a = 1

τ
is the sensitivity. λ1 and λ2

are two reactive coefficients and p j+1 represents the
interruption of lattice j + 1.

Here the coefficients gi are given in Table 2.
For convenience, p j+1 is chosen as a constant p. The

“forward looking” optimal velocity function is chosen
as

VF(ρ j+1) = tanh

(
2

ρo
− ρ j+1(t)

ρ2
o

− 1

ρc

)

+ tanh

(
1

ρc

)
, (3)

and the “backward looking” optimal velocity function
is as follows:

VB(ρ j−1) = r

[
− tanh

(
2

ρo
− ρ j+1(t)

ρ2
o

− 1

ρc

)

+ tanh

(
1

ρc

)]
, (4)

where ρo represents the initial density and r represents
a positive constant. We set r = 0.15, 0.25, 0.4, respec-
tively. Eliminating speed v in Eqs. (1) and (2), we will
derive

ρ j (t + 2τ) − ρ j (t + τ) + τρ2
o[

VF(ρ j+1(t)) − VF(ρ j (t)) + λ1 p(VB(ρ j−1(t))

−V B(ρ j−2(t)))
]

+ (1 − p)λ2
[
ρ j+1(t) − ρ j+1(t + τ)

+ ρ j (t + τ)ρ j (t)
]
. (5)

We investigate the BL-LH model with the linear sta-
bility analysis. The steady-state solution for Eqs. (1)
and (2) is given as:

ρ j (t) = ρo, (6)

v j (t) = VF(ρ) + VB(ρ), (7)

y j is a small perturbation of trafficflow from the steady-
state flow as

ρ j (t) = ρo + y j (t). (8)
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Table 1 Coefficients ki of
the model k1 k2

b + ρ2
o VF(ρc)

′ + ρ2
oλ1 pVB(ρc)

′ 3
2b

2τc + ρ2
o VF(ρc)

′−3ρ2
oλ1 pVB(ρc)

′
12 − λ2(1 − p)

k4 k6
ρ2
o VF(ρc)

′′′+ρ2
oλ1 pVB(ρc)

′′′
6

15b4τ 3c +ρ2
o VF(ρc)

′−15ρ2
oλ1 pVB(ρc)

′−2λ2(1−p)(4b+6bτc+4bτ 3c )

24

k5 k3

3bτc − λ2(1 − p) 7b3τ 2c +ρ2
o VF(ρc)

′
6 − λ2(1−p)(b+b2τc)

2

k7
ρ2
o VF(ρc)

′′′−3ρ2
oλ1 pVB(ρc)

′′′
12

Table 2 Coefficients gi of
the model g1 g2 g3

7b3τ 2c +ρ2
o VF(ρc)

′
6 − λ2(1−p)(b+b2τc)

2
ρ2
o VF(ρc)

′′′+ρ2
oλ1 pVB(ρc)

′′′
6 3b2τc

g4 g5
15b4τ 3c +ρ2

o VF(ρc)
′−15ρ2

oλ1 pVB(ρc)
′−2λ2(1−p)(4b+6bτc+4bτ 3c )

24
ρ2
o VF(ρc)

′′′−3ρ2
oλ1 pVB(ρc)

′′′
12
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(a) r=0,p=0.2
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(b) r=0.15,p=0.2
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(c) r=0.25,p=0.2
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(d) r=0.45,p=0.2

Fig. 2 Phase diagram of the model according to different values of parameter p

Inserting Eq. (6) into (5), we will deduced

y j (t + 2τ) − y j (t + τ) + τρ2
o[

VF(ρo)
′(y j+1(t) − y j (t))

+ λ1 pVB(ρo)
′(y j−1(t) − y j−2(t))

]
+ (1 − p)λ2

[
y j+1(t) − y j+1(t + τ)

+ y j (t + τ) − y j (t)
]
. (9)
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Fig. 3 Headway profile at t = 10,300 under the different value of p

Expanding y j = exp(ik j + zt), it reads:

e2zτ − ezτ + τρ2
o

[
VF(ρo)

′(eik − 1)

+ λ1 pVB(ρo)
′(e−ik − e−2ik)

]

+ (1 − p)λ2(e
ik − eik+zτ + ezτ − 1) = 0, (10)

where V (ρo)
′ = dVρ

dρ|ρ=ρo
. Let z = z1(ik) + z2(ik)2 +

· · · , then the first-order and second-order terms of ik
are:

z1 = −ρ2
o

[
VF(ρo)

′ + λ1 pVB(ρo)
′] , (11)

z2 = ρ2
O

[
VF(ρo)′ − 3λ1 pVB(ρo)

′

2
+ λ2(VF(ρo)

′

+ λ1 pVB(ρo)
′))

]
−3

2
τ

[
VF(ρo)

′ + λ1 pVB(ρo)
′]2 . (12)

The stability of traffic flow is determined by the value
of z2 for long wavelengths. The stable traffic flow will
become unstable when z2 < 0, but keep stable when
z2 > 0. Therefore, one acquires the neutral stability
condition as below:

τ =
1
2

[
VF(ρo)′−3λ1 pVB(ρo)

′]+(1− p)λ2
[
VF(ρo)′+λ1 pVB(ρo)

′]
− 3

2ρ2
o [VF(ρo)

′+λ1 pVB(ρo)′]2
.

(13)

The stability condition is given:

τ <

1
2

[
VF(ρo)′−3λ1 pVB(ρo)

′]+(1− p)λ2
[
VF(ρo)′+λ1 pVB(ρo)

′]
− 3

2ρ2
o [VF(ρo)

′+λ1 pVB(ρo)′]2
.

