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Abstract In this paper, we investigate synchroniza-
tion and its DSP implementation of fractional-order
simplified Lorenz hyperchaotic systems by employ-
ing the Adomian decomposition method. The active
controller and linear feedback controller are designed.
Numerical simulation of the synchronized systems is
carried out, and it is found that the synchronization
phenomenon can be observed in both state variables
and intermediate variables. Moreover, the synchro-
nized systems are implemented in two TMS320F2-
8335 DSP boards which are connected by a serial port
and the output signals are exhibited by an oscilloscope.
The experiment results show that the proposed imple-
mentation method works well on DSP.
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1 Introduction

Recently, dynamical analysis, synchronization and
secure communication applications of fractional-order
chaotic systems have become hot topics. Rich dynam-
ics has been found in these systems [1–5]. For example,
Li et al. [1] numerically investigated chaotic behav-
iors in the fractional-order Rössler system and the
fractional-order Rössler hyperchaotic system, and they
found the minimum order for chaos is less than three
and less than four, respectively. Also, Jia et al. [2] ana-
lyzed the dynamics of fractional-order Lorenz system
and implemented the system in analog circuit. Mean-
while, some fractional-order models with rich dynam-
ics are reported by researchers. For instance, Xu et
al. [6] investigated a novel nonlinear fractional-order
mathematical model by introducing a fractional-order
damping force, a fractional-order oil-film force, an
asymmetric magnetic pull and a hydraulic-asymmetric
force.

Synchronization of chaotic systems has aroused
much interest of scholars [7], and it is found that
fractional-order chaotic systems can also be synchro-
nized. A variety of approaches have been proposed
for the synchronization of fractional-order chaotic sys-
temswhich include lag synchronization [8], active con-
trol [9], fuzzy sliding mode control [10], active slid-
ing mode control [11], robust observer [12]. Mean-
while, circuit implementation of synchronization in
fractional-order chaotic systems also aroused the schol-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3907-1&domain=pdf


86 S. He et al.

ars interest [13–15]. For instance, Zhang et al. [13]
analyzed synchronization and its circuit experiment
simulation of two fractional-order generalized Lorenz
chaotic systems by utilizing a single-variable feedback
method. Since signals generated by fractional-order
chaotic systems are chaotic, broadband, noise like and
sensitive to initial condition, synchronization-based
secure communication of fractional-order chaotic sys-
tems has high security and was widely reported by
scholars [16,17]. However, numerical solutions of the
above reports are obtained by employing the Adams–
Bashforth–Moulton algorithm (ABM) [18] and fre-
quency method [19], and these two methods are not
suitable for digital circuit implementation of fractional-
order chaotic systems.

Compared with analog circuit implementation, dig-
ital circuit implementation of fractional-order chaos
including the system and synchronization scheme has
more advantages such as better design flexibility, easier
to modify parameters, better repeatability and stronger
anti-interference capacity. Meanwhile, digital signal
processor (DSP) is popularized in engineering since
it has fast computation speed and strong ability in
processing data. Actually, digital implementation of
integer-order chaotic systems is not a difficult thing
andmany reports illustrated this [20–22], and DSP dig-
ital circuit implementation of fractional-order chaotic
systems is reported in References [23–25] by applying
Adomian decomposition method (ADM) [26]. How-
ever, investigation about digital circuit implementation
of fractional-order synchronization scheme was rarely
reported.

Motivated by the above discussion, in this paper,
a synchronization scheme of fractional-order simpli-
fiedLorenz hyperchaotic systemswith active controller
and linear feedback controller is firstly proposed. Since
numerical solution of fractional-order chaotic system
obtained by ADMworks well in DSP [23–25], ADM is
applied to solve the synchronized systems for the first
time. Moreover, the synchronization phenomenon of
the state variables and intermediate variables generated
by ADM is analyzed. With the numerical solution, dig-
ital circuit implementation of fractional-order chaotic
systems is achieved by employing DSP technology for
the first time.

The rest of this article is organized as follows.
In Sec.2, the proposed synchronization scheme and
Adomian decomposition method are given. In Sect.3,
synchronization analysis in fractional-order simplified

Lorenz hyperchaotic systems is carried out. In Sect.4,
DSP implementation of the proposed synchronization
scheme is achieved. Finally, a concluding remark is
presented in Sect.5.

