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Abstract Nonlinear energy sink (NES) refers to a
lightweight nonlinear device that is attached to a pri-
mary linear or weakly nonlinear system for passive
energy localization into itself. In this paper, the dynam-
ics of 1-dof and 2-dof NES with geometrically nonlin-
ear damping is investigated. For 1-dof NES, an ana-
lytical treatment for the bifurcations is developed by
presenting a slow/fast decomposition leading to slow
flows, where a truncation damping and failure fre-
quency are reported. Existence of strongly modulated
response (SMR) is also determined. The procedures
are then partly paralleled to the investigation of 2-dof
NES for the bifurcation analysis, with particular atten-
tion paid to the effect of mass distribution between the
NES. To study the frequency response for 2-dof NES,
the periodic solutions and their stability are obtained
by incremental harmonic balance method and Floquet
theory, respectively. Poincaremap and energy spectrum
are specially introduced for numerical analysis of the
systems in the neighborhood of resonance frequency,
which in turn are used to compare the efficiency of
the NESs to the application of vibration suppression.
It is demonstrated that a 2-dof NES can generate extra
SMR by adjusting its mass distribution and hence to a
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great extent reduces the undesired periodic responses
and provides with a more effective vibration absorber.

Keywords Nonlinear energy sink · Nonlinear
damping ·Harmonic excitation · Incremental harmonic
balance method · Vibration suppression

1 Introduction

Effective suppression of unwanted vibrational energy
from disturbances into a main system is an important
concern in various engineering applications. One of the
popular solutions for this problem is a tuned vibration
absorber (TVA) fromFrahm [1], which generally refers
to a lightweight attachment that is coupled to the main
system via viscous damping and a linear spring. The
classical TVA has been widely studied in the literature
[2–5], and it is proved to be simple and efficient, but also
has a major drawback: Namely, it can only be effective
in the neighborhood of a single frequency. There is
thus a consideration of employing a nonlinear system
for TVA, such as the nonlinear energy sink (NES) [6,7].
In fact, most of the studies show that, depending on the
application, NESs can be farmore effective in vibration
suppression than linear absorbers [8–11].

As described in [6], an NES refers to a relatively
small and spatially localized nonlinear attachment,
which is attached to a primary linear or weakly non-
linear system for passive energy localization into itself.
Although looks very similar to the linear TVA, addition
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of an NES leads to essential changes in the dynamics
of the entire system. Mainly discussed from a vibra-
tion mitigation point of view, it was demonstrated that
systems with strongly nonlinear elements are able to
achieve dynamical regimes that are unavailable in com-
mon weakly nonlinear systems, and the attached NES
can react efficiently for broadband suppression unlike
the linear TVA. The conceptually new phenomenon
of targeted energy transfer (energy pumping) [12,13],
where a specific amount of energy was injected to the
main structure is transiently transferred to the NES in a
one-way irreversible fashion, was intensively demon-
strated and studied in Refs. [14–19], both analytically
and numerically. Experimental treatments of NES are
also numerous [20–22]. The effectiveness of NES can
be found in the applications to nonlinear beams [23,24],
buildings [25], space structures [26], and aeroelastic
system [27]. Moreover, given the phenomenon of tar-
geted energy transfer that NESs have shown, some
issues of using NESs for energy harvesting were also
discussed in recent investigations [28–30].

Recent studies concerned with the effect of a NES
on nonlinear coupled systems subject to harmonic exci-
tations were performed by Gendelman et al. [31–33].
They revealed an unusual response regime exists in
the vicinity of exact 1:1 resonance as a strongly mod-
ulated regime (SMR), which can be interpreted as a
jump between the stable branches on the slow invari-
ant manifold. For the existence of SMR, the system
must be essentially nonlinear and the mass of the NES
must be much less than the mass of the primary sys-
tem. In their further study [34], an optimization of non-
linear vibration absorber was presented numerically,
through which they demonstrated that a strongly mod-
ulated regime (SMR) can providemore efficient energy
suppression than steady-state response. The SMR is
then broadly studied in various dynamical systems and
in recent literatures [35–38]. Based on its superiority
in vibration mitigation, SMR provides a new idea and
mechanism for optimal design of NESs [39,40].

Despite the fruitful achievements obtained in the
previous studies, most of them considered only the
nonlinear stiffness in the coupling between the pri-
mary structure and the NES, and the effect of damping
has not received enough attention. However, by taking
into consideration of nonlinear dampingwith piecewise
quadratic characteristics [41] in a system comprised
of a linear oscillator subject to harmonic excitation,
Starosvetsky and Gendelman found that the nonlinear-

ity of damping provides a new and feasible solution to
eliminate the undesired periodic regimes near the main
resonance frequency of the system. On the other hand,
according to Andersen’s research, the presence of geo-
metrically nonlinear damping can lead to dynamical
instability [42]. Similar studies on nonlinear damping
could also be found in [43] and [44], where the energy
exchange and amplitudes decay are discussed. These
studies have confirmed without exception that the non-
linearity of damping, which is generally neglected in
most of the literature, plays a important role in these
coupled vibrating systems with an attached NES. Nev-
ertheless, their research leaves a lot of questions about
the insights for the effects of nonlinear damping on
the dynamics of coupled nonlinear systems, and more
importantly, they only considered the case of 1-dof
NES.

In light of the previous achievements and exist-
ing drawbacks, it is therefore only natural that this
paper will mainly be devoted to the dynamical behavior
of coupled systems with both nonlinear damping and
stiffness coupling elements, including the bifurcations
and strongly modulated regimes, in order to show the
effects of nonlinear damping. Particular interests will
be paid to the effect of a 2-dof NES on the response
regimes and performance of vibration suppression. The
structure of this paper is as follows: The dynamics of
a linear oscillator with a 1-dof NES is studied analyt-
ically in Sect. 2, with special focus on its bifurcations
and the existence SMR responses. Section 3 on the one
hand parallels for 2-dof NES the bifurcation analysis in
Sect. 2, while the response regimes near the resonance
frequency are investigated by the IHB method, mainly
considered the effect of mass distribution in the 2-dof
NES. Then, the applications of the proposed 1-dof and
2-dof NES to vibration suppression are presented in
Sect. 4. Section 5 is devoted to concluding remarks
and discussions.

2 Dynamics of a linear oscillator with a 1-dof NES

2.1 Problem formulation

Consider a harmonically forced linear oscillator with
an attached 1-dof NES depicted in Fig. 1. According to
Fig. 1, F = F0 cos (ωt) stands for the external force,
andm1 andm2 are the mass of the linear oscillator and
the NES, respectively. The linear oscillator possesses
a linear stiffness k1 and viscous damping c1, while the
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Fig. 1 System with a linear oscillator and an NES

NES is induced by a cubic nonlinear stiffness k2 and a
geometrical nonlinear damping c2.

