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Abstract This paper studies the finite-time H∞ sta-
bility analysis of uncertain network-based control sys-
tems under random data packet dropout and varying
network delay. The system considered as an uncertain
discrete-time stochastic system benefits fromBernoulli
distributed white sequence technique for modeling the
packet dropout. Sufficient conditions by means of a
state feedback controller are derived to suppress the
inherent effects of data packet dropout and network
delay simultaneously. Simulations are provided to illus-
trate the feasibility and applicability of the control algo-
rithm proposed in this paper.

Keywords Network-based control system · Finite-
time stabilization · Network delay · Data packet
dropout · State feedback

1 Introduction

Network-based control system (NCS) as one of the
most well-known time delay systems has significant
attributes, such as flexibility and less wiring. How-
ever, communication channel in the closed-loop sys-
tem imposes new fundamental issues that make stabil-
ity analysis of the system more challenging. From the
control perspective, data packet dropout and network
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delay are two important inevitable topics, leading to
the performance degradation or even instability of the
NCSs [1–9]. Consequently, it is required to take into
account these inherent problems in the study of con-
troller design in such systems.

Data packet dropout and network delay can be mod-
eled via different probability distributions, such as
Bernoulli, andMarkov process [10–14]. Therefore, dif-
ferent control algorithms were reported to address the
stability problem of NCSs, for example [15–19]. In
[15], the stability conditions of NCSs under external
disturbances were analyzed. In [16], a state feedback
controller for NCSs considering delays in the random
nature was designed. In [17], a delay-dependent stabil-
ity criterion satisfying a prescribed H∞ norm bound
for NCSs with unknown bounded varying delays by
means of a state feedback controller was examined.
In [18], designing state feedback controllers for sta-
bilizing NCSs in the presence of network delay was
studied. In [19], H∞ stability analysis of the NCSs
under data packet loss was addressed using a state
feedback control law. Nevertheless, some works were
reported for continuous-time NCSs that their results
may not be applicable for discrete-time NCSs [20–
22]. In [23,24], the network-induced characteristics
were also neglected. In [25], the stability analysis of
NCSs with fixed time delay was discussed. Besides,
the stability and stabilization of continuous-time NCSs
were investigated by lumping the network delay and
data packet dropout into one item [22,26]. However,
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adopting such a lump sum induces some difficulty to
distinguish the effects of packet dropout from network
delay on the stabilization of NCSs. Consequently, the
problem of stability analyze of discrete-time NCSs
under these phenomena is still open area. Similarly
to continuous-time NCSs, they can enforce strict lim-
itations on the overall performance of discrete-time
NCSs [27–29]. For this reason, designing an appro-
priate controller dealing with the performance of this
kind of NCSs is required. Numerous results regarding
to the stabilization of NCSs were reported using the
Lyapunov asymptotic stability to address the status of
the system over an infinite-time period. Nevertheless,
the key topic in practice is to study the system status
over a prescribed time period [30]. In other words, the
states of the system under saturation cannot exceed a
specified bound over a constant finite-time period. In
such case, the conventional Lyapunov method is not
therefore applicable. To handle the temporary behav-
ior of the dynamical systems, Finite-Time Stability
(FTS) concept should be utilized [31,32]. Because of
the fast convergence and appropriate performance on
the robustness, the FTS technique was extended to sta-
bilization of the time delay systems [33–40]. In par-
ticular, stability problem of NCSs using this technique
has received much attention over the past decades [41–
49]. It is worth pointing out that there is a significant
distinction between FTS and Lyapunov concepts. That
is, a finite-time stable system may not be stable in the
sense of Lyapunov, and vice versa [50].

The works developed for NCSs using FTS can be
categorized in different aspects, such as constant or
varying network delay, linearity or nonlinearity, and
certain or uncertain of the plant model [46–49]. In
[46], an iterative algorithm for NCSs under data packet
dropout was introduced. In order to realize finite-
time boundedness for the system under study, a state
feedback controller was designed without considering
model uncertainty and network delay. In [47], the prob-
lem of finite-time boundedness of NCS in the presence
of varying delay by designing a state feedback con-
troller was investigated. In [48], considering a state
feedback controller, finite-time boundedness for one
family of NCSs over networks under packet dropout
and network delaywas studied. However, model uncer-
tainty was not taken into account in the controller
design. In [49], finite-time stabilization problem of the
NCSs under packet dropout was discussed. To address
this problem, sufficient conditions were provided using

a state feedback controller without focus on model
uncertainty and network delay. Compared with other
related works, the key motivations to this paper come
from several sources as follows.

1. The first motivation is from the model uncertainty.
The main shortcoming of the previous works is
that they ignore the uncertainty in the modeling of
NCSs, whereas it plays a significant factor respon-
sible for the stability and performance of the data
networks,

2. The second motivation arises from the nature of
time-varying delays in NCSs. The network delay is
naturally varying in real time networks. Here, both
actuation and measurement delays resulting from
network transmissions are assumed time-varying
in nature,

3. There is an open area to investigate the stabil-
ity analysis of uncertain NCSs in the presence of
packet dropout and network delay simultaneously,
which is the thirdmotivation of the current research
work.