2 Synchronization scheme and numerical solution
method

2.1 Synchronization scheme

Consider the following master fractional-order chaotic
system

Dq
t0x = f (x), (1)

where x ∈ Rn is the state vector, f : Rn −Rn is a con-
tinuous nonlinear vector function and Dq

t0 is the Caputo
fractional-order derivative [27], which is defined by

Dq
t0x(t) =

{
1

�(1−q)

∫ t
t0

1
(t−τ)q

ẋ(τ )dτ , 0 < q < 1
d
dt x(t), q = 1

.

(2)

Then, the slave system can be presented as

Dq
t0y = f (y) + U, (3)

where U is the controller. We define the error system
e(t) as

e = y − �x. (4)

Here,� is a n×n constant matrix. The fractional-order
error system can be denoted as

Dq
t0e = Dq

t0y − �Dq
t0x = f (y) − � f (x) + U. (5)

In this paper, let

U(t) = u(t) + �(t), (6)

where u(t) is the active controller and�(t) is the linear
feedback controller. They can be defined as

{
u(t) = � f (x) − f (y)
�(t) = − κe

, (7)
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where κ is n×1 constant matrix, denoted as [κ1, κ2, ...,
κn]. Thus, the error system can be presented as

Dq
t0e = −κe. (8)

When κ > 0, this error system is convergent. It means
that the two identical systems are synchronized.

2.2 Adomian decomposition method

In this paper, Adomian decomposition method (ADM)
algorithm is employed to solve the master and slave
systems. Compared with ABM and frequency method,
ADM can get a more exact solution of the fractional-
order system as it preserves the system nonlinearities.
Let x(t) = [x1(t), x2(t), ..., xn(t)]T be the vector of
state variables. The fractional-order chaotic system is
separated into two parts [28],

{
Dq
t0x(t) = Lx + Nx

x(k)(t+0 ) = bk, k = 0, . . . ,m − 1
. (9)

Here,m = �q� , bk is a specified constant matrix relat-
ing to the initial values. Lx and Nx represent the lin-
ear part and nonlinear part of system, respectively. By
applying the fractional integral operator Jqt0 , which is
denoted by [27]

Jqt0 x(t) = 1

�(q)

∫ t

t0

1

(t − τ)1−q x(τ )dτ , (10)

to both sides of Eq.(9), the solution of system (9) is
given by [27,28]

x (t) = Jqt0 Lx + Jqt0Nx +
m−1∑
k=0

bk
(t − t0)k

k! . (11)

According to [28], the nonlinear terms can be decom-
posed according to

Ai (x0, x1, · · · , xi ) = 1

i !
[
di

dλi
N (vi (λ))

]
λ=0

vi (λ)

=
∑i

k=0
(λ)kxk, (12)

where i = 0, 1, ...; then, the nonlinear terms can be
expressed as

Nx =
∞∑
i=0

Ai
(
x0, x1, · · · , xi

)
. (13)

According to [27,28], the solution of Eq.(11) is derived
by

x0 =
m−1∑
k=0

bk
(t − t0)k

k!
x1 = Jqt0 Lx

0 + Jqt0 A
0(x0)

x2 = Jqt0 Lx
1 + Jqt0 A

1(x0, x1)

· · ·
xi = Jqt0 Lx

i−1 + Jqt0 A
i−1(x0, x1, · · · , xi−1)

· · · . (14)

The analytical solution of the fractional-order system
is presented by

x(t) =
∞∑
i=0

xi = F(x(t0)). (15)

Dividing the time interval [t0, t], we get subintervals
[tm, tm+1] with equal step size of h = tm+1 − tm =
(t − t0)/N . Then, we get the value of x(tm+1) accord-
ing to F(x(tm)). Finally, the numerical solution of the
fractional-order chaotic system is denoted as a discrete
map x(m + 1) = F(x(m)).

3 Numerical simulation of the synchronization
scheme

In this section, synchronization between two identical
fractional-order simplified Lorenz hyperchaotic sys-
tems is carried out based on ADM.