Set c1 = 0, and let x1 and x2 denote the displacement
of linear oscillator and NES, and then, the equation of
the system writes

m1 ẍ1 + k1x1 + c2(x1 − x2)
2(ẋ1 − ẋ2)

+ k2(x1 − x2)
3 = F cos (ωt)

m2 ẍ2 + c2(x2 − x1)
2(ẋ2 − ẋ1) + k2(x2 − x1)

3 = 0

(1)

The geometrically nonlinear damping with the spe-
cific form c2(x1 − x2)2(ẋ1 − ẋ2) in Eq. (1) was also
referred in Refs. [42–44]. Reference [42] provided a
detailed realization of this type of nonlinear damping
by two linear dampers, and for sake of convenience, its
main ideas are also presented in “Appendix A”. With-
out loss of generality, it is convenient to recast Eq. (1)
into a dimensionless form of order (1); letting ε = m2

m1
and defining the following variables

τ =
√

k1
m1

t,
k2
k1

= εk, ελ = c2

√
1

k1m1
,
F0
m1

= εA

one has
ẍ1 + x1 + ελ1 ẋ1 + ελ2(x1 − x2)

2(ẋ1 − ẋ2)

+ εk(x1 − x2)
3 = εA cosωτ

εẍ2 + ελ2(x2 − x1)
2(ẋ2 − ẋ1) + εk(x2 − x1)

3 = 0

(2)

Two assumptions in Eq. (2) should be emphasized
here. Firstly, it is assumed in this system that 0 < ε �
1, whichmeans the NES is lightweight compared to the
linear oscillator. Secondly, as matter of 1:1 resonance
condition, the frequency of the harmonic excitation is
assumed to be at the near neighborhood of the eigen-
frequency of the linear oscillator in the order of ε1,

ω = 1 + εδ (3)

and make the following variable changes

u = x1 + εx2, v = x1 − x2 (4)

Owing to its definition, u represents the mass center
motion and v represents the relative motion of between
the linear and nonlinear oscillators; hence, Eq. (2)
becomes

ü + u + εv

1 + ε
= εA cos (1 + εδ) τ

v̈ + (1 + ε) λv2v̇ + u + εv

1 + ε

+ (1 + ε) kv3 = εA cos (1 + εδ) τ (5)

It is awkward to investigate directly Eq. (5); in order
to study the system analytically, we therefore need
to approximating the dynamics. A complex averaging
method is applied here, based on the work of Starosvet-
sky and Gendelman [32,35,41], by making the follow-
ing change of variables according to

ϕ1e
it = u̇ + iu, ϕ2e

it = v̇ + iv

ψ1 = ϕ1e
−iεδt , ψ2 = ϕ2e

−iεδt (6)

and omitting the fast terms from the resulting set of
equations, one can obtain the slow flow of the previous
system as

ψ̇1 + iεδψ1 + iε

2 (1 + ε)
(ψ1 − ψ2) = εA

2

ψ̇2 + iεδψ2 + i

2 (1 + ε)
(ψ2 − ψ1)

+ (1 + ε) λ

8
|ψ2|2ψ2 − 3i (1 + ε) k

8
|ψ2|2ψ2 = εA

2
(7)

This equation is called the averaged flow of the sys-
tem, and the later analysis of this sectionwill be focused
on Eq. (7).

2.2 Bifurcation analysis

Let the time derivatives of Eq. (7) to zero lead to

iεδψ1 + iε

2 (1 + ε)
(ψ1 − ψ2) = εA

2

iεδψ2 + i

2 (1 + ε)
(ψ2 − ψ1)

+ (1 + ε) λ

8
|ψ2|2ψ2 − 3i (1 + ε) k

8
|ψ2|2ψ2 = εA

2
(8)
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where ψ1 and ψ1 represent the fixed points of the sys-
tem and the solution of Eq. (8) can be expressed as

ψ1 = ψ2 − i (1 + ε) A

2εδ + 2δ + 1
9k2 + λ2

16
|ψ2|6 − 3kMδ|ψ2|4

+ 4M2δ2|ψ2|2 = M2A2 (9)

with

M = 2εδ + 1

2εδ + 2δ + 1

The second part of Eq. (9) can be simplified as

α1Z + α2Z
2 + α3Z

3 = A2 (10)

where

Z = |ψ2|2, α1 = 4δ2, α2 = −3kδ

M
, α3 = 9k2 + λ2

16M2

and therefore, taking the derivative of Eq. (10) with
respect to Z results to

3α3Z
2 + 2α2Z + α1 = 0 (11)

which upon substituting into Eq. (10) and eliminating
Z give an equation of the form A = f (λ, δ).

According to the expression given by A = f (λ, δ),
the boundary of the saddle-node bifurcation on the
[λ, A] plane is plotted in Fig. 2, where the whole plane
is separated into regions of one periodic solution and
regions of three periodic solutions by the red line of
A = f (λ, δ). In Fig. 2, the parameters are assigned
as ε = 0.1, k = 4/3, δ = 3. Figure 3 is generated by
varying the value of δ , with δ > 0 for plots in Fig. 3
and δ < 0 for plots in Fig. 3b.

On the [λ, A] plane, the saddle-node bifurcation
appears to be an ’triangle’ inside in which the sys-
tem has three fixed points. Look at the solutions that
are shown in Fig. 2 as a spot-check of the differ-
ent regions. For λ = 1, A = 2, there are three real
fixed points. However, for any parameter outside of
this region,λ = 1, A = 0.5 or λ = 1, A = 3.5, only
one of the three periodic solutions is real.

From inspection of Fig. 3, it is obvious that the
saddle-node bifurcations for the system all have the
same shape as δ varies; while the upper boundary of
the ’triangles’ is rather flat, the lower boundary could
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Fig. 2 Plot of saddle-node bifurcation on the [λ, A] plane
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Fig. 3 Saddle-node bifurcation with δ varies, a δ > 0 and b
δ < 0

be quite steep for some values of δ. At δ = 0, the
saddle-node bifurcation vanishes. For δ > 0, with the
increase of δ the area of the ’triangle’ also increases,
as a consequence, the regions of three fixed points for
a relatively wider range of excitation amplitude A for
a certain value of λ. Similar conclusions are drawn in
Fig. 3b for δ < 0. It should be noted from Fig. 3a,
b, that there is a threshold for the value of damping
λ = √

3k = 2.31, beyondwhich the saddle-node bifur-
cation vanished, and only one real fixed point exists.We
called this value as truncation damping.

Now that the fixed points are calculated in Eq. (8),
and their stability can consequently be determined. To
do this, we need to study the perturbation motion near
the fixed points; letting

ψ1 = ψ10 + Δ1, ψ2 = ψ20 + Δ2 (12)

and inserting these variables into Eq. (7), one have

Δ̇1 = − iεδΔ1 − iε

2 (1 + ε)
(Δ1 − Δ2)

Δ̇∗
1 = iεδΔ∗

1 + iε

2 (1 + ε)

(
Δ∗

1 − Δ∗
2

)
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Δ̇2 = − iεδΔ2 + i

2 (1 + ε)
(Δ1 − Δ2)

+ 3i (1 + ε) k

4
|ψ20|2Δ2 + 3i (1 + ε) k

8
ψ2
20Δ

∗
2

− λ (1 + ε)

4
|ψ20|2Δ2 − λ (1 + ε)

8
ψ2
20Δ

∗
2

Δ̇∗
2 = iεδΔ∗

2 − i

2 (1 + ε)

(
Δ∗

1 − Δ∗
2

)
− 3i (1 + ε) k

4
|ψ20|2Δ∗

2 − 3i (1 + ε) k

8
ψ∗2
20Δ2

− λ (1 + ε)

4
|ψ20|2Δ∗

2 − λ (1 + ε)

8
ψ∗2
20Δ2 (13)

Apparently, the characteristic polynomial of Eq.
(13) has the following form

μ4 + γ1μ
3 + γ2μ

2 + γ3μ + γ4 = 0 (14)

where μ is the eigenvalues whose coefficients can be
calculated by MATLAB, and

γ1 = λ (1 + ε)

