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Abstract Mesh reflector antennas have been widely
used in space satellites for their characteristics of large
aperture, low levels of total mass, stowed volume, sur-
face distortion, etc. The antenna turns from a stowed
state to a fully deployed configuration and finally forms
a required functional surface, and this deployment pro-
cess affects the performances of antennas on orbit. The
dynamic modeling and analysis for the deployment of
mesh reflector antennas considering the rigid body rota-
tion of rods, the geometric nonlinearity of the cable net,
and the rigid-flexible coupling of the truss and the cable
net are presented in this paper. Instead of the previous
lumpedmassmodel, themass of hinges is concentrated
on their centroids and the longerons, battens, and diag-
onals are regarded as homogeneous rods in the study.
By this model, the rigid body motion of rods can be
well considered in the calculation of kinetic energies
rather than be ignored in previous researches. Then,
the cable net is discretized into multiple cable elements
that are modeled by springs. The slacked and tensioned
state of cable elements during deployment are captured
by updating the stiffness matrix real-timely. The elas-
tic energy of the cable net is derived by solving sys-
tematic equilibrium equations. The dynamic model is
established by using Lagrange equation, and then the
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driving force under the predesigned motion is derived.
The “ideal deployment motion” and “feasible deploy-
ment motion” are proposed and discussed through sev-
eral numerical examples. Simulation resultsmatchwell
with experimental data in previous literature.

Keywords Deployment analysis · Dynamic model-
ing · Mesh reflector antenna · Cable tension · Motion
feasibility

1 Introduction

Space antennas play an indispensable role in the
aerospace communication, military reconnaissance,
deep-space probes, global broadcasting, remote sens-
ing and climate forecasting. Due to the volume and
weight constraints of launch vehicles, the deployable
antennas are widely used for their easy storage and
transportation [1–3]. They are stowed in the fairing at
the launch stage, and then start to deploy after entering
the orbit and finally form the parabolic reflective sur-
faces.The stable and reliable deployment of the antenna
concerns the success of the space mission greatly.

Since the late 1960’s, mesh reflectors have been
favored for their potential to fill large apertures with
extremely lightweight hardware. At present, the Astro
Mesh reflector antenna is the most advanced and reli-
able deployable mesh antenna available [4]. As shown
in Fig. 1, it is composed of an articulated ring truss, a
knitted lightweight metallic mesh, two cable nets (front
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and rear nets) and tension ties. The deployable truss
includes several cable-actuated, synchronized parallel-
ograms. The driving cable connected with amotor goes
through the diagonal rods and drives the truss to deploy
by contracting the sleeves.After the reflector is released
from a stowed state, the slacked cable net is pulled
by the truss to stretch and then the stretched cable net
begins to resist the further deployment of the truss. At
the end, the driving cable transfers significant energy
to the cable net to develop the high overall pre-stress
condition. The deployment completes with the latching
of the truss and the formation of the required parabolic
reflecting surface.

As the deployment is irreversible and there are
no effective ways for maintenance and active adjust-
ment on orbit, it is essential to study and simu-
late the deployment process in the design stage to
gain a deep insight into the deployment dynam-
ics [6]. The complex kinematic and dynamic behav-
iors of trusses, high nonlinear tensions and vari-
ous topologies of cable nets, as well as the dissi-
pation of energy caused by friction, damping and
clearance lead to non-ignorable influences on the
deployment of mesh reflector antennas. In the field
of aerospace, dynamic modeling methods for space
devices with flexible appendages are proposed [7,8],
and the deployment/retrieval of tethered satellite sys-
tem is researched [9–11]; these research ideas for the
nonlinear dynamic problems provide references for the
deployment modeling and analysis of mesh reflector
antennas.

Among the researches about the deployment pro-
cess of deployable antennas, Li [12] establishes the
dynamic model of a ring truss antenna based on
Lagrange equation and obtains the driving force under
a predesigned deployment motion. But as he uses the
lumped mass model for the kinematic analysis, the
rigid body motion characteristics of rods (longerons,
battens and diagonal rods in Fig. 1) are not consid-
ered. In fact, as the motion of rods is the combi-
nation of translation and rotation, the Euler rotation
should not be ignored in the calculation of kinematic
energy. Li et al. [13] study the deployment dynam-
ics of a novel ring mechanism and propose a modi-
fied deployment motion planning method. However,
the cable net tensions are calculated based on a simpli-
fied model which cannot depict the potential energy
of the cable net accurately. Mitsugi [14] researches
the required driving force and the cable tensions of

a mesh reflector during the deployment process using
the flexible multi-body dynamics approach, and vali-
dates the results by experiments. He has concluded that
the reflector should be designed such that the deploy-
ment driving force is larger than the mesh tensions
at any stage of the deployment. Furthermore, it has
been verified by experiments that the complex nonlin-
ear forces generated mainly by cable nets will lead to
non-negligible influences on the deployment process
[15].