Motivated by the above discussions, this paper
addresses thefinite-timeH∞ stability analysis of uncer-
tain NCSs considering uncertainty, time-varying net-
work delay, randompacket dropout, and norm-bounded
disturbance. The structure of this paper is as follows.
The system modeling is provided in Sect. 2. Stability
analysis regarding to the uncertain NCSs is derived in
Sect. 3. Simulations are provided to assess the feasibil-
ity of the control algorithm in Sect. 4. Eventually, Sect.
5 outlines the main conclusions.

Notation Throughout this paper, 0 and I are used
to represent the zero and the identity matrices with
compatible dimensions, N is the set of natural num-
bers, R

(
R

+)
shows all real (non-negative) numbers

set, Prob is the probability measure, E {x} stands for
the expectation of the stochastic variable x , l2[0,∞)

denotes the space of square integrable vectors, λmin(P)

and λmax(P) are the smallest and largest eigenvalues
of matrix P , respectively, and the sign × in a matrix
stands for the symmetric part.

2 System modeling and prerequisites

Figure 1 shows the NCS framework. In this control
framework, the controller uses the system’s state data
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Fig. 1 NCS framework

through the measurement channel under inherent phe-
nomena of the network, including delay and data packet
dropout in time k. Next, the control signal is transmitted
to the system through the actuation channel considering
network delay with together data packet dropout.

The mathematical model of the discrete-time NCS
is

xk+1 = (A + δA) xk + (B1 + δB1) dk + (B2 + δB2) uc,k ,

zk = (C1 + δC1) xk + (D11 + δD11) dk + (D12

+ δD12) uc,k ,

xk = ϕk , ∀k ∈ [−rM , 0] , (1)

where xk ∈ Rn and uc,k ∈ Rm are the system state
and the control signal, respectively, zk ∈ Rr is the
measured output, A, B1, B2, C1, D11 and D12 are con-
sidered to be known real constant matrices with com-
patible dimensions, and δA, δB1, δB2, δC1, δD11 and
δD12 characterize the parameter uncertainties in the
system to be in the form of

[
δA δB1 δB2

δC1 δD11 δD12

]
=

[
E1

E2

]
F̃k

[
H1 H2 H3

]
, (2)

where matrices E1, E2, H1, H2 and H3 are assumed
to be known real constant with compatible dimensions,
and F̃k denotes an unknown real matrix which is time-
varying such that F̃T

k F̃k ≤ I . It is also supposed that
W0 > 0 exists such that

F̃T
k W0 F̃k ≤ W0. (3)

In addition, the following relationship for exogenous
disturbance input dk ∈ Rq which belongs to l2[0,∞)

holds.

N∑

k=0

dTk dk ≤ d
2
, d ≥ 0, N ∈ N. (4)

Suppose that the state feedback control law is given by

uk = K x̂k, (5)

where K is the controller gain to be computed.
The measurement channel is expressed as

x̂k = α0,k xk−rmk
, (6)

where rmk is the measurement delay which is time-
varying, and α0,k ∈ R as a random variable stands
for the packet dropout.

Prob
{
α0,k = 1

} = E
{
α0,k

} = α0, (7)

Prob
{
α0,k = 0

} = 1 − E
{
α0,k

} = 1 − α0. (8)

Similarly, it is considered for the actuation channel

uc,k = θ0,kuk−rak
, (9)

where rak is the varying actuation delay, and θ0,k ∈ R,

as random variable shows the packet dropout.
θ0,k is assumed to be mutually independent of α0,k in
the form of Bernoulli distributed white sequences with
the following relationships.

Prob
{
θ0,k = 1

} = E
{
θ0,k

} = θ0, (10)

Prob
{
θ0,k = 0

} = 1 − E
{
θ0,k

} = 1 − θ0. (11)

Combining Eqs. (5), (6) and (9), we obtain

uc,k = α0,kθ0,k K xk−rmk −rak
= β0,k K xk−rk . (12)

Lemma 1 β0,k is a stochastic with Bernoulli dis-
tributed white sequence as

Prob
{
β0,k = 1

} = E
{
β0,k

} = β0, (13)

Prob
{
β0,k = 0

} = 1 − E
{
β0,k

} = 1 − β0. (14)

123



716 A. Elahi, A. Alfi

Proof Because of the independence of variablesα0,k

and θ0,k , we have

E
{
β0,k

} = E
{
α0,kθ0,k

} = α0.θ0 = β0, (15)

E

{
(β0,k − β0)

2
}

= E

{
(α0,kθ0,k)

2
}

− α0
2. θ0

2
.

(16)

From there, it results

E

{
(β0,k − β0)

2
}

= E

{
α0,k

2
}
E

{
θ0,k

2
}

− α0
2.θ0

2

= α0. θ0 − α0
2.θ0

2
. (17)

Using Eqs. (15) and (17) yields

E
{
β0,k

} = β0,

E

{
(β0,k − β0)

2
}

= β0(1 − β0).
(18)

Therefore, β0,k is a stochastic variable with Bernoulli
distributed white sequence. Then, the resultant control
input is written as

uc,k = β0,k K xk−rk . (19)

It isworthmentioning thatβ0,k = 1 reveals that the data
packet is properly transmitted to the system and β0,k =
0 indicates the data packet dropout. CombiningEqs. (1)
and (19), the entire closed-loop system is expressed as

xk+1 = (A + δA) xk + (B1 + δB1) dk

+ (
β0,k − β0

)
(B2 + δB2) Kxk−rk

+β0 (B2 + δB2) Kxk−rk ,

zk = (C1 + δC1) xk + (D11 + δD11) dk

+ (
β0,k − β0

)
(D12 + δD12)Kxk−rk

+β0 (D12 + δD12) Kxk−rk . (20)