2

γ2 = 3
(
9k2+λ2

)
(1+ε)2

64
Z2 − 3k

(
1+2δε+2δε2

)
4

Z

+ 8ε2δ2 + 4εδ + 1

4

γ3 = ελ

8

(
4ε2δ2 + 4εδ2 + 4εδ + 1

)
Z

γ4 = 3ε2
(
9k2 + λ2

)
(2εδ + 2δ + 1)2

256
Z2

− 3ε2kδ (2εδ + 1) (2εδ + 2δ + 1)

8
Z

+ ε2δ2

4
(2εδ + 1)2 (15)

where Z = |ψ20|2.
The occurence of Hopf bifurcation implies

μ = ± iΩ (16)

Employing Eqs. (14), (16) and separating the results
into real and imaginary parts lead to

Ω4 − γ2Ω
2 + γ4 = 0,Ω

(
γ1Ω

2 − γ3

)
= 0 (17)

and then eliminating Ω in the above equation, we
deduce

γ 2
3 − γ2γ1γ3 + γ4γ

2
1 = 0 (18)
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λ

A Ustable

Stable

Fig. 4 Bifurcations for ε = 0.1, k = 4/3, δ = 0.5, solid line:
Hopf bifurcation, dashed line: saddle-node bifurcation

In view of Eq. (15), MATLAB was then applied to
transform Eq. (18) into the following polynomial form
with respect to Z in accordancewith its power decrease,
and determine each coefficients vi , for

v1Z
2 + v2Z + v3 = 0 (19)

and solving for z in this equation leads to

Z1,2 =
− v2 ±

√
v22 − 4v1v3

2v1
(20)

and plugging solutions Eq. (20) into Eq. (10), the
boundaries of stability are finally given by

α1Zi + α2Z
2
i + α3Z

3
i + α4=0, i =1, 2 ⇒ A = f (λ)

(21)

Figure 4 depicts the bifurcation diagram for ε =
0.1, k = 4/3, δ = 0.5. The Hopf Bifurcation is char-
acterized as the solid curve that separates the stable
regions from unstable ones on the [λ, A] plane. In cer-
tain regions, the coexistence of Hopf and saddle-node
bifurcation could also be observed.

The amplitude response of the system is shown in
Fig. 5,withλ = 2.25 for the plots inFig. 5a andλ = 0.5
in Fig. 5b, respectively. The stability of solutions along
the curves is spot-checked for their chosen parameters
and the unstable ones are marked as stars. One can nat-
urally find that in Fig. 5a, there is only Hopf bifurca-
tion, while in Fig. 5b, both of the Hopf and saddle-node
bifurcations exist.
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Fig. 5 Amplitude response. a λ = 2.25, b λ = 0.5, N20 stands
for the value of |ψ20|
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Fig. 6 Frequency response, ε = 0.1, k = 4/3, λ = 0.5, A = 1

Figure 6 illustrates the frequency response for the
system in which the parameters are assigned as ε =
0.1, k = 4/3, λ = 0.5, A = 1. Near the resonance fre-
quency, the coexistence of Hopf and saddle-node bifur-
cations could be observed. More importantly, some of
the solutions with large amplitudes become unstable;
from this sense, the vibrational response of the system
is reduced by the instabilities of these solutions. How-
ever, on the left hand of the main resonance frequency,
for some values of δ, the system has only one stable
periodic solution. Obviously, these periodic solutions
can lead to the failure of vibration suppression for the
system and should be avoided as much as possible. To
emphasize this phenomenon, we may called a solution
in this case as undesired solution and δ the failure fre-
quency, and in Fig. 6, for example, the interval of the
failure frequency is δ ∈ [− 0.75, − 0.45].

2.3 Strongly modulated response

The combination of essential nonlinearity togetherwith
the rich bifurcation phenomenon brings about a possi-

bility of response regimes referred to Starosvetsky and
Gendelman as strongly modulated response (SMR),
which is qualitatively different from steady-state and
weakly modulated responses existing in the vicinities
of averaged flow equations in conditions of 1:1 res-
onance. The goal of this section is to determine the
frequency range for the existence of the SMR.

The two first-order equations in system (7) can be
rewritten to a second-orderODEwith respect to the sin-
gle variable ψ2. Without confusion, we hereafter drop
the subscript of ψ2 for simplicity

ψ̈ + d

dt

[
i (1 + 4εδ)

2
ψ + (λ − 3ik) (1 + ε)

8
|ψ |2ψ

]

− ε

2

[
δ (1 + 2εδ) − (3k + iλ) (1 + 2δ + 2εδ)

8
|ψ |2

]
ψ

= iε (1 + 2εδ) A

4
(22)

As mentioned by the assumption that 0 < ε � 1, it
is therefore convenient to expand Eq. (22) by means of
multiple scales approach with respect to ε according to
the substitution; hence, one have

ε0 : D2
0ψ + D0

(
i

2
ψ + λ − 3ik

8
|ψ |2ψ

)
= 0

ε1 : 2D0D1ψ + D0

(
2iδψ + λ − 3ik

8
|ψ |2ψ

)

+ D1

(
i

2
ψ + λ − 3ik

8
|ψ |2ψ

)

− δ

2
ψ + (iλ + 3k) (1 + 2δ)

16
|ψ |2ψ = i A

4
(23)

Considering first the order ε0 of Eq. (23), a trivial
integration gives

D0ψ + i

2
ψ + λ − 3ik

8
|ψ |2ψ = C (τ1, · · ·) (24)

whose fixed points are written as

i

2
ψ + λ − 3ik

8
|ψ |2ψ = C (25)

or equivalently

9k2 + λ2

16
Z3 − 3k

2
Z2 + Z = 4C2 (26)

123



Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping 739

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

N

4|
C

|2

N1

N2

Nu

Nd
k=4/3
λ=0.8

Fig. 7 SIM projection, solid line: stable branch, dashed line:
unstable branch, arrow: jump between the stable branches

where Z = N 2 = |ψ |2. Taking the derivative of the
each side with respect to Z , then

3

16

(
9k2 + λ2

)
Z2 − 3kZ + 1 = 0 (27)

with the following roots being

Z1,2 = 1

9k2 + λ2

⎛
⎝8k ∓ 4

√
k2 − λ2

3

⎞
⎠

⇒ N1,2 =

√√√√√ 1

9k2 + λ2

⎛
⎝8k ∓ 4

√
k2 − λ2

3

⎞
⎠
(28)

Equation (26) was used to generate the slow invari-
ant manifold (SIM) projection on the [N , 4C2] plane
shown in Fig. 7. N1 and N2 in Eq. (32) were used to plot
the fold lines of the SIM, and they define the fold lines
that correspond to the locations on the SIM at which
the trajectories of the SIM may jump between stable
branches. Note that in the triple-valued region, the left
and right are stable and the middle branch is unstable.
The SIM could be considered to be the space in which
the system response occurs on the slow time scale, and
the state of the system canmove only on the SIM.When
a statemoves up along the left stable branch to N1, since
the instability of the middle branch, the state may jump
to the point Nu on the right branch with the same value
of C . Similarly, a state that approaches to N2 may also
jump to Nd . The jump on the SIM between its stable
branches gives a fundamental mechanism of SMR.