3.1 Solution of two simplified Lorenz hyperchaotic
systems

The simplifiedLorenz hyperchaotic system is proposed
in Reference [29], which is presented by

ẋ1 = 10(x2 − x1),

ẋ2 = (24 − 4c)x1 − x1x3 + cx2 + x4,

ẋ3 = x1x2 − 8x3/3,

ẋ4 = − kx1, (16)

where c and k are bifurcation parameters and [x1, x2,
x3, x4] are state variables. Consider that the derivational
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order of system (16) is fractional and the fractional-
order hyperchaotic simplified Lorenz [30] has the form
of

Dq
t0x1 = 10(x2 − x1),

Dq
t0x2 = (24 − 4c)x1 − x1x3 + cx2 + x4,

Dq
t0x3 = x1x2 − 8x3/3,

Dq
t0x4 = − kx1, (17)

where Dq
t0 is theCaputo derivation.According toADM,

system (17) can be solved as

x1(m + 1) =
∑5

j=0
c j1h

jq/�( jq + 1),

x2(m + 1) =
∑5

j=0
c j2h

jq/�( jq + 1),

x3(m + 1) =
∑5

j=0
c j3h

jq/�( jq + 1),

x4(m + 1) =
∑5

j=0
c j4h

jq/�( jq + 1), (18)

where the intermediate variables are defined as

c01 = x1(m), c02 = x2(m), c03 = x3(m), c04 = x4(m).

(19)

c11 = 10
(
c02 − c01

)
c12 = (24 − 4c)c01 − c01c

0
3 + cc02 + c04

c13 = c01c
0
2 − 8c03/3

c14 = − kc01. (20)

c21 = 10
(
c12 − c11

)
c22 = (24 − 4c)c11 − c01c

1
3 − c11c

0
3 + c · c12 + c14

c23 = c11c
0
2 + c01c

1
2 − 8c13/3

c24 = − kc11. (21)

c31 = 10
(
c02 − c01

)
c32 = (24 − 4c)c21 − c01c

2
3 − c11c

1
3
�(2q + 1)

�2(q + 1)

− c21c
0
3 + c · c22 + c24

c33 = c01c
2
2 + c11c

1
2
�(2q + 1)

�2(q + 1)

+ c21c
0
2 − 8c23/3

c34 = −kc21. (22)

c41 = 10
(
c32 − c31

)
c42 = (24 − 4c)c31 − c01c

3
3 − c31c

0
3 + c · c32 + c34

−
(
c21c

1
3 + c11c

2
3

) �(3q + 1)

�(q + 1)�(2q + 1)

c43 = c01c
3
2 +

(
c21c

1
2 + c11c

2
2

) �(3q + 1)

�(q + 1)�(2q + 1)

+ c31c
0
2 + 8c33/3

c44 = − kc31. (23)

c51 = 10
(
c42 − c41

)
c52 = (24 − 4c)c41

− c01c
4
3 −

(
c31c

1
3 + c11c

3
3

) �(4q + 1)

�(q + 1)�(3q + 1)

− c21c
2
3

�(4q + 1)

�2(2q + 1)

− c41c
0
3 + cc42 + c44

c53 = c01c
4
2

+
(
c31c

1
2 + c11c

3
2

) �(4q + 1)

�(q + 1)�(3q + 1)

+ c21c
2
2

�(4q + 1)

�2(2q + 1)

+ c41c
0
2 − 8c43/3

c54 = − kc41 (24)

Dynamics of this systemwas investigated in Reference
[30], and it shows that this system has high complexity
for real application. Specifically, when k = 5, c = −2,
q = 0.98 and x0 = [0.1, 0.2, 0.3, 0.4], Lyapunov char-
acter exponents (LCEs) of system (17) areλi (i =1, 2, 3,
4)=(0.3901, 0.3583, 0, − 16.9756), which implies the
system is hyperchaotic. The phase portraits are shown
in Fig. 1a–d, while its LCEs diagram is illustrated in
Fig. 1e.

The response system with controllers u1, u2, u3 and
u4 is presented as

Dq
t0 y1 = 10(y2 − y1) + u1

Dq
t0 y2 = (24 − 4c)y1 − y1y3

+ cy2 + y4 + u2

Dq
t0 y3 = y1y2 − 8y3/3 + u3

Dq
t0 y4 = − ky1 + u4. (25)

According to Eqs. (5) and (6), if � = [α11, α12, α13,
α14; α21, α22, α23, α24; α31, α32, α33, α34; α41, α42,
α43, α44], then the controllers are denoted by

u1 = − κ (y1 − α11x1 − α12x2 − α13x3 − α14x4)

+ α11 (10(x2 − x1))
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Generalized synchronization of fractional-order 89