Here, the states of the plants are available, and rak and
rmk are varying satisfying

0 < rm ≤ rk ≤ rM . (21)

In the following, the fundamental concepts, which are
useful to derive the main results, are recalled. ��

Definition 1 [51] The system (20) under dk = 0 is
stochastic finite-time stable with respect to (δx , ε, Γ,

N ), in which 0 < δx < ε and Γ = Γ T > 0, if

E

{
xTk∗ Γ xk∗

}
≤ δ2x , ∀k∗ ∈ [−rM , 0]

→ E

{
xTk Γ xk

}
< ε2 , ∀k ∈ {1, 2, . . . , N } .

(22)

Definition 2 [51] The system (20) for all admissible
exogenous nonzero disturbance under condition is said
to be stochastic finite-time boundedness (SFTB) with
respect to

(
δx , ε, Γ, N , d

)
, in which 0 < δx < ε and

Γ = Γ T > 0, if

E

{
xTk∗ Γ xk∗

}
≤ δ2x , ∀k∗ ∈ [−rM , 0]

N∑

k=0

dTk dk ≤ d
2 → E

{
xTk Γ xk

}
< ε2 ,

∀k ∈ {1, 2, . . . , N } .

(23)

Definition 3 [51] The system (20) is stochastic finite-
time stable with an H∞ normal bound μ, (SHFTB) if
the following conditions hold.

1. System (20) is SFTB.
2. Under zero initial conditions, the controlled output

zk holds

E

{
N∑

k=0

zTk zk

}

< μ2
E

{
N∑

k=0

dTk dk

}

. (24)

Lemma 2 [52] For a given symmetric matrix[
X11 X12

XT
12 X22

]
where X11 ∈ Rp×p, X22 ∈ Rq×p, and

X12 ∈ Rp×q , the following conditions are mutually
equivalent

1. X < 0,

2. X11 < 0, X22 − XT
12X

−1
11 X12 < 0,

3. X22 < 0, X11 − X12X
−1
22 XT

12 < 0.

3 Stability analysis

Here, first, criteria of the SFTB and SHFTB are pro-
vided in Theorems 1 and 2, respectively. Then, Theo-
rem 3 illustrates the design procedure of the controller.

Theorem 1 The system (20) is SFTB with respect to(
δx , ε, Γ, N , d

)
if positive-definite matrices P, Q1,

Q2, Γ, T, Z ∈ Rn×n, W1,W2,W3, ρ0 ∈ R, U, S ∈
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R2n×2n, L , M, F ∈ R2n×n, and scalars λ0 > 1, ε >

0,are existed such that the following relationships hold.

1. Σ =
[
Σ1 ×
Σ2 Σ3

]
≺ 0, (25)

in which

Σ1 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

Σ11 × × × × × × ×
0 −W1 × × × × × ×

Σ31 0 Σ33 × × × × ×
0 0 0 −W2 × × × ×

MT
1 − FT

1 0 MT
2 − FT

2 0 −λ0
rm Q2 × × ×

−LT
1 0 −LT

2 0 0 −λ0
rM Q1 × ×

0 0 0 0 0 0 −ρ0 ×
0 0 0 0 0 0 0 −W3

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

,

Σ2 =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

A E1 β0B2K β0E1 0 0 B1

0 0 bB2K bE1 0 0 0
(rM − rm)(A − I ) (rM − rm)E1 (rM − rm)β0B2K (rM − rm)β0E1 0 0 (rM − rm)B1

0 0 (rM − rm)bB2K (rM − rm)bE1 0 0 0
rm(A − I ) rm E1 rmβ0B2K rmβ0E1 0 0 rm B1

0 0 rmbB2K rmbE1 0 0 0
W1H1 0 0 0 0 0 0

0 0 H3K 0 0 0 0
0 0 0 0 0 0 W3H2

E1

0
(rM − rm)E1

0
rm E1

0
0
0
0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

Σ3 = diag(−P−1,−bP−1,−(rM − rm)T−1,−b(rM − rm)T−1,−rm Z
−1,−brm Z

−1,−W1,−W−1
2 ,−W3),

Σ11 = −λ0P + Q1 + Q2 + F1 + FT
1 + rmS1 + (rM − rm)U1,Σ31 = LT

1 − MT
1 + F2 + rmS

T
2 + (rM − rm)UT

2 ,

Σ33 = L2 + LT
2 − M2 − MT

2 + rmS3 + (rM − rm)U3,

b = E

{(
β0 (k) − β0

)2} = (
1 − β0

)
β0,

2. {λmax

(
P̃

)
+ λ0

rM−1rMλmax(Q̃1)

+ λ0
rm−1rmλmax(Q̃2)} δ2x

+{λ0rM−1λmax(T̃ )
rM (rM − 1) − rm(rm − 1)

2

+ λ0
rm−1

λmax( Z̃)
rm(rm − 1)

2
}δ2y

+ λmax (ρ0) d
2 ≤ λ0

−Nλmin

(
P̃

)
ε2, (26)

3. Φi � 0, i = 1, 2, 3 (27)

Φ1 =
[
U L
× λ0

rm+1T

]
, Φ2 =

[
U M
× λ0

rm+1T

]
,

Φ3 =
[
S F
× λ0Z

]

P̃ = Γ −1/2 P Γ −1/2 , Q̃1 = Γ −1/2Q1Γ
−1/2 ,

Q̃2 = Γ −1/2Q2Γ
−1/2 , T̃ = Γ −1/2T Γ −1/2 , Z̃

= Γ −1/2 Z Γ −1/2 ,

U =
[
U1 U2

× U3

]
, S =

[
S1 S2
× S3

]
, L =

[
L1

L2

]
,

M =
[
M1

M2

]
F =

[
F1
F2

]
.