Now, let’s study the ε1 order equation of Eq. (23);
assuming τ0 → +∞, the ε1 equation can be simplified
to

D1

(
i

2
ψ + λ − 3ik

8
|ψ |2ψ

)
− δ

2
ψ

+ (iλ + 3k) (1 + 2δ)

16
|ψ |2ψ = i A

4
(29)

letting

Γ = δ

2
ψ + i A

4
− (iλ + 3k) (1 + 2δ)

16
|ψ |2ψ

the equation becomes

(
i

2
+ λ − 3ik

4
|ψ |2

)
∂ψ

∂τ1
+ λ − 3ik

8
ψ2 ∂ψ∗

∂τ1
= Γ

(30)

and taking the complex conjugate of Eq. (30) and sub-
stituting to Eq. (30), one can derive

∂ψ

∂τ1
= 2Γ

(
λ+3ik

2 |ψ |2 − i
) − λ−3ik

2 ψ2Γ ∗
3
16

(
9k2 + λ2

) |ψ |4 − 3k|ψ |2 + 1
(31)

Considering ψ = Neiθ , the equation can then be
written as

2g (N )
∂N

∂τ1
= −λ

4
N 3 − 3k

4
N 2A cos θ

+ λ

4
N 2A sin θ + A cos θ

2g (N )
∂θ

∂τ1
= −27k2 + 3λ2

16
(1 + 2δ) N 4

+ 3k

4
(1 + 8δ) N 2 + 9kN A sin θ

4

+ 3λN A cos θ

4
− 2δ − A sin θ

N
(32)

where

g (N ) = 3

16

(
9k2 + λ2

)
N 4 − 3kN 2 + 1

For sake of convenience, let f1 (N , θ) and f2 (N , θ)

represent the right hands of the first and second equa-
tion for system (32). As the fold lines occur when
g (N ) = 0, the equations are therefore can be rescaled
time by the function g (N ) to the following flow with-
out singularities
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N ′ = f1 (N , θ)

θ ′ = f2 (N , θ) (33)

The phase portraits for systemwith different param-
eters are shown Fig. 8 where the arrows denote the
direction of the trajectories with time increase. On the
lower fold line, the two folded singularities correspond-
ing to the value of θ at which θ ′ = 0 are denoted by�1

and �2 in each figure. The phase portraits only show
stable trajectories on the SIM.

In Fig. 8a, we can see that there is an interval of θ

bounded by the folded singularities for which all phase
trajectories can arrive to and jump from N1. See also
Fig. 8b, c where an attractor exists in the lower or the
upper branch, not every trajectory that starts from the
lower fold of the SIM could reach the initial interval
[�1,�2]; according to Ref. [41] this interval is called
the jump interval J . For those pointsmapped into J , the
phase trajectory jumps from a point of J to the upper
branch of the SIM, then it moves along the line of the
super-slow flow to the upper fold line, and then it jumps
back to the lower branch and moves to the lower fold
line, commencing on one of the points of the interval R
in order to enable the next jump. This fact suggests the
possible existence of SMR, and to simplify this pro-
cedure, a 1D map from J to itself can be conducted
to determine the parametric zones of existence of the
SMR.

Taking into account that C is constant, Eq. (30) can
be rewritten as

9k2 + λ2

16
Z3
1,2 − 3k

2
Z2
1,2 + Z1,2

= 9k2 + λ2

16
Z3
u,d − 3k

2
Z2
u,d + Zu,d (34)

and thus, solving the equation gives

Nu =

√√√√√ 8

9k2 + λ2

⎛
⎝k +

√
k2 − λ2

3

⎞
⎠

Nd =

√√√√√ 8

9k2 + λ2

⎛
⎝k −

√
k2 − λ2

3

⎞
⎠ (35)

In addition, according to Eq. (25), the phase angle
of the fixed point can be calculated

θ + tan−1
[
4 − 3kZ

λZ

]
= argC (36)
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Fig. 8 Phase portraits with δ varying, a δ = 0, b δ = −2, c
δ = 2.5. Rest parameters are ε = 0.1, k = 4/3, λ = 0.5, A = 1

and then, manipulations between Eqs. (35) and (36)
yield the phase angle at Nu on the upper stable branch
from the jump at N1, together with Nd on the lower
stable branch from the jump at N2, let
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Fig. 9 1D mapping for δ = 0
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Fig. 10 1D mapping by varying δ from −5.85 to 2.68. a δ =
− 5.85, b δ = − 2, c δ = 2.5, d δ = 2.68

Pi = 4 − 3kZi

λZi
, i = 1, 2, u, d

and the relations then write

θu,d = θ1,2 + tan−1
[

P1,2 − Pu,d

1 + P1,2Pu,d

]
(37)

The 1D map is shown in Fig. 9. Furthermore, by
varying values of δ, Fig. 10 is generated.

Fig. 11 Poincare section and time response of the linear oscil-
lator for δ = 0, existence of SMR regime

Fig. 12 System of a linear oscillator and an attached 2-dof NES

From varying δ and observing when trajectories
from the �1 and �1 interval no longer returned, the
SMR could be found to exist in the intervals of δ ∈
[− 5.85, 2.68]. Let δ = 0, an example of the SMR
regime is plotted in Fig. 11, and for the effectiveness
of SMR considered from vibration suppression point
of view will be discussed in Sect. 4.

3 Dynamics of a linear oscillator with a 2-dof NES

This section parallels for 2-dof NES the development
in Sect. 2 but is far more complicated in its dynamics.
Considering first the particular condition of ω = 1 (the
frequency of excitation equals to the natural frequency
of linear oscillator), the bifurcations of the system are
studied similar to that we have done in the case of 1-dof
NES. Instead of analytical treatment, an IHB method
is used for its simplicity to understand the frequency
response of the system.

3.1 Model description

The system considered in this section is depicted in
Fig. 12.

According to Fig. 12, the relations among the mass
of these oscillators could be expressed as
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m2 + m3 = εm1,m2 = αεm1,m3 = (1 − α) εm1

(38)

and here ε is the ratio between the total mass of the
NES and the mass of the linear oscillator and α stands
for the mass distribution of the 2-dof NES.

Taking similarly the procedure carried in Sect. 2, one
can immediatelywrite the dimensionless formequation
as follows

ẍ1 + x1 + εk1(x1 − x2)
3

+ ελ1(x1 − x2)
2 (ẋ1 − ẋ2) = εA cos (ωτ)

α ẍ2 + k1(x2 − x1)
3 + k2(x2 − x3)

3

+ λ1(x2 − x1)
2 (ẋ2 − ẋ1)

+ λ2 (x2 − x3)
2 (ẋ2 − ẋ3) = 0

(1 − α) ẍ3 + k2(x3 − x2)
3

+ λ2 (x3 − x2)
2 (ẋ3 − ẋ2) = 0 (39)

3.2 Analytical treatment at ω = 1

Setting ω = 1 and utilizing the variable change
ẋi + i xi = ϕi eiτ , i = 1, 2, 3, one consequently has
the slow dynamical flow of the system

ϕ̇1 + εp1
8

|ϕu |2ϕu = εA

2

ϕ̇u − i

2
(ϕ1 − ϕu) + 1 + αε

8α
p1|ϕu |2ϕu

− p2
8α

|ϕv|2ϕv = εA

2

ϕ̇v + i

2
ϕv − p1

8α
|ϕu |2ϕu + p2

8α (1 − α)
|ϕv|2ϕv = 0

(40)

where

pi = λi − 3iki , i = 1, 2, ϕu = ϕ1 − ϕ2, ϕv = ϕ2 − ϕ3

Considering first the fixed points of system (40) and
letting the time derivative of Eq. (40) to zero yield

εA

2
− εp1

8
|ϕu |2ϕu = 0

1 + αε

8α
p1|ϕu |2ϕu − i

2
(ϕ1 − ϕu) − p2

8α
|ϕv|2ϕv = εA

2
i

2
ϕv − p1

8α
|ϕu |2ϕu + p2

8α (1 − α)
|ϕv|2ϕv = 0 (41)

which finally implies the following decoupled form

|ϕu |2ϕu = 4A

p1(
p2|ϕv|2
4 (1 − α)