Fig. 1 Phase diagram of the fractional-order simplified Lorenz
hyperchaotic system a x1 − x2; b x1 − x3; c x2 − x3; d x1 − x4;
e Lyapunov exponents

+ α12 ((24 − 4c)x1 − x1x3 + cx2 + x4)

+ α13 (x1x2 − 8x3/3)

− α14kx1 − 10(y2 − y1). (26)

u2 = − κ(y2 − α21x1 − α22x2 − α23x3 − α24x4)

− (24 − 4c)y1 + y1y3 − cy2 − y4

+ α2110(x2 − x1)

+ α22((24 − 4c)x1 − x1x3 + cx2 + x4)

+ α23(x1x2 − 8x3/3)

− α24kx1. (27)

u3 = − κ (y3 − α31x1 − α32x2 − α33x3 − α34x4)

−y1y2 + 8y3/3

+ α31 (10(x2 − x1))

+ α32((24 − 4c)x1 − x1x3 + cx2 + x4)

+ α33 (x1x2 − 8x3/3)

− α34kx1. (28)

u4 = − κ (y1 − α41x1 − α42x2 − α43x3 − α44x4)

+ ky1 + α41 (10(x2 − x1))

+ α42((24 − 4c)x1 − x1x3 + cx2 + x4)

+ α43 (x1x2 − 8x3/3)

− α44kx1. (29)

Thus the response system can also be defined as

Dq
t0 y1 = − κ (y1 − α11x1 − α12x2 − α13x3 − α14x4)

+ α11 (10(x2 − x1))

+ α12 ((24 − 4c)x1 − x1x3 + cx2 + x4)

+ α13 (x1x2 − 8x3/3) − α14kx1

Dq
t0 y2 = κ (y2 − α21x1 − α22x2 − α23x3 − α24x4)

+ α21 (10(x2 − x1))

+ α22 ((24 − 4c)x1 − x1x3 + cx2 + x4)

+α23 (x1x2 − 8x3/3) − α24kx1

Dq
t0 y3 = − κ (y3 − α31x1 − α32x2 − α33x3 − α34x4)

+ α31 (10(x2 − x1))

+ α32 ((24 − 4c)x1 − x1x3 + cx2 + x4)

+ α33 (x1x2 − 8x3/3) − α34kx1

Dq
t0 y4 = −κ (y1 − α41x1 − α42x2 − α43x3 − α44x4)

+ α41 (10(x2 − x1))

+ α42 ((24 − 4c)x1 − x1x3 + cx2 + x4)

+ α43 (x1x2 − 8x3/3) − α44kx1. (30)

By applying ADM, the solution of the response system
is given by

y1(m + 1) =
∑5

j=0
ζ
j
1 h

jq/�( jq + 1),

y2(m + 1) =
∑5

j=0
ζ
j
2 h

jq/�( jq + 1),

y3(m + 1) =
∑5

j=0
ζ
j
3 h

jq/�( jq + 1),

y4(m + 1) =
∑5

j=0
ζ
j
4 h

jq/�( jq + 1), (31)

in which the intermediate variables are defined as

ζ 0
1 = y1(m), ζ 0

2 = y2(m), ζ 0
3 = y3(m), ζ 0

4 = y4(m).

(32)

ζ
j
1 = − κ

(
ζ
j−1
1 − α11c

j−1
1 − α12c

j−1
2 − α13c

j−1
3

− α14c
j−1
4

)
+ α11c

j
1 + α12c

j
2 + α13c

j
3 + α14c

j
4

ζ
j
2 = − κ

(
ζ
j−1
2 − α21c

j−1
1 − α22c

j−1
2 − α23c

j−1
3

−α24c
j−1
4

)
+ α21c

j
1 + α22c

j
2 + α23c

j
3 + α24c

j
4
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ζ
j
3 = − κ

(
ζ
j−1
3 − α31c

j−1
1 − α32c

j−1
2 − α33c

j−1
3

−α34c
j−1
4

)
+ α31c

j
1 + α32c

j
2 + α33c

j
3 + α34c

j
4

ζ
j
4 = − κ

(
ζ
j−1
4 − α41c

j−1
1 − α42c

j−1
2 − α43c

j−1
3

−α44c
j−1
4

)
+ α41c

j
1 + α42c

j
2 + α43c

j
3 + α44c

j
4 ,

(33)

where j =1, 2, 3, 4, 5.According toEq. (31), the chaotic
sequences of the response system can be obtained with
appropriate initial values.