In previous studies, the influences of cable ten-
sions on the deployment are mostly ignored or esti-
mated using equivalent spring models. These mod-
els are built based on the assumptions that all the
cable segments are stretched simultaneous at a certain
moment. Furthermore, the cable tensions are simply
described byHooke’s law [12,13,15,17,18]. Neverthe-
less, it has beenprovedby experiments that the cable net
is stretched gradually from a completely slacked state
to a partly slacked/tensioned state and finally attains
a completely tensioned state [14,15]. Cable tensions
are dependent on characteristics of the truss’ deploy-
ment as well as on the parameters and topology of the
cable nets. Zhang et al. [15,16] uses catenary elements
to simulate cable elements of mesh reflector antennas.
Nevertheless, this approach is not general for cable ten-
sionswith varying topologies and parameters. Once the
topology or parameters are changed, the modeling and
calculation have to be revised.

Many researchers try to analyze the deployment pro-
cess by inverse dynamics, and the main goal is to find
the requireddriving force for a predesigneddeployment
motion. But the actual motion feasibility is not consid-
ered in these researches [12,13,15–17]. The driving
cable cannot offer a negative force for the decelerated
deployment, because cables can only be tensioned but
not be compressed. So, if the deployment motion is
designed to decelerate while the potential energy of the
cable net decreases, the released potential energy will
be transferred to the kinetic energy and leads to unex-
pected acceleration. In this case, the antennas cannot
be deployed as the predesigned motion. Therefore, the
motion feasibility should be considered in the inverse
dynamics analysis to ensure a realizable deployment
process.

In this paper, the dynamic modeling and analysis
for the deployment of mesh reflector antennas con-
sidering the motion feasibility are proposed. Firstly,
the mass of hinges is concentrated on their centroids
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Fig. 1 AstroMesh reflector
antenna [5]

Front net

Mesh

Tension ties

Truss

Rear net

Sleeve

Hinge Longeron

Batten

Diagonal

and the rods are considered to be homogeneous in the
modeling. The homogeneous transformation method
is consulted in the kinematic analysis, and then the
kinetic energy of the truss is derived. Secondly, the
cable net is discretized into multiple cable elements
which are modeled by spring elements. The stiffness
matrix of the cable net is updated real-timely accord-
ing to the slacked or tensioned state of cable elements.
After the systematic equilibrium equations are formu-
lated and solved, the elastic energy of the cable net can
be obtained. The dynamic model of the reflector anten-
nas is built based on the Lagrange equations. Finally,
several numerical case studies are provided and the fea-
sibility of the predesigned motion is discussed. Simu-
lation results agree with experiment data in previous
literature. On the basis of these simulations, it can be
concluded that the topology and design parameters of
cable nets well as the motion planning should be com-
bined in the design stage to guarantee the smoothness
and feasibility of the deployment motion.

2 Kinematic analysis of the truss

In the truss model, the mass of hinges is concentrated
on the nodes in Fig. 2, and the red nodes represent the
five-dimensional hinges, while the black and hollow
nodes represent three-dimensional hinges and sleeves,
respectively. The mass of rods is regarded as uniformly
distributed along longitudinal direction. Suppose there
are n parallelograms in the truss (n ≥ 4 and n is an
even number), and these parallelograms are deployed
synchronously. The local coordinate frames of these
parallelograms are defined as in Fig. 2 and the origins
are fixed on the node in each parallelogram. During the
deployment, the hinges and rods in the same parallel-
ogram always stay in the same plane (x j O j y j ), and
the angle between the two adjacent parallelograms is
constant.

Figure 3 shows two arbitrary adjacent parallelo-
grams, and Ai , Bi ,Ci , Di represent the nodes in the
i th parallelograms. The angle between the two paral-
lelograms is θ (θ = 2π/n), and the angle ϕ between
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Fig. 2 Equivalent model of
the truss
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Fig. 3 Two arbitrary adjacent parallelograms

the longeron and the batten represents the degree of the
deployment.

For an arbitrary point P in parallelogram j , its posi-
tion vector r j in local coordinate frame (x j , y j , z j )
can be transformed to frame (xi , yi , zi ) by homoge-
neous transformation, as shown in Eqs. (1) and (2).

ri = Aijr j (1)

Aij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos [( j − i) θ ] 0 sin [( j − i) θ ]

{
j∑

k=i+1
cos [(k − i − 1) θ ]

}
R2 cos

( 1
2π − ϕ

)

0 1 0

[
1−(−1) j−1

]
R2 sin

(
1
2π−ϕ

)

2

− sin [( j − i) θ] 0 cos [( j − i) θ ]

{
−

j∑
k=i+1

sin [(k − i − 1) θ ]

}
R2 cos

( 1
2π − ϕ

)

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where j > i, i ≥ 1, j ≥ 2; Aij is the homogenous
transformationmatrix; R2 is the length of the longeron.