Proof Let us define that ỹk = xk+1 − xk satisfy-
ing ỹTk ỹk ≤ δ2y for k ∈ [−rM ,−1] . The Lyapunov–
Krasovskii-like functional is constructed as

Vk = V1,k + V2,k + V3,k,

where

V1,k = xTk Pxk, (28)

V2,k =
k−1∑

i=k−rM

λ0
k−1−i xTi Q1xi

+
k−1∑

i=k−rm

λ0
k−1−i xTi Q2xi , (29)
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V3,k =
−rm−1∑

j=−rM

k−1∑

i=k+ j

λ0
k−1−i ỹTi T ỹi

+
−1∑

j=−rm

k−1∑

i=k+ j

λ0
k−1−i ỹTi Z ỹi . (30)

Denote

ξ0,k =
[
xTk xTk−rk

]T
,

ζ0,k =
[
xTk xTk−rk ỹTs

]T
,

η0,k =
[

xTk xTk HT
1 F̃T

k xTk−rk
xTk−rk

K T HT
3 F̃T

k xTk−rm
xTk−rM

dTk dTk HT
2 F̃T

k

]T
.

Considering λ0 > 1 , the difference of Vk is given by

E
{
V1,k+1

} − λ0E
{
V1,k

} = xTk+1Pxk+1 − λ0x
T
k Pxk,

(31)

E
{
V2,k+1

} − λ0E
{
V2,k

} =
k∑

i=k+1−rM

λ0
k−i xTi Q1xi

−
k∑

i=k−rM

λ0
k−i xTi Q1xi

+
k∑

i=k+1−rm

λ0
k−i xTi Q2xi

−
k−1∑

i=k−rm

λ0
k−i xTi Q2xi .

(32)

After some calculating, we can easily obtain

E
{
V2,k+1

} − λ0E
{
V2,k

}

= xTk Q1xk − λ0
rM xTk−rM Q1xk−rM

+ xTk Q2xk

− λ0
rm xTk−rm Q2xk−rm .

(33)

Similarly,

E
{
V3,k+1

} − λ0E
{
V3,k

}

=
−rm−1∑

j=−rM

k∑

i=k+1+ j

λ0
k−i ỹTi T ỹi

−
−rm−1∑

j=−rM

k−1∑

i=k+ j

λ0
k−i ỹTi T ỹi

+
−1∑

j=−rm

k∑

i=k+1+ j

λ0
k−i ỹTi Z ỹi

−
−1∑

j=−rm

k−1∑

i=k+ j

λ0
k−i ỹTi Z ỹi . (34)

From λ0 > 1, it yields

E
{
V3,k+1

} − λ0E
{
V3,k

} ≤ (rM − rm) ỹTk (k) T ỹk

− λ0
rm+1

k−rm−1∑

j=k−rM

ỹTj T ỹ j

+ rm ỹ
T
k Z ỹk − λ0

k−1∑

j=k−rm

ỹTj Z ỹ j . (35)

E {Vk+1} − λ0E {Vk} ≤ xTk+1Pxk+1 − λ0x
T
k Pxk

+ xTk Q1xk

− λ0
rM xTk−rM Q1xk−rM + xTk Q2xk

− λ0
rm xTk−rm Q2xk−rm

+ (rM − rm) ỹTk T ỹk − λ0
rm+1

k−rk−1∑

j=k−rM

ỹTj T ỹ j

− λ0
rm+1

k−rm−1∑

j=k−rk

ỹTj T ỹ j+ rm ỹ
T
k Z ỹk

− λ0

k−1∑

j=k−rm

ỹTj Z ỹ j

+ 2ξ T0,k L

⎡

⎣xk−rk − xk−rM −
k−rk−1∑

j=k−rM

ỹ j

⎤

⎦

+ 2ξ T0,kM

⎡

⎣xk−rm − xk−rk −
k−rm−1∑

j=k−rk

ỹ j

⎤

⎦

+ 2ξ T0,k F

⎡

⎣xk − xk−rm −
k−1∑

j=k−rm

y j

⎤

⎦ . (36)
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Since

rmξ0,k
T Sξ0,k −

k−1∑

j=k−rm

ξ0,k
T Sξ0,k = 0, (37)

(rM − rm) ξ T0,kUξ0,k −
k−rk−1∑

j=k−rM

ξ T0,kUξ0,k

−
k−rm−1∑

j=k−rk

ξ T0,kUξ0,k = 0. (38)

Combining Eqs. (37) and (38) into (36), and then
adding and removing the expressions xTk HT

1 F̃T
k W1 F̃k

H1xk, dTk HT
2 F̃T

k W3 F̃k H2 dk, and xTk−rk
K T HT

3 F̃T
k W2

F̃k H3Kxk−rk into Eq. (36), it follows from Eq. (3) that

E {Vk+1} − λ0E {Vk} < ηT0,kΩ0η0,k

−
k−rk−1∑

j=k−rM

ζ T
0,kΦ1ζ0,k

−
k−rm−1∑

j=k−rk

ζ T
0,kΦ2ζ0,k

−
k−1∑

j=k−rm

ζ T
0,kΦ3ζ0,k .