3.2 Synchronization simulation of simplified Lorenz
hyperchaotic system

Numerical simulations are presented to demonstrate
the effectiveness of the proposed synchronization con-
troller. The time step size is h = 0.01. The parameters
are chosen to be q = 0.98, c = − 2, k = 5 and
k = [2, 2, 2, 2] in all simulations so that the simplified
Lorenz hyperchaotic system exhibits hyperchaos. The
initial condition of the master system is [0.1, 0.2, 0.3,
0.4], and the initial values of the slave system are [5, 6,
7, 8]. Two cases are analyzed.

Case 1 Generalized dislocated synchronization
Let � = αi jδi j , where αi j is the scaling factor and

δi j is zero or one. It means there is only one nonzero
number in each row and each column.As the dimension
of the system is 4, thus there are 4!-1=23 possible kinds
of �. Let

� =

⎡
⎢⎢⎣

0 0.5 0 0
−0.5 0 0 0
0 0 0 1.5
0 0 −1.5 0

⎤
⎥⎥⎦ . (34)

Then, the errors between two systems can be expressed
as

e1 = y1 − 0.5x2

e2 = y2 + 0.5x1

e3 = y3 − 1.5x4

e4 = y4 + 1.5x3. (35)

Obviously, dislocated synchronization is the special
case of the proposed synchronization scheme.

Numerical results of the generalized dislocated syn-
chronization are shown in Fig. 2. According to (32), y1,

Fig. 2 Simulation results of generalized dislocated synchroniza-
tion a time series y1 and x2; b synchronization plot of y1 − x2;
c time series y2 and x1; d synchronization line y2 − x1; e time
series y3 and x4; f synchronization plot of y3 − x4; g time series
y4 and x3; h synchronization plot of y4-x3

y2, y3 and y4 synchronize with 0.5x2, −0.5x1, −1.5x4
and 1.5x3, respectively. The time series for four pairs
of variables (y1, x2), (y2, x1), (y3, x4) and (y4, x3) are
illustrated in Fig. 2a, c, e and g, respectively, where the
blue lines are plotted from the response system and the
red lines are obtained in the master system. Synchro-
nization plots are correspondingly drawn in Figs 2b,
d–f. It shows that the two fractional-order hyperchaotic
systems are synchronized.

Case 2Generalized linear synchronization, Let� =
αi j (i, j = 1, 2, ..., n), where αi j represent real num-
bers. We can treat Case 1 as a particular case of this
proposed synchronization scheme. Case 2 is the gen-
eral case of the scheme. Particularly, we choose matrix
Φ as

� =

⎡
⎢⎢⎣
0.1 0.2 0.3 0.4
0.25 0.25 0.25 0.25
0.1 0.4 0.4 0.1
0.3 0.2 0.2 0.3

⎤
⎥⎥⎦ . (36)
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Generalized synchronization of fractional-order 91

Thus, the error system becomes

e1 = y1 − 0.1x1 − 0.2x2 − 0.3x3 − 0.4x4

e2 = y2 − 0.25x1 − 0.25x2 − 0.25x3 − 0.25x4

e3 = y3 − 0.1x1 − 0.4x2 − 0.4x3 − 0.1x4

e4 = y4 − 0.3x1 − 0.2x2 − 0.2x3 − 0.3x4. (37)

By applying ADM, the simulation results are presented
in Fig. 3. The time series of x1 and y1 are plotted in
Fig. 3a, where the red line represents the x1 and the
blue line is y1. Phase diagrams of x1 − y1 and y1 − y2
are shown in Fig. 3b, c. It can be seen from these two
phase diagrams that there are no correlations between
x1 and y1 and between y1 and y2. Let

ϕ1 = 0.1x1 + 0.2x2 + 0.3x3 + 0.4x4

ϕ2 = 0.25x1 + 0.25x2 + 0.25x3 + 0.25x4

ϕ3 = 0.1x1 + 0.4x2 + 0.4x3 + 0.1x4

ϕ4 = 0.3x1 + 0.2x2 + 0.2x3 + 0.3x4. (38)

The synchronization results between y1 − ϕ1, y2 − ϕ2,
y3−ϕ3 and y4−ϕ4 are illustrated in Fig. 3d–g, respec-
tively. Thus, the simulation results verify that the two
systems are synchronized.