+ iα

)
ϕv = A

ϕ1 = ϕu + (1 − α) ϕv − i A (42)

It can be noted that for the first equation in (42),
regardless of the parameters change, there exists only
one solution for ϕu . In addition, according to the third
equation in (42), once the value ofϕu andϕv is uniquely
given, the value of ϕ1 is then also uniquely determined.
Therefore, the numbers of fixed points depend on the
numbers of roots in the second equation of (42). Rewrit-
ing the second equation of (42) gives

λ22 + 9k22
16(1 − α)2

|ϕv|6− 3αk2
2 (1 − α)

|ϕv|4+α2|ϕv|2−A2 = 0

(43)

It is not difficult to observe from Eq. (43) that the
number of solutions is only related to the second part of
the nonlinear coupling λ2 and k2, the mass distribution
of theNESα and the amplitude of excitation A; in other
words, the saddle-node bifurcation will also related
only to these parameters. The equation has the form

η1Z + η2Z
2 + η3Z

3 + η4=0 (44)

with Z = |ϕv|2, and to determine the numbers of roots,
the Cardano discriminant Δ of Eq. (44) can be written
as

Δ =
(

η32

27η33
− η1η2

6η23
+ η4

η3

)2

+
(

η1

3η3
− η22

9η23

)3

(45)

and owing to the values of the discriminant: When
Δ > 0, Eq. (44) has only one real root, when Δ = 0,
Eq. (44) has three real roots and at least two of them
are equal, and when Δ < 0, Eq.(44) has three unequal
real roots. In this way, saddle-node bifurcation could
be found by setting Δ = 0.

Figure 13 shows the values of the discriminant as
function of external excitation and mass distribution of
the NES, respectively. Either the change of the mass
distribution α or the amplitude A can lead to saddle-
node bifurcation. This is totally different from the case
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Fig. 13 Values of the Cardano discriminant, as function of a the
amplitude of excitation A and b mass distribution of the NES
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Fig. 14 Saddle-node bifurcation on the [λ2, A] plane

of single dof NES where there is no saddle-node bifur-
cation at ω = 1.

The saddle-nodebifurcation on the [λ2, A] andplane
is depicted in Fig. 14. The plots shows a quite sim-
ilar shape to the case of single dof NES as a ’trian-
gle’ bounded by which there are three fixed points, and
the critical value of damping λ2 = √

3k could also
be found for the vanish of saddle-node bifurcation. An
interesting phenomenon is that with the increase of α

, the ’triangle’ moves up on the plane and then turns
back down after reaching the peak at α = 0.7.

Studying more precisely the effect of α on the
saddle-node bifurcation of the system, Fig. 15 shows
the bifurcation diagram on the [λ2, α] plane. For the
regions bounded by the curve, there are three fixed
points and the bifurcation diagram turns out to be more
complicated than the one on the [λ2, A]. The symmetric
relation for the dependence of saddle-node bifurcation
on the mass distribution α can be immediately found.
On the other hand, the whole plane can be divided into
three main regions (see the area 1, area 2 and area 3
in Fig. 15) by the two vertical line of λ2 = 1.41 and
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α

λ2 = 1.41 λ2 = 2.31
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k2 = 1.33
A = 0.1

Area 1 Area 2 Area 3

Fig. 15 Saddle-node bifurcation on the [λ2, α] plane

λ2 = 2.31, and by varying the values of α, the saddle-
node bifurcation appears two times in area 1, four times
in area 2 and vanishes in area 3.

Observing the perturbation motion near the fixed
points, letting

ϕ1 = ϕ10 + Δ1, ϕu = ϕu0 + Δu, ϕv = ϕv0 + Δv (46)

and applying these relations to Eq. (40), one have

Δ̇1 = − εp1
8

(
2 |ϕu0|2 Δu + ϕ2

u0Δ
∗
u

)
Δ̇∗

1 = − εp∗
1

8

(
2 |ϕu0|2 Δ∗

u + ϕ∗
u02Δu

)
Δ̇u = p2

8α

(
2 |ϕv0|2 Δv + ϕ2

v0Δ
∗
v

)
+ i

2
(Δ1 − Δu)

− 1 + αε

8α
p1

(
2 |ϕu0|2 Δu + ϕ2

u0Δ
∗
u

)
Δ̇∗

u = p∗
2

8α

(
2 |ϕv0|2 Δ∗

v + ϕ∗
v02Δv

)
− i

2

(
Δ∗

1 − Δ∗
u

)
− 1 + αε

8α
p∗
1

(
2 |ϕu0|2 Δ∗

u + ϕ∗
u02Δu

)
Δ̇v = − i

2
Δv − p1

8α

(
2 |ϕu0|2 Δu + ϕ2

u0Δ
∗
u

)
− p2

8α (1 − α)

(
2 |ϕv0|2 Δv + ϕ2

v0Δ
∗
v

)

Δ̇∗
v = i

2
Δv − p∗

1

8α

(
2 |ϕu0|2 Δ∗

u + ϕ∗
u02Δu

)
− p∗

2

8α (1 − α)

(
2 |ϕv0|2 Δ∗

v + ϕ∗
v02Δv

)
(47)

and the characteristic polynomial of the above linear
system has the form
μ6 + γ1μ

5 + γ2μ
4 + γ3μ

3 + γ4μ
2 + γ5μ + γ6 = 0

(48)
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Fig. 16 Bifurcation diagrams, dot line: Hopf bifurcation, solid
line: saddle-node bifurcation

where μ is the eigenvalues whose coefficients can be
calculated by MATLAB.

The bifurcation diagram is depicted in Fig. 16,
where the Hopf bifurcation that separates stable areas
Ws from unstable areas Wu is represented by the dot
line, and the saddle-node bifurcation for this particular
parameter is plotted by the solid line. Instead of the sim-
ple curve that has shown in the case of 1-dof NES , the
Hopf bifurcation (see from the dot line) becomes rather
intricate now. The two main branches, corresponding
to high amplitude and low amplitude, can now be found
in the diagram, and the coexistence of Hopf and saddle-
node bifurcation could be found at low-amplitude area.
When the excitation amplitude increases, the system
may have several bifurcations even if there is only one
fixed point. To specify this, Fig. 17 shows two example
of the amplitude response for α = 0.6, ε = 0.1, k1 =
k2 = 1.33, λ1 = 0.5. In Fig. 17a, λ2 = 2.5, there
is only one fixed point through A variation, while in
Fig. 17b λ2 = 0.5, there could be three fixed points for
some values of A. However, in both cases, the system
can occur several times of Hopf bifurcation.

Finally, we plot the response of the system as a func-
tion ofα in Fig. 18. Adjusting themass distributionα of
the NES brings about rich response regimes, together
with a huge influenceon their amplitude.With the effect
of saddle-node and Hopf bifurcation, the number and
stability of solutions change; consequently, that is, the
interval for three fixed points is α ∈ [0.509 0.651] ∪
[0.834 0.916], while the instability of these solutions
occurs for α ∈ [0.389 0.741] ∪ [0.834 0.916]. Note
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Fig. 17 Amplitude response for α = 0.6, ε = 0.1, k1 = k2 =
1.33, λ1 = 0.5, a λ2 = 2.5, b λ2 = 0.5, Nv0 stands for the value
of |φv0|
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Fig. 18 Response of the system as a function of α

also that the response curve bends from both sides to
the middle and creates a dent in the middle area. This
dent, if considered from a vibration suppression point
of view, provides a effective reduction for the system
response.