(39)

If Ω < 0, and Φi ≥ 0, then

E {Vk+1 − λ0Vk} < 0. (40)

Since ρ0 > 0, therefore

E {Vk+1 − λ0Vk} < dTk ρ0dk . (41)

Using Lemma 2, and applying Eqs. (39), (40) and (41),
the inequalities (25) and (27) are satisfied. Hence, we
get

E (Vk+1) < λ0E (Vk) + λmax (ρ0) d
T
k dk . (42)

Applying Eqs. (41) and (42) and considering λ0 > 1,
it concludes that

E {Vk} < λ0
k
E {V0} + λmax (ρ0)

k−1∑

i=0

E

{
λ0

k−i−1dTi di
}

≤ λk0E {V0} + λmax (ρ0) λk0d
2
. (43)

It is straightforward to obtain that

E
{
V1,0

} = xT0 Px0 ≤ λmax

(
P̃

)
E

{
xT0 Γ x0

}

≤ λmax

(
P̃

)
δ2x , (44)

E
{
V2,0

} =
−1∑

i=−rM

λ0
−1−i xTi Q1xi

+
−1∑

i=−rm

λ0
−1−i xTi Q2xi

≤ λ0
rM−1λmax(Q̃1)

−1∑

i=−rM

xTi Γ xi

+ λ0
rm−1λmax(Q̃2)

−1∑

i=−rm

xTi Γ xi , (45)

E {V3(0)} ≤ λ
rM−1
0 λmax(T̃ )

−rm−1∑

j=−rM

−1∑

i= j

ỹTi ỹi

+ λ
rm−1
0 λmax(Z̃)

−1∑

j=−rm

−1∑

i= j

ỹTi ỹi ,

(46)

E {V0} = E

{
3∑

i=1

Vi,0

}

≤ {λmax

(
P̃

)

+ λ0
rM−1rMλmax(Q̃1)

+ λ0
rm−1rmλmax(Q̃2)} δ2x

+{λ0rM−1λmax(T̃ )

rM (rM − 1) − rm(rm − 1)

2

+ λ0
rm−1

λmax(Z̃ )
rm(rm − 1)

2
}δ2y . (47)

From Eqs. (43) and (47), we obtain

E {Vk} < {λmax

(
P̃

)
+ λ0

rM−1rMλmax(Q̃1)

+ λ0
rm−1rmλmax(Q̃2)}λ0k δ2x

+{λ0rM−1λmax(T̃ )
rM (rM − 1)−rm(rm − 1)

2

+ λ0
rm−1

λmax(Z̃)
rm(rm − 1)

2
}λk0δ2y

+ λmax (ρ0) λk0d
2
, ∀k = 1, . . . , N

(48)

where P̃ = Γ − 1
2 P Γ − 1

2 , Q̃1 = Γ − 1
2 Q1 Γ − 1

2 ,

Q̃2 = Γ − 1
2 Q2 Γ − 1

2 , T̃ = Γ − 1
2 T Γ − 1

2 , Z̃ = Γ − 1
2 Z

Γ − 1
2 . From there,
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E {Vk} = E

{
3∑

i=1

Vi,k

}

≥ E
{
V1,k

}

≥ λmin

(
P̃

)
E

{
xTk Γ xk

}
. (49)

Using Eqs. (48)–(49), the following inequality can be
obtained.

E

{
xTk Γ xk

}
≤ λ0

k Ξ

λmin

(
P̃

) ≤ ε2, (50)

where

Ξ = {λmax

(
P̃

)
+ λ0

rM−1rMλmax(Q̃1)

+ λ0
rm−1rmλmax(Q̃2)} δ2x

+{λ0rM−1λmax(T̃ )
rM (rM − 1) − rm(rm − 1)

2

+ λ0
rm−1

λmax(Z̃)
rm(rm − 1)

2
}δ2y + λmax (ρ0) d

2
.

From Eq. (26), it yields that E
{
xTk Γ xk

} ≤ ε2,
k = 1, . . . , N . Therefore, the system (20) is SFTB
with respect to

(
δx , ε, Γ, N , d

)
. ��

Remark 1 In the Lyapunov–Krasovskii-like functional
used in Theorem 1, the variable ratios λ0

k−1−i are uti-

lized, whereas there is no required inequality enlarge-
ment to obtain �Vk ≤ (λ0 − 1)Vk . Compared with
[53], V is enlarged by �Vk < (λ0 − 1)xTk P xk =
(λ0 − 1)V1,k < (λ0 − 1)Vk , which indicates that
the use of our method contains more information of
the system states leading to less conservative stability.
However, if the terms− λ0

rm+1 ∑k−rm−1
j=k−rM

ỹTj T ỹ j and

− λ0
∑k−1

j=k−rm ỹTj Z ỹ j are ignored, the conservatism
is unavoidable. Therefore, Eqs. (37) and (38) as well
as the free-weighting matrices U, S, L , M and F are
introduced in order to avoid such treatments. In the
following, sufficient condition is derived for stochastic
H∞ finite-time stability of the system (20).