3.3 Synchronization performance analysis

TakingCase 2 as an example, the synchronization setup
timewith different q is obtained as displayed in Fig. 4a.
The error between master system and slave system is
defined as

Error =
4∑

i=1

|yi − αi1x1 − αi2x2 − αi3x3 − αi4x4|.

(39)

It indicates in Fig. 4 that the synchronization setup time
is increasing with the increasing derivative order q. In
addition, if we fix q = 0.98, the control parameter k
also affects the synchronization setup time. As shown
in Fig. 4b, the larger the k is, the shorter the synchro-
nization setup time is.

As can be seen from Eq. (33), the intermediate vari-
ables (c ji : i = 1, 2, 3, 4; j = 0, 1, 2..., 5) of the mas-
ter system are used in the numerical solution of the
slave system. Define the error of intermediate variables
between the two synchronized systems as

Fig. 3 Simulation results of the generalized linear synchroniza-
tion a time series x1 (red line) and y1 (blue line); b phase dia-
gram x1 − y1; c phase diagram y1 − y2; d synchronization plot
of y1 − ϕ1; e synchronization plot of y2 − ϕ2; f synchronization
plot of y3 − ϕ3; g synchronization plot of y4 − ϕ4. (Color figure
online)

E j =
4∑

i=1

∣∣∣ζ j
i − αi1c

j
i − αi2c

j
i − αi3c

j
i − αi4c

j
i

∣∣∣,
(40)

in which ζ
j
i (i = 1, 2, 3, 4; j=0, 1, 2, ..., 4) are inter-

mediate variables of the response system. It shows in
Fig. 5 that synchronization exists between the inter-
mediate variables. The corresponding time series of
these intermediate variables are illustrated in Fig. 6.
Since these intermediate variables are obtained from
the state variables, they are also chaotic. In summary,
the intermediate variables can also be used in practical
applications.

The impact of intermediate variables to the synchro-
nization should be investigated. If we just send c ji (i =
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Fig. 4 The synchronization simulation results a result with dif-
ferent q; b result with different κ . (Color figure online)

Fig. 5 Synchronization result between intermediate variables a
E0; b E1; c E2; d E3

1, 2, 3, 4; j=0, 1, 2 3) to the slave system, that is to
say, let c4i = 0 (i = 1, 2, 3, 4), the two systems are
synchronized as shown in Fig. 7a. Similarly, Fig. 7b
shows that the two systems can also be synchronized
when c ji = 0 (i = 1, 2, 3, 4; j = 3, 4). However, if we

just send c ji (i = 1, 2, 3, 4; j =0, 1, 2) or c ji (i = 1, 2, 3,

Fig. 6 Time series of intermediate variables a c01 (x1); b c11; c
c21; d c31

Fig. 7 Synchronization setup time with different intermediate
variables. a c5i = 0 (i = 1, 2, 3, 4); b c ji = 0 (i = 1, 2, 3, 4; j=4,

5); c c ji = 0 (i = 1, 2, 3, 4; j = 3, 4, 5); d c ji = 0 (i=1, 2, 3, 4;
j=2, 3, 4, 5)

4; j = 0, 1) to the slave system, according to Fig. 7c, d,
the two systems cannot synchronize. It means that, to
achieve synchronization, we should send at least c ji (i
= 1, 2, 3, 4; j = 0, 1, 2, 3) to the slave system.
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Fig. 8 Hardware block diagram for synchronization of
fractional-order chaotic systems

4 Synchronization implementation on DSP

4.1 DSP implementation scheme

In this section, the synchronization scheme for fractional-
order chaotic systems is implemented in the DSP dig-
ital circuit. The hardware block diagram for synchro-
nization of fractional-order chaotic systems is shown
in Fig. 8, where the oscilloscope is used to capture
the synchronization phenomenon. In our experiment,
the floating point DSP TMS320F28335 is used to cal-
culate the fractional -order systems. Between the two
DSPboards,we introduce aUARTport. Thus, the inter-
mediate variables of the master system can be sent
to the slave system, and the iteration information as
a response of the slave system can be derived to the
master system to control the iteration of both systems.
Two correspondent state variables are sent to a D/A
chip (DAC8552), so the synchronization phenomenon
can be observed in the oscilloscope. The DSP board
used to perform the digital implementation is shown in
Fig. 9.