3.3 Response analysis
using incremental harmonic balance method

The previous analytical treatment is carried out based
on the particular condition ω = 1; when the fre-
quency of excitation changes, the dynamics of the sys-
tem becomes rather more complicated, which in turn
brings difficulties for the analytical study of system
(39). Take this into consideration, an incremental har-
monic balance (IHB)method [45–47] is appliedmainly
in this section for its simplicity in the analysis of multi-
dof oscillating system.

Making a change of variables according to τ=ωt ,
the system becomes

ω2M̄ Ẍ + ωC̄n Ẋ + (
K̄ + K̄n

)
X = F̄ cos τ (49)
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where

M̄ =
⎡
⎣ 1

ε

α

1 − α

⎤
⎦ , K̄ =

⎡
⎣ 1

ε

0
0

⎤
⎦ , F̄ =

⎡
⎣ A
0
0

⎤
⎦

Let X0, F0, ω0 be a set of solution for Eq. (49), then
the first step of IHB is the incremental process, con-
sider an increment in the vicinity of X0, F0, ω0 of the
following form

X = X0 + ΔX, ω = ω0 + Δω, F̄ = F̄0 + ΔF (50)

inserting Eq. (50) into (49) and omitting the high-order
terms yield

ω2
0M̄ΔẌ + ω0C̄n0ΔẊ

+ (
K̄ + 2C̄k0ω0 + 3K̄n0

)
ΔX

= R̄ − (
2ω0M̄Ẍ0 + C̄n0Ẋ0

)
Δω + ΔF cos τ (51)

with

C̄k0 = C̄k (X0) =
⎡
⎣ λ1C1 − λ1C1 0

− λ1C1 λ1C1 + λ2C2 − λ2C2

0 − λ2C2 λ2C2

⎤
⎦

C1 = (x1 − x2) (ẋ1 − ẋ2) ,C2 = (x2 − x3) (ẋ2 − ẋ3)

and here R̄ is called error vector, if X0, F0, ω0 is the
precise solution of Eq. (49), and one has R̄ = 0. Par-
ticularly, the expression of R̄ is expressed as

R̄ = F̄0 cos τ − ω2
0M̄Ẍ0 − ω0C̄n0Ẋ0 − (

K̄ + K̄n0
)
X0

(52)

The next step of IHB is the harmonic balance pro-
cess, and assume the solutions of system (49) can be
expressed in the form of trigonometric series

xk =
n∑

i=1

aki cos (2i − 1) τ

+
n∑

i=1

bki sin (2i − 1) τ = DNk

Δxk =
n∑

i=1

Δaki cos (2i − 1) τ

+
n∑

i=1

Δbki sin (2i − 1) τ = DΔNk (53)

where

Nk = [ak1, ak2 · · · , akn, bk1, bk2, · · · bkn]
ΔNk = [Δak1, . . . , Δakn,Δbk1, . . . Δbkn]

D = (cos τ, cos 3τ, . . . , sin τ, sin3τ, . . .)

rewriting Eq. (53) in matrix form to have

X0 = SN,ΔX = SΔN (54)

with

N = [
NT
1 NT

2 NT
3

]T
ΔN = [

ΔNT
1 ΔNT

2 ΔNT
3

]T
S = dia [D,D, . . .D]

Substituting Eq. (54) into Eq. (51) and employing
the following relation∫ 2π

0
δ(ΔX)T [ω2

0M̈ΔẌ + ω0C̄n0ΔẌ

+ (K̄ + 2C̄k0ω0 + 3K̄n0)ΔX]dτ
=

∫ 2π

0
δ(ΔX)T [R̄ − (2ω0M̈Ẍ0

+ C̄n0Ẍ0)Δω + ΔF cos τ ]dτ (55)

one finally obtains the algebraic equation

KmcΔN = R + RmcΔω + R f ΔF (56)

where

Kmc = ω2
0M + ω0Cn0 + K + 2ω0Ck0 + 3Kn0

R f =
∫ 2π

0
ST cos τdτ

R = F −
(
ω2
0M + ω0Cn0 + K + Kn0

)
N

Rmc = − (2ω0M + Cn0)N,

M =
∫ 2π

0
ST M̄S̈dτ

K =
∫ 2π

0
STKSdτ

Kn0 =
∫ 2π

0
ST K̄n0Sdτ

Cn0 =
∫ 2π

0
ST C̄n0Ṡdτ

Ck0 =
∫ 2π

0
ST C̄k0Sdτ

F =
∫ 2π

0
ST F̄0 cos τdτ
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Fig. 19 Frequency response of the system, N1 : amplitude of the
linear structure, N21: amplitude for the relative motion of first-
order NES to the linear structure, N32: amplitude for the relative
motion of second-order NES to the first-order NES

In order to study the frequency response of system
(39), one may fix the amplitude of the external excita-
tion. Thus, let ΔF = 0 in Eq. (56), and then, Eq. (56)
can be simplified as

KmcΔN = R + RmcΔω (57)

Figure 19 shows an example for the frequency
response of the system. One may first notice the com-
plex saddle-node bifurcation here, under whose influ-
ence there can simultaneously exist up to five periodic
solutions. The curves bend to the right as the amplitude
increases and hence show a harden-type nonlinearity.
Note also that the bending phenomenon acts extremely
noticeable for the curve of the linear structure; as a
result, the amplitude of the linear structure near the
main resonance frequency is also significantly reduced.
To this extent, the effectiveness of the 2-dof NES for
vibration reduction could be found in the vicinity of the
main resonance frequency.

Once the periodic solutions are obtained, their sta-
bility can consequently be studied by applying Floquet
theory to the perturbation motion that is defined by

X = X0 + ΔX (58)

which upon employing Eq. (49) leads to

ω2M̈ΔẌ+ωC̄n0ΔẌ+(
K̄ + 2C̄k0ω + 3K̄n0

)
ΔX = 0

(59)

According to Floquet theory, the above system can
be rewritten as

Ẏ = Q (τ )Y (60)

where

Q (τ ) =
[

0 I
− 1

ω2 M̈
−1

(
K̄ + 2ωC̄k0 + 3K̄n0

) − 1
ω
M̈−1C̄n0

]

Y =
[

ΔX
ΔẌ

]
In light of the periodicity of the solution X0, with the
period T = 2π , the related matrix Q (τ ) must also be
periodic, with period the same as X0. Suppose a certain
solution of Eq. (60) to be

y = [Y1,Y2 . . .Yn] =
⎡
⎢⎣
y11 . . . y1n
...

. . .
...

yn1 · · · ynn

⎤
⎥⎦ (61)

SinceQ (τ + T ) = Q (τ ), y (τ + T ) solvesEq. (61)
as well. Furthermore, the two solutions have the rela-
tionship,

y (τ + T ) = Py (τ ) (62)

where P is called the transition matrix between the
solutions

For Eq. (62), Floquet theory claims that if the spec-
tral radius of P less than 1, then the periodic solutions of
the systemare asymptotic stable, and vise versa.Hence,
the problem now is to calculate the spectral radius of
P for given solutions.