The velocity of the arbitrary point P in frame
(xi , yi , zi ) can be obtained by

vi = Ȧ
(ij)

r j + A(ij)ṙ j (3)

The position vectors of point A j and Bj in frame
(x j , y j , z j ) are as follows

{
r jA j

= (0, R1, 0, 1)T

r jB j
= (0, 0, 0, 1)T

(4)

where R1 is the length of the batten.
Suppose the batten A1B1 is fixed during the deploy-

ment, that is v1A1
= v1B1 = 0, so the local coordinate

frame (x1, y1, z1) is chosen as the global coordinate
frame. Then the velocity of point A j and Bj ( j ≥ 2) in
global frame can be derived
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v1A j
= v1Bj

=

⎡
⎢⎢⎢⎢⎢⎣

{∑ j
k=2 cos [(k − 2) θ ]

}
R2 sin

(
1
2π − ϕ

)
ϕ̇

[
(−1) j−1−1

]
R2 cos

(
1
2π−ϕ

)
ϕ̇

2{
−∑ j

k=2 sin [(k − 2) θ ]
}
R2 sin

(
1
2π − ϕ

)
ϕ̇

1

⎤
⎥⎥⎥⎥⎥⎦

T

(5)

The velocity of point Dj andC j is equal to the veloc-
ity of point A j+1 and Bj+1, as follows

v1Dj
= v1A j+1

, v1C j
= v1Bj+1

(6)

For arbitrary rods in the truss (longerons, battens
or diagonal rods), their motion is the superposition of
translation and rotation. So, the centroid velocity of the
batten A j B j is

v1A j B j
=
(
v1A j

+ v1Bj

)

2
(7)

The angular velocity of the batten A j B j is

ω1
A j B j

=
v1Bj

− v1A j

R1
(8)

The velocity and angular velocity of the longeron
A j D j are

v1A j D j
=
(
v1A j

+ v1A j+1

)

2
(9)

ω1
A j D j

=
v1A j+1

− v1A j

R2
(10)

The velocity and angular velocity of the longeron
BjC j can be obtained by the same way.

The length of the diagonal rods varies with the
deployment angle ϕ, so the velocity and angular veloc-
ity of diagonal rods are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1d j
=

(
v1B j

+v1A j+1

)

2 , ω1
d j

= v1A j+1
−v1B j√

R2
1+R2

2−2R1R2 cos(π−ϕ)
j = 2k − 1, k = 1, 2, . . . , n/2

v1d j
=

(
v1A j

+v1B j+1

)

2 , ω1
d j

= v1B j+1
−v1A j√

R2
1+R2

2−2R1R2 cos(π−ϕ)
j = 2k, k = 1, 2, . . . , n/2

(11)

3 Dynamic modeling

The curve of the deployment angle ϕ is generally pre-
designed to do the inverse dynamics analysis. In this
section, this angle is chosen as the generalized coor-
dinate to build the dynamic model of mesh reflector
antennas. Kinematic and potential energy during the
deployment is analyzed and formulated in Sects. 3.1
and3.2.Then the correspondingdriving force is derived
in Sect. 3.3 based on the Lagrange equation of the sec-
ond kind.

3.1 Kinetic energy

According to the kinematic analysis in Sect. 2, the
kinetic energy of all rods can be derived that

Tb = 1

2

n∑
j=1

⎧⎪⎪⎨
⎪⎪⎩

m1

(
v1A j B j

)2 + J1
(
ω1
A j B j

)2 + m2

[(
v1A j D j

)2 +
(
v1BjC j

)2]+ J2×[(
ω1
A j D j

)2 +
(
ω1
BjC j

)2]+ m3

(
v1d j

)2 + J3
(
ω1
d j

)2

⎫⎪⎪⎬
⎪⎪⎭

(12)

123



554 R. Nie et al.

wherem1 is themass of the batten;m2 is themass of the
lengeron; m3 is the mass of the diagonal rod; J1 is the
moment of inertia of the longeron, J1 = 1

12m1R2
1; J2 is

the moment of inertia of the batten, J2 = 1
12m2R2

2; J3
is moment of inertia of the diagonal rod which can be
calculated by Eq. (13).

J3 = 1

12
m3

[
R2
1 + R2

2 − 2R1R2 cos (π − ϕ)
]

(13)

The kinetic energy of all hinges is

Th = 1

2

n∑
j=1

[
mt

(
v1A j

)2 + mf

(
v1B j

)2 + md

(
v1d j

)2]

(14)

where mt is the mass of the three-dimensional hinge;
mf is the mass of the five-dimensional hinge; md is the
mass of the sleeve.