Flow diagrams for DSP implementation of master
system and slave system are illustrated in Figs. 10 and
11, respectively. In the calculation preparation step,
some variables such as hq , �(q + 1), hq/�(q + 1)
and h2q are computed for further iteration. In the data
processing step, a large enough number is added to the
states variable tomake sure it is greater than zero. Then,
the data are rescaled and truncated to adjust the scale
of the D/A converter. To control the iteration of both
systems, the following method is designed. Firstly, the
master system iterates once, then we get state variables
x = [x1, x2, x3, x4] and intermediate variables c ji (i = 1,
2, 3, 4; j = 0, 1, 2). Next, we push the state variables to
register as the initial value of the next iteration. As the

Fig. 9 DSP platform for synchronization of fractional-order
chaotic systems

Fig. 10 Flow diagram for the DSP implementation of themaster
system

calculation of the slave system needs the intermediate
variables, they are sent to the slave system by the serial
port. With these intermediate variables, the slave sys-
tem iterates once and sends a response message to the
master system. After receiving the response message,
the next round goes on. In the next section, the experi-
ment results are presented to show the effectiveness of
the proposed DSP implementation scheme.
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Fig. 11 Flow diagram for the DSP implementation of slave sys-
tem

4.2 DSP implementation result

We set the step size h = 0.01, the initial state of master
system as (x1(t0), x2(t0), x3(t0), x4(t0)) = (1, 2, 3, 4)
and the initial state of slave system as (y1(t0), y2(t0),
y3(t0), y4(t0)) = (0.1, 0.2, 0.3, 0.4). Generalized dis-
located synchronization is implemented on the DSP
board. Let series one be y1 and series two be x2. The
synchronization line of x2 − y1 with

� =

⎡
⎢⎢⎣

0 0.5 0 0
−0.5 0 0 0
0 0 0 1.5
0 0 −1.5 0

⎤
⎥⎥⎦ (41)

is shown in Fig. 12a, where α12 = 0.5 and the two
time series captured are illustrated in the oscilloscope
Fig. 12b, which shows that the systems are synchro-
nized on the DSP board. Moreover, we also let

� =

⎡
⎢⎢⎣

0 2 0 0
−0.5 0 0 0
0 0 0 1.5
0 0 −1.5 0

⎤
⎥⎥⎦ (42)

Fig. 12 Synchronization results by DSP implementation a syn-
chronization plot of x2 − y1 with α12 = 0.5; b time series of x2
and y1 with α12 = 0.5; c synchronization plot of x2 − y1 with
α12 =2; d time series of x2 and y1 with α12 = 2; e synchronization
plot of x2 − y1 when α12 = 1; f time series of x2 and y1 with α12
= 1

and

� =

⎡
⎢⎢⎣

0 1 0 0
−0.5 0 0 0
0 0 0 1.5
0 0 −1.5 0

⎤
⎥⎥⎦ , (43)

where α12 = 2 and α12 = 1; thus, y1 = 2x2 and y1 =
x2, respectively. The captured results are illustrated in
Fig. 12c–f, and it can be seen that synchronization is
established.

According to our test results, the error between y1
and α12x2 is smaller than 10−6. Although it is not the
complete synchronization, it can be used in real appli-
cations. This section indicates that synchronization of
the two fractional-order chaotic systems is successfully
realized in the digital circuit.

5 Conclusion

In this paper, generalized synchronization of fractional-
order simplified Lorenz hyperchaotic systems is inves-
tigated where the active controller and linear feed-
back controller are designed. By employing the Ado-
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mian decomposition method (ADM), numerical solu-
tions of the two synchronized systems are obtained.
Then, we numerically analyzed the synchronization
phenomenon with two cases including the general-
izeddislocated synchronization and the generalized lin-
ear synchronization, and some new results are found.
By employing the DSP technique, the proposed syn-
chronization scheme is realized in the DSP developing
boards in which the chip is TMS320F28335. The con-
clusions of this article are drawn as follows.

(1) Numerical solutions obtained by ADM have fast
speed for numerical simulation and work well in
the DSP board, which shows that the solutions are
good for real applications.

(2) The synchronization setup time is decreasing with
the increasing derivative order q and decreases
with the increase in control parameter k.

(3) The synchronization phenomenon is observed in
the intermediate variables, and it shows that the
intermediate variables can also be used in real
applications.

(4) The synchronization results captured in the oscil-
loscope are consistent with the simulation results.
It shows that synchronization of fractional-order
chaotic systems can be used in the engineering
field.
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