(14)

The phase diagram in the (ρ, a)—plane is described
in Fig. 1 where ρ is the density and a is sensitivity. The
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(c) r=0.25,p=0.2
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(d) r=0.45,p=0.2

Fig. 4 Phase diagram of the model according to different values of parameter r

stability curves are shown as solid lines indicate. If the
value of the parameter ρ or r decreases, the critical
points will rise. Different parameter indicates the sim-
ulation results. Thus, we can conclude that the of traffic
stability is enhanced with consideration of the “back-
ward looking” effect and the influence of the traffic
interruption probability.

3 mKdV equation

ThemodifiedKdVequationswill be derived to describe
the slowly varying behaviors for long waves near the
critical point (ρc, ac). For the space variable n and the
time t , define the slow variables X and T as follows:

X = ε( j + bt), T = ε3t, ρ j = ρc + εR(X, T ),

(15)

where 0 < ε � 1 and b is a constant to be determined.
By inserting Eq. (13) into (5) and expanding each term
in Eq. (5) to the fifth order of ε by substituting, one
obtains:

ε2k1∂X R + ε3k2∂
2
x R

+ ε4(∂ R
T + k3∂

3
x R + k4∂X R

3)

+ ε5(k5∂T ∂R + k6∂
4
x R + k7∂

2
x R

3) = 0. (16)

By inserting b = −ρ2
o (VF(ρo)

′ + λ1 pVB(ρo)
′), τ =

(1 + ε2)τc into Eq. (14), one obtains:

ε4(−g1∂
3
X R + g2∂X R

3 + ∂T R)

+ ε5(g4∂
4
X R + g5∂

3
X R

3 + g3∂
2
X R) = 0. (17)

Here the coefficients ki are given in Table 1.
In the table, V ′ = dV (ρ)/dρ|ρ = ρc, V ′′′ =

d3V (ρ)/dρ3|ρ = ρc. To obtain the regularized equa-
tion, transformation is made as follows:

T = 1

g1
T ′, R =

√
g1
g2

. (18)

We can obtain the modified mKdV equation with an
O(ε) correction term as follows:

∂T ′ R′ = ∂3X R
′ − ∂X R

′3

+ ε

[
g3
g1

∂2X R
′ + g4

g1
∂4X R

′ + g5
g2

∂2X R
′3
]

. (19)
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Fig. 5 Headway profile at t = 10,300 under the different value of r

We get the mKdV equations with a kink solution after
ignoring the O(ε):

R′
o(X, T ′) = √

c tanh

√
c

2
(X − cT ′). (20)

Then, the O(ε) correction is considered by assuming
R′

(X, T ′) = R′
o(X, T ′) + εR′

1(X, T ′). For the pur-
pose of obtaining the propagation velocity c for the
kink solution, the solvability condition should be sat-
isfied. (R′

o, M
[
R′
o

] ≡ ∫ +∞
−∞ dX ′R′

oM
[
R′
o

]
), where

M
[
R′
o

] = g3
g1

∂2X R
′ + g4

g1
∂4X R

′ + g1g5
g1

∂2X R
′3. We get

the general velocity c:

c = 5g2g3
2g2g4 − 3g1g5

. (21)

Subsequently, the general kink–antikink soliton solu-
tion of the mKdV equation can be obtained:

ρ j (t) = hc ±
√
g1c

g2

(
τ

τc
− 1

)
× tanh

√
c

2

(
τ

τc
− 1

)

×
[
j + (1 − cg1)

(
τ

τc
− 1

)
t

]
(22)

4 Numerical simulation

In this section, the effect of “backward looking” and
traffic interruptionprobability is investigatedbynumer-
ical simulation. The boundary condition is chosen to be
periodic. The initial condition is chosen as follows:
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ρ j (0) = ρo = 0.25, ρ j (1) = ρo = 0.25, for j �=
50, 51, ρ j (1) = 0.25 − 0.1, for j = 50, ρ j (1) =
0.25 + 0.1, for j = 51. The total number of sites and
the sensitivity are chosen as N = 100 and a = 1.25.

The simulation patterns of the density with different
value of r(p = 0.2) are described after time t = 104 s
in Fig. 2. From pattern (a) with r = 0, it confirms
Peng’s model [47]. It is clear that the changes in the
density become stranger than others. With a small dis-
turbance, the initial steady trafficflowwill turn into stop
and go trafficwaves,which is similar to themKdVsolu-
tion. With the increase in r , the scales of density waves
is not large. The patterns of the density after t = 104 s
with different value of p(r = 0.2) are demonstrated in
Fig. 4. With the increase in r , the changes in density
reduce gradually. In conclusion, traffic flow stability
can be improved efficiently with the consideration of
the influence of the traffic interruption probability and
“backward looking” effect.

Figures 3 and5 reveal the density profile correspond-
ing to Figs. 2 and 4 at t = 10,300 s. So, the simulation
results are in agreement with the theoretical analysis.

5 Conclusion

A novel lattice hydrodynamic model has been put for-
ward by taking into account the “backward looking
effect” and the influence of the traffic interruption prob-
ability.With the theory of the linear and nonlinear anal-
yses, the traffic properties have been analyzed.We have
obtained the stability of themodel. To describe the traf-
fic congestion, we have derived the mKdV equation.
The numerical results is consistent with nonlinear anal-
ysis for the extended traffic model. Ge and Cheng [37]
also considered the “backward looking” effect in lattice
hydrodynamicmodel for the purpose of suppressing the
traffic congestion. On the basis of Ge’s model, traffic
interruption probability has been added in this paper.
Compared with Ge’s model, we can see the changes in
density reduce faster from the numerical simulation in
this paper. This means traffic flow in this paper is more
stable than Ge’s model. Therefore, the influence of the
traffic interruption probability and “backward looking”
effect can improve efficiently the stability of the traffic
flow.
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