Theorem 2 The system (20) is SHFTB with respect
to

(
δx , ε, Γ, N , d, μ

)
, if positive-definite matrices

P, Q1, Q2, Γ, T, Z ∈ Rn×n, W1,W2,W3 ∈
R,U, S ∈ R2n×2n and matrices L , M, F ∈ R2n×n

and scalars ε, μ > 0 and λ0 > 1, are existed such
that

1. Λ =
[
Λ1 ×
Λ2 Λ3

]
≺ 0, (51)

in which

Λ1 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Σ11 × × × × × × ×
0 −W1 × × × × × ×

Σ31 0 Σ33 × × × × ×
0 0 0 −W2 × × × ×

MT
1 − FT

1 0 MT
2 − FT

2 0 −λ0
rm Q2 × × ×

−LT
1 0 −LT

2 0 0 −λ0
rM Q1 × ×

0 0 0 0 0 0 −μ2λ0
−N I ×

0 0 0 0 0 0 0 −W3

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

Λ2 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

A E1 β0B2K β0E1 0 0 B1 E1

0 0 bB2K bE1 0 0 0 0
(rM − rm)(A − I ) (rM − rm)E1 (rM − rm)β0B2K (rM − rm)β0E1 0 0 (rM − rm)B1 (rM − rm)E1

0 0 (rM − rm)bB2K (rM − rm)bE1 0 0 0 0
rm(A − I ) rm E1 rmβ0B2K rmβ0E1 0 0 rm B1 rm E1

0 0 rmbB2K rmbE1 0 0 0 0
C1 E2 β0D12K β0E2 0 0 D11 E2

0 0 bD12K bE2 0 0 0 0
W1H1 0 0 0 0 0 0 0

0 0 H3K 0 0 0 0 0
0 0 0 0 0 0 W3H2 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,

Λ3 = diag(−P−1,−bP−1,−(rM − rm)T−1,−b(rM − rm)T−1,−rm Z
−1,−brm Z

−1,

−I,−bI,−W1,−W−1
2 ,−W3),

123



Finite-time H∞ stability analysis 721

2.
{
λmax

(
P̃

)
+ λ0

rM−1rMλmax(Q̃1)

+ λ0
rm−1rmλmax(Q̃2)

}
δ2x

+{λ0rM−1λmax(T̃ )
rM (rM − 1) − rm(rm − 1)

2

+ λ0
rm−1

λmax(Z̃)
rm(rm − 1)

2
}δ2y + λ0

−Nμ2d
2

≤ λ0
−Nλmin

(
P̃

)
ε2, (52)

3. Φi � 0, i = 1, 2, 3 (53)

whereΣ11,Σ31,Σ33, P̃, Q̃1, Q̃2, T̃ , Z̃ , U, S, L , M,

F, Φi and b are similar to Theorem 1.

Proof According to Theorem 1, the system (20) is
SFTB. Therefore, for any admissible nonzero dk, we
have

E {Vk+1} − λ0E {Vk} + E

{
zTk zk

}
− E

{
dTk ρ0 dk

}

= ηT0,kΘη0,k . (54)

Let define ρ0 = μ2λ0
−N I . It follows from Eq. (51)

and Lemma 2 that Θ < 0 and hence

E {Vk+1} < λ0E {Vk}−E

{
zTk zk

}
+μ2λ0

−N
E

{
dTk dk

}
.

(55)

From Eq. (55), it is apparent that

E {Vk} < λ0
k
E {V0} −

k−1∑

j=0

λ0
k− j−1

E

{
zTj z j

}

+μ2λ0
−N

k−1∑

j=0

λ0
k− j−1

E

{
dTj d j

}
. (56)

Considering zero initial conditions and using Vk ≥ 0,
we obtain

k−1∑

j=0

λ0
k− j−1

E

{
zTj z j

}

≤ μ2λ0
−N

k−1∑

j=0

λ0
k− j−1

E

{
dTj d j

}
. (57)

From Eq. (57) and using λ0 > 1, we get

N∑

j=0

E

{
zTj z j

}
≤

N∑

j=0

λ0
N− j

E

{
zTj z j

}

≤ μ2λ0
−N

N∑

j=0

λ0
N− j

E

{
dTj d j

}

≤ μ2
N∑

j=0

E

{
dTj d j

}
,

(58)

and therefore

N∑

j=0

E

{
zTj z j

}
≤ μ2

N∑

j=0

E

{
dTj d j

}
.

which indicates the SHFTB of the system (20) is
achieved. ��

Theorem 3 The system (20) with the controller uk =
K x̂k given in (5) is SHFTBwith respect to (δx , ε, Γ, N ,

d, μ
)
, if positive-definitematrices P, Q1, Q2, Γ, T,

Z , X, R1, R2 ∈ Rn×n, W1,W2,W3, V ∈ R,U, S ∈
R2n×2n, matrices L , M, F ∈ R2n×n, and scalars
μ, ε > 0 existed such that