The transition matrix P can be calculated by means
of the following approximate method. First of all, let
the period of the system be discretized equally into n
intervals, for the kth interval [τk, τk+1], and the value
of Q (τ ) is approximated by the constant matrix. Let
Qk = Q (τk), the local transition matrix Pk from τk to
τk + 1 writes

Pk = ehQk = I +
n∑
j=1

(hQk)
j

j ! (63)

and multiplying the local transition matrix together
from k = 1 to n leads to the value of P

P = n
Π
i=1

Pk (64)
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Fig. 20 Floquet analysis for the frequency response, solid line:
stable solutions, star: unstable solutions
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Fig. 21 Floquet analysis for the frequency response with unde-
sired periodic response eliminated, solid line: stable solutions,
star: unstable solutions

Now the transition matrix P is calculated by Eq.
(64), and its eigenvalues can be checked. In this way,
the stability of the periodic solutions can finally be
investigated. Taking into consideration the frequency
response of the linear oscillator depicted in Fig. 19,
the main results of its stability analysis are shown in
Fig. 20. There are two regions of unstable solutions near
natural frequency of the linear oscillator, stable peri-
odic solutions which exist in the small frequency range
between the two regions, or over the intervals which
deviate from the natural frequency. Although the sta-
ble periodic solutions on the left hand of the main res-
onance frequency still exist, their amplitudes are much
more desirable than those in the case of system with
1-dof NES. Figure 21 illustrates that, by appropriately
designing the parameters of the 2-dof NES, the peri-
odic solutions become unstable; hence, the undesired
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Fig. 22 Poincare section for the system with red area represents
the steady state, x1, v1: the displacement andvelocity of the linear
oscillator, x, v: the displacement and velocity of the center of
mass of the NES

response on the left hand of the main resonance fre-
quency could be eliminated.

Studying the response regimes near the main reso-
nance frequency, the Poincare sections are generated
in Fig. 22 for system with different parameters of
δ = − 0.5,− 0.3, 0, 0.3, 0.5 (with corresponding exci-
tation frequencies determined byω = 1+εδ). Figure 22
shows that when δ = − 0.5, δ = 0 and δ = 0.5, the
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system possesses periodic response. When δ = − 0.3,
the response of the linear oscillator is periodic, whereas
the response of the NES now becomes chaotic. When
δ = 0.3, both the response of the linear oscillator and
the NES are chaotic. One major conclusion that can be
drawn from the plots as shown in Fig. 22 is that the
response regimes between the linear oscillator and the
NES are not always consistent, which is significantly
different from the case in a system with a 1-dof NES.

3.4 SMR in the system with a 2-dof NES

Obviously, the rich dynamics in the coupled system
with a 2-dof NES brings a possibility for the existence
of SMR. This subsection aims at studying the SMR in
the case of 2-dof NES. In general, such a challenging
problem is hardly possible to be treated analytically
similar to the procedures we have outlined in the 1-dof
case, since the slow invariant manifold is not solvable.
However, we can still perform direct numeric simula-
tion to find some useful conclusions. For the sake of
numeric simulation, the value ε = 0.1 and zero initial
conditions have been chosen for all the examples, and
the other parameters will be reported case by case.

At first, one may naturally come up with the fol-
lowing question: Since a 2-dof NES can produce much
richer dynamics than the 1-dof one, can it also gener-
ate extra SMR in the system? This question can be
answered by comparing the responses of the linear
oscillator in 1-dof and 2-dof NES systems with sim-
ilar parameters. To establish reasonable comparisons,
we make arrangements for the parameters of the sys-
tems according to the following principle: Given the
parameters of the 2-dof NES system, the parameters of
the compared 1-dof NES system will be obtained by
setting the mass distribution α = 1 in the 2-dof NES
system. Based on this setting, we adjust the value of
λ2, k2, and α for a 2-dof NES to see if there exists
extra SMR when the response regime is not SMR in
the compared 1-dof NES system.

Figure 23a, b presents two examples of the compar-
ison. As shown in Fig. 23a, the response regimes of
the 1-dof and 2-dof NES system are simple periodic
(no modulation) and strongly modulated, respectively.
Similar results are found fromFig. 23b; for the response
regime of the 1-dof NES system is weakly modulated
and in 2-dof NES system is stronglymodulated. Hence,
a 2-dof NES can generate extra SMR in the system by
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Fig. 23 Time response for system of 1-dof and 2-dof NES, x1:
the displacement of the linear oscillator. The parameters of the
2-dof NES system: a A = 1, δ = −1, λ1 = 0.5, k1 = 1.33,
λ2 = 0.2, k2 = 0.5, α = 0.6, b A = 0.3, δ = 0.5, λ1 = 1,
k1 = 1, λ2 = 0.1, k2 = 1, α = 0.6

Table 1 Response regimes for different external excitation in
system with 1-dof and 2-dof NES, and the response regimes are
divided into the following three classes, S strongly modulated,
W weakly modulated, P simple periodic (no modulation)

A δ α = 0.6 α = 0.7 α = 0.8 α = 1

0.1 − 1 S S S S

0 P P P P

0.5 W W W W

0.3 − 1 W W W W

0 W W W W

0.5 S S S W

1 − 1 P P P P

0 S S P P

0.5 S S S S

adjusting its parameters λ2, k2, and α. Given the gener-
ated extra SMR in the system, one can also see that the
average amplitude and vibrational energy of the linear
oscillator can be reduced significantly. The creation of
the extra SMR in 2-dof NES can be explained as fol-
lows: On the one hand, the existence of SMR is closely
related to the dynamical instability of the system. On
the other hand, as it was indicated in our previous anal-
ysis, a 2-dof NES can to a large extent enhance this
instability near the main resonance frequency of the
system, which as a result provides more possibilities
for the emergence of SMR.
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Fig. 24 Time response for system with a 2-dof NES as mass distribution α varies, system parameter: A = 0.1, δ = 0, λ1 = 0.5,
k1 = 1.33, λ2 = 1.5, k2 = 1.33, x1, x2, x3: the displacement of the linear oscillator, the first and second mass of the NES

Further information of the comparisons is summa-
rized in Table 1, where the response regimes of 1-dof
and 2-dof NES systems are reported under different
external excitation conditions. The other parameters in
table are chosen as λ1 = 1, k1 = 1, λ2 = 0.1, k2 = 1.
Clearly enough, the introduction of a 2-dof NES brings
extra SMR to the system. In most cases, the response
regimes in these systems are consistent, which to a
certain extent also implies the similarity on the basic
mechanisms that govern each response regime in these
systems. Hence, one should always keep in mind that
in order to gain the extra SMR, the parameters of the
2-dof NES should also be appropriately chosen.

Another set of numeric simulation was performed
to reveal the dependence of the response regime on the
value of the mass distribution α of the 2-dof NES. The
results are illustrated in Fig. 24. As one can see, the
variation of α in the NES can bring about significant

change in the response of the linear oscillator and the
NES. In addition, the linear oscillator and the NES can
share quite different responses, as verified by the either
of the cases that have shown for α = 0.6 or α = 0.7,
and the response regime is weakly modulated in the
linear oscillator, but strongly modulated in each mass
of the NES.

The following points should be emphasized: First of
all, an appropriately designed 2-dof NES can generate
extra SMR for the coupled system. Second, the mass
distribution α of the 2-dof NES plays an important role
in the dynamics of the system. Third, the consistence
breaking could occur in the response regimes between
the linear oscillator and the 2-dof NES. These conclu-
sions are generally useful and helpful in the problem
of vibration suppression that we are going to solve in
the next section.
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4 Application to vibration suppression

Motivated by the previous study, this section concerned
with the above development about 1-dof and 2-dofNES
to the application of vibration suppression. The goal
of this section is to develop an one-parametric tuning
procedure of strongly nonlinear vibration absorber of
the previous described dynamical system for 1-dof and
2-dof NES,with numerical verification of the effective-
ness of 2-dof NESs on the 1-dof ones.