1. Λ =
[
Λ1 ×
Λ2 Λ3

]
≺ 0, (59)

in which

Λ1 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

Σ11 × × × × × × ×
0 −W1 × × × × × ×

Σ31 0 Σ33 × × × × ×
0 0 0 −W2 × × × ×

MT
1 − FT

1 0 MT
2 − FT

2 0 −λ0
rm Q2 × × ×

−LT
1 0 −LT

2 0 0 −λ0
rM Q1 × ×

0 0 0 0 0 0 −μ2λ0
−N I ×

0 0 0 0 0 0 0 −W3

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

,
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Λ2 =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

A E1 β0B2K β0E1 0 0 B1 E1

0 0 bB2K bE1 0 0 0 0
(rM − rm)(A − I ) (rM − rm)E1 (rM − rm)β0B2K (rM − rm)β0E1 0 0 (rM − rm)B1 (rM − rm)E1

0 0 (rM − rm)bB2K (rM − rm)bE1 0 0 0 0
rm(A − I ) rm E1 rmβ0B2K rmβ0E1 0 0 rm B1 rm E1

0 0 rmbB2K rmbE1 0 0 0 0
C1 E2 β0D12K β0E2 0 0 D11 E2

0 0 bD12K bE2 0 0 0 0
W1H1 0 0 0 0 0 0 0

0 0 H3K 0 0 0 0 0
0 0 0 0 0 0 W3H2 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

,

Λ3 = diag(−X,−bX,−(rM − rm)R1,−b(rM − rm)R1,−rm R2,−b rm R2,−I,−bI,−W1,−V,−W3),

2. {λmax

(
P̃

)
+ λ0

rM−1rMλmax(Q̃1)

+ λ0
rm−1rmλmax(Q̃2)} δ2x

+ {λ0rM−1λmax(T̃ )
rM (rM − 1) − rm(rm − 1)

2

+ λ0
rm−1

λmax(Z̃)
rm(rm − 1)

2
}δ2y

+ λ0
−Nμ2d

2 ≤ λ0
−Nλmin

(
P̃

)
ε2, (60)

3. Φi � 0, i = 1, 2, 3 (61)

where P̃, Q̃1, Q̃2, T̃ , Z̃ , U, S, L , M, F, Φi and b are
similar to Theorem 1.

Proof According to Lemma 2 and Theorem 2 and also
denoting P−1 = X, T−1 = R1, Z−1 = R2, and
W−1

2 = V, we can prove easily the results mentioned
above on the stochastic H∞ finite-time stability. ��
Remark 2 Equation (59) is a nonlinear and cannot be
solved through the standard LMI Toolbox. One way to
handle this problem is to use the cone complementarity
linearization algorithm (CCLM) as follows. The non-
convex problem (59) is considered as a minimization
problem with LMI constraints as follows.

Minimize Trace (X P + R1T + R2Z + VW2)

subject to Eqs. (59)–(61) and
[
X I
I P

]
≥ 0,

[
R1 I
I T

]
≥ 0,

[
R2 I
I Z

]
≥ 0,

[
V I
I W2

]
≥ 0. (62)

For solving above optimization problem, an algorithm
is provided, which can be itemized as follows.

Step 1 Initialize the maximum number of iteration N̄ ,
iteration accuracy ε0 and constant values δx , Γ, N , d
and λ0.

Step 2 Select an initial value of ε.

Step 3 Compute feasible points P0, X0, T0, R1,0 , Z0,

R2,0,W2,0, V0 satisfying (59)–(62), whereas Pk =
P0, Xk = X0, Tk = T0, Zk = Z0,W2,k =
W2,0,V k = V0, R1,k = R1,0, R2,k = R2,0. In the
case of they are none, exit. Set k = 0.

Step4 Find Pk+1, Xk+1, Tk+1, R1,k+1 , Zk+1, R2,k+1,

W2,k+1, Vk+1. Then, the LMI problem is solved as fol-
lows.

Minimize Trace
(
ϑ + μ2

)
subject to Eqs. (59)–

(62)
where

ϑ = Xk+1Pk + Xk Pk+1 + R1,k+1Tk + R1,kTk+1

+ R2,k+1Zk + R2,k (k) Zk+1 + Vk+1W2,k

+ VkW2,k+1.

Step 5 If |Traceϑ − (6n + 2)| < ε0 holds, then exit.
Else, set k ← k + 1 and return to Step 2.

Step 6 In the case of k > N , go to stop.

Step 7 If the problem is unfeasible, then it is required
to increase ε. Else, decreasing ε till getting the its min-
imum value.
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Fig. 2 Packet dropout
probability with β0 = 0.9

Fig. 3 Network delay with
1 ≤ rk ≤ 5

4 Application to uninterruptible power supply

Here, an uninterruptible power supply (UPS) as a prac-
tical example is adopted for elevation of the control
algorithm. The network-based control problem for this
kind of UPS is studied for keeping the AC voltage of
the output at the desirable situation. When the signal of
control is transmitted via the communication network,

the inherent phenomena, that is random packet dropout
and varying network delay, can degrade the system per-
formance or even cause instability of the system. Based
on this, the goal is to cope with these inherent phe-
nomena by designing a state feedback controller (5) to
achieve finite-time stabilization of the uncertain NCS
with the H∞ prescribed disturbance level. Here, the
following uncertain model of the UPS is adopted from
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Fig. 4 State trajectories of
the NCS with 1 ≤ rk ≤ 5
and β0 = 0.9
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Fig. 4 continued

[19,54,55].

A =
⎡

⎣
0.9226 − 0.6330 0

1 0 0
0 1 0

⎤

⎦ , B1 =
⎡

⎣
0.5
0
0.2

⎤

⎦ ,

B2 =
⎡

⎣
1
0
0

⎤

⎦ ,

C1 = [
0.1 0 0

]
, D11 = 0.1, D12 = 0.2,

E1 =
⎡

⎣
1
0
1

⎤

⎦ , E2 = 0.2, H1 = [
1 0 0

]
, H2 = 0.2,

H3 = 0.1.

(63)

In the simulation, the control cost and power consump-
tion of controller is also estimated, which is an appro-
priate criterion to measure the cost of controller in a
theoretical way [56]. The power consumption denoted
by p is computed by

p = |V I | = |x1x3| . (64)

The average power consumption of the controller can
be estimated as

p3 =
N∑

i=1

p3,i/N , (65)

where p3 = p2 − p1, in which p1 and p2 are the
output power consumption from the uncontrolled and
controlled NCS, respectively.
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Fig. 5 Norm xk with
1 ≤ rk ≤ 5 and β0 = 0.9

Table 1 H∞ norm bounded μ for different rM

rM 5 10 15 20

μmin 0.685 0.701 0.702 0.707

Table 2 H∞ norm bounded μ for different β0

β0 0.9 0.8 0.7 0.6

μmin 0.685 0.687 0.691 0.696

In order to assess the feasibility of the designed
controller, simulations are performed to compare it
with other existing techniques including [19,54,55,
57]. The settings are λ0 = 1.001, δx = 1, Γ =
I, N = 10, d = 1, 1 ≤ rk ≤ 5, and β0 = 0.9
with the initial values x0 = [

1 0 0
]T
, x = 0 for

k ∈ [− 5,− 1] , dk = 1
k2

. Solving the minimiza-
tion problem given in Eqs. (59)–(62), we get μmin =
0.685 and ε2opt = 5.674. The resulting controller
is expressed as K = [− 0.0111 0.179 − 0.124] .
The corresponding controllers used for [19,54,55]

Fig. 6 Effect of upper
bound of delay on H∞
performance using the
proposed controller
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Fig. 7 Effect of packet
dropout on H∞
performance using the
proposed controller

Fig. 8 Average power
consumption of the
proposed controller

are
[
1.1154 − 0.6931 0.0007

]
, [− 0.3291 0.2676

− 0.0210], and [− 0.5960 0.5549 − 0.1587
]
, respec-

tively. The packet dropout probability and network
delays are represented in Figs. 2 and 3, respectively.
Figure 4 illustrates the state trajectories of the system,
whereas it exhibits that all the states of the system using
the proposed controller converge to zero. The results
show that other methods corresponding to [19,54,55]
cannot stabilize the system. Referring to Fig. 4, it can
be observed that the performance of the NCS using the
proposed approach is able to control the system with

high convergence speed, small overshoot and high con-
trol precision. In particular, in comparisonwith the con-
trolmethod reported in [57], the proposed approach has
outstanding performance in terms of settling time and
accuracy. The norm xk of the resultant system regard-
ing to the controller proposed in this paper is also pro-
vided in Fig. 5. From Fig. 5, it can be inferred that
the states trajectories stay within a given upper bound,
which implies the entire system is SHFTB. Compared
with the other relevant works, our results incorporate
the network delays happening in both the actuation
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Fig. 9 Packet dropout
probability with β0 = 0.8

Fig. 10 Network-induced
delay with1 ≤ rk ≤ 10

and measurement channels as well as the data packet
dropout. Furthermore, the proposed controller can cope
with the system uncertainties appropriately.

In the sequel, the proposed controller is imple-
mented and tested under different values of rM and
β0. Tables 1 and 2 list a quantitative comparison of the
H∞ performancemetric of theNCS using the proposed
controller. The effects of different values rM and β0 on
the H∞ performance are also illustrated in Figs. 6 and
7. Results represent that increasing the upper bound of

varying delay as well as decreasing the packet dropout
results in decreasing the H∞ system performance. Fig-
ure 8 shows the average power consumption of the pro-
posed controller. Besides, in order to further assessment
of the control method, we consider 1 ≤ rk ≤ 10 and
β0 = 0.8, whereas other parameters are chosen based
on the values represented above. Using the proposed
procedure, we have ε2opt = 6.86. Figures 9, 10, 11 and
12 show the results. We observe that the settling time
of the response is longer and minimum value of the
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Fig. 11 State trajectories of
the NCS with 1 ≤ rk ≤ 10
and β0 = 0.8

Fig. 12 Norm xk of the
system with 1 ≤ rk ≤ 10
and β0 = 0.8

norm bounded is much larger than the previous results.
In general, it can be inferred that the proposed control
strategy can deal with the effects of network delay and
packet dropout properly.

5 Conclusions

In this paper, we studied FTS analysis for a class of
uncertain NCSs under data packet dropout and net-

work delay simultaneously. Here, both actuation and
measurement delays were varying and the data packet
dropout was modeled by the independent Bernoulli
distributed white sequence. Sufficient conditions by
designing the state feedback controller were derived
with the help of LMI approach. Results verified fea-
tures of the proposed control strategy and its ability to
address control challenges in the NCSs.
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