Due to the rich response regimes (periodic, quasiperi-
odic or chaotic) that exist in the vicinity of themain res-
onance frequency, the amplitude of the system response
could also be time dependent. Thus, we will use the
energy spectrum instead of the amplitude to assess the
efficiency of the nonlinear absorbers. The energy spec-
trum is obtained by calculating the average energies of
the linear oscillator over period of time exceeding the
period of modulation by at least an order of magnitude.
That is,

E =
〈
1

2
ẋ21 + 1

2
x21

〉
t

(65)

and from this sense, the main purpose of the optimiza-
tion of an absorber is reducing the energy of the linear
oscillator expressed in Eq. (65). On the other hand, the
trick here is to set the parameters to obtain nonperiodic
solutions.

Before we embark on tuning process performance,
it is necessary and convenient to let some of the system
parameters be fixed when the rest varies. For simula-
tions hereafter in this section, we set the fixed param-
eters as ε = 0.1, A = 0.3, the response of the systems
is obtained by direct numerical integration, and then,
the value of E defined in Eq. (65) for each system is
calculated by taking their average values over the time
interval t ∈ [2000, 3000].

Let us first consider the case of 1-dof NES, and to
evaluate the importance of damping, let k = 1, the
energy spectrum for system with λ = 1.8 and λ = 0.2
is generated in Fig. 25, respectively. As the trunca-
tion damping can be calculated as λ = 1.73, hence
for λ = 1.8, there is no bifurcation in the system and
the system possesses steady-state response in the vicin-
ity of the resonance frequency, whereas for λ = 0.2
the system can provide strongly modulated response
(Fig. 26). The main conclusion from these two figures
is that the vibrational energy is largely reduced when
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Fig. 25 Energy spectrum for the main structure through λ vari-
ation in the vicinity of the main resonance frequency
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Fig. 26 Poincare section and time response for the system,
y1, v1: the displacement and velocity of the linear oscillator

the system has strongly modulated response, as veri-
fied by the drastic reduction on the overall level of the
energy spectrum for λ = 0.2.

Figure 27 further reveals the effect of stiffness varia-
tion on the system energy spectrum, with the response
for different values of k being point-checked by the
Poincare section in Fig. 28. The obtained results illus-
trate that, by varying k in an interval of modulated
response, total system energy and kinetic energy of the
primary mass can be monotonically reduced (in aver-
age). However, when the value of k continues to enlarge
as k = 4.3, an undesired periodic response occurred in
the left side of the resonance frequency. We call this
the failure of efficiency, and it should be avoided when
designing the vibration absorbers.
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Fig. 27 Energy spectrum for the main structure through k vari-
ation in the vicinity of the main resonance frequency

Aparametric optimization can be carried out by sim-
ply varying the value of damping λ and stiffness k and
checking the energy spectrum of the system, and the
optimal value for this special case is finally obtained
as λ = 1.7, k = 4.5. To show the effectiveness of the
nonlinear absorber with nonlinear damping, the energy
spectrum is also compared with the optimal perfor-
mance of the NES with linear damping in Ref. [34],
the results are shown in Fig. 29, and it could be found
that the NES with nonlinear damping can have a better
performance on the suppression of vibrational energy
induced to the linear oscillator.

In terms of 2-dof NES, the influence of mass dis-
tribution α on the performance of the 2-dof NES as
vibration absorber is studied of special consideration.
As indicated in Fig. 30, by varying the value of α

with the other parameter fixed, the undesired periodic
response occurred in the 1-dof NES can be effectively
eliminated. Moreover, the elimination of the undesired
response to a great extent liberated the parameter lim-
itation of NES as effective vibration absorber in the
1-dof case and hence can be of great significance to the
optimization of 2-dof NES for vibration suppression.

The optimization of the 2-dof NES is rather sub-
tle and sometimes meaningless. However, based on
the energy spectrum for the best tuned 1-dof NES,
the parameters of the 2-dof can also be appropriately
designed. For example, one satisfactory parameters for
the 2-dof NES could be assigned as λ1 = 1.7, λ2 =
0.2, k1 = 7.5, k2 = 0.2, α = 0.9; the energy spectrum
of system with 2-dof is plotted and compared with the
best tuned 1-dof NES in Fig. 31. One can conclude
that the 2-dof NES has a much better performance than
the 1-dof NES, and the vibration energy at the both
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Fig. 28 Poincare section for the system with red area represents
the steady state, y1, v1: the displacement andvelocity of the linear
oscillator, y2, v2: the displacement and velocity of the NES

sides of the main resonance frequency is significantly
reduced. Therefore, the 2-dof NES can provide with a
better vibration absorber.

5 Conclusion

The obtained results on the dynamics of energy sink
with geometrically nonlinear damping demonstrate
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Fig. 29 Comparison of energy spectrum of the best tuned NES
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Fig. 31 Energy spectrum of 1-dof NES with best tuned param-
eters and 2-dof NES with chosen parameter as λ1 = 1.7, λ2 =
0.2, k1 = 7.5, k2 = 0.2, α = 0.9

that the nonlinear damping can bring about rich bifur-
cations and response regimes. A truncation damping of
value λ = √

3k can be observed for the vanishing of
saddle-node and Hopf bifurcations; for the frequency
response, the interval of the failure frequency should be
noted. The truncation damping and failure frequency
range combined with the SMR provide a important
description of the formation and dynamic behavior in
the system under consideration.

For 2-dof NES, the mass distribution of the NES
plays an important role in the dynamics of the sys-
tem, which is far from being purely parametric and
introduces new dynamics when compared to the corre-
sponding systems 1-dofNES. In addition, the dynamics
of the system depends more on the second dof of the
2-dof NES.

We have also found that for a NES induced by non-
linear damping can provide (for some specific sys-
tem parameters values) better total energy suppres-
sion of the main structure than does a linear one. It
should be emphasized that a 2-dof NES can generate
extra strongly modulated response (SMR) by adjust-
ing its mass distribution, which in turn eliminates the
undesired periodic response occurred in the case of 1-
dof NES. Moreover, the elimination of the undesired
response also to a great extent liberated the parameter
limitation of NES as effective vibration absorber in the
1-dof case. Therefore, the 2-dof NES can provide with
a better vibration absorber.

AppendixA:Realization of geometrically nonlinear
damping

This appendix is devoted to the realization of geometri-
cally nonlinear damping, and onemay also refer to Ref.
[42–44] for its main ideas. The trick here is to use two
linear dampers described in Fig. 32, and the dampers
are aligned horizontally with one end pinned and the
other free to translate vertically a distance x .

Let the displacement along each damper be δ, and
then, the force in each damper can be computed as

Fi = cδ̇, i = 1, 2 (A.1)

one thus have the total vertical force

F = 2cδ̇ sin θ (A.2)
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Fig. 32 Realization of geometrically nonlinear damping by
means of two linear dampers

from geometry, one has the following relationship

δ =
√
l2 + x2 − l, sin θ = x√

l2 + x2
(A.3)

and hence, the time derivative of δ is

δ̇ = x ẋ√
l2 + x2

= ẋ sin θ (A.4)

Substituting Eqs. (A.3) and (A.4) into Eq. (A.2)
leads to

F = 2cẋsin2θ (A.5)

assuming small angles

sin θ ≈ θ ≈ tan θ = x

l
(A.6)

one finally have the equation for total force

F = 2c

l2
x2 ẋ ∝ x2 ẋ (A.7)

Thus, we have the nonlinear damping. The valid-
ity of the small angle approximation can be preserved
by selecting a suitably long distance l in the physical
setting.
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