Then the kinetic energy of the truss during the
deployment can be obtained by Eq. (15).

T = Tb + Th (15)

3.2 Potential energy

The potential energy mainly consists of the elastic
potential energy of the cable net and the gravita-
tional potential energy of the truss. As the cable net
is lightweight, the mass can be ignored in the calcula-
tion of the potential energy. To establish the equivalent
model, the cable net is discretized into multiple cable
elements, and each element is modeled by the spring,
as shown in Fig. 4.

For the cable net withm cable elements and n′ nodes
(n′

f free nodes and n′
b boundary nodes), at any time t

during the deployment, the coordinate-difference vec-
tor of the arbitrary cable element i ′ is defined as follows

Ci ′ = (�xi ′ (t),�yi ′ (t),�zi ′ (t)) (16)

The elements in the coordinate-differencevectors canbeobtained
by

⎧⎨
⎩

�x(t) = Tx(t), �x(t) = [�x1(t), . . . , �xi ′ (t) · · ·�xm(t)]
�y(t) = Ty(t), �y(t) = [�y1(t), . . . , �yi ′ (t) · · ·�ym(t)]
�z(t) = Tz(t), �z(t) = [�z1(t), . . . , �zi ′ (t) · · ·�zm(t)]

(17)

Boundary 
nodesFree nodes

Fig. 4 Equivalent model of the cable net

where x(t), y(t) and z(t) are the coordinate values of
nodes at time t in x , y and z direction. T(∈ R

m×n′
) is

the topological matrix, refer to our companion paper
[19].

The elongation matrix δl (t)
(∈ R

m×1
)
is defined as

follows

δl (t) = [δl1 (t) , . . . , δli ′ (t) . . . δlm (t)] (18)

δli ′ (t) =
{

(|Ci ′ | − li ′)/|Ci ′ |, |Ci ′ | > li ′
0 , |Ci ′ | ≤ li ′

(19)

where li ′ is the original length of the cable element i ′.
The system stiffness coefficient matrix K (t)(∈ R

m×1
)
is given by Eqs. (20) and (21)

K (t) = [k1 (t) , . . . , ki ′ (t) , . . . km (t)] (20)

ki ′ (t) =
{
ke, |Ci ′ | > li ′
0, |Ci ′ | ≤ li ′

(21)

where ki ′ (t) is the stiffness coefficient of an arbitrary
cable element i ′ at time t; ke is the linearized tensile
stiffness of cable elements.

The force-length ratio matrix Qk (t)
(∈ R

m×m
)
is

Qk (t) = diag(qk (t)), qk (t) = K (t) ◦ δl (t) (22)

As the mass of the cable net is ignored, there are no
external forces applied on free nodes during the deploy-
ment. The equilibrium equations of these free nodes at
time t are

⎧⎨
⎩

TT
f Qk (t)�x(t) = 0

TT
f Qk (t)�y(t) = 0

TT
f Qk (t)�z(t) = 0

(23)
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where Tf is the topological matrix of free nodes, refer
to our companion paper [19].

The whole deployment process is divided into
numerous time steps, and the coordinates of boundary
nodes in each time step can be obtained by the geometry
of the truss. In order to guarantee good surface accu-
racies after the antennas are latched, the coordinates
of free nodes obtained by form finding are used as the
initial values and the trust-region algorithm is adopted
to solve nonlinear equations. The present form find-
ing methods have a high precision itself, and the trust-
region algorithm can also improve robustness when
starting far from the solution. The combination of these
two methods provides an effective way to find suitable
initial values which are essential to ensure the compu-
tational efficiency [19]. Then, the inverse process from
deployed to stowed state is analyzed and the coordi-
nates of free nodes in each time step during this process
can be solved by Eq. (23). After that, the corresponding
elastic energy of the cable net is derived

Ec (t) =
m∑

i ′=1

{
1

2
ki ′ (t) [|Ci ′ | − li ]

2
}

(24)

The cable net is stretched gradually under the pulling of
the truss, so the relationship between the elastic energy
and the deployment angle can be shown by Eq. (25).
The polynomial fitting method is used to get the for-
mula of the elastic energy, and this process is introduced
in detail in Sect. 4.

Ec = f (ϕ) (25)

The deployed configuration of antennas is chosen as the
standard configuration of the zero gravitational energy,
and then the gravitational energy in the deployment
process is

Eg = n

[
1

2
(mt + mf + md + m1 + m3) + m2

]

×gR2 sin

(
1

2
π − ϕ

)
(26)

The total potential energy is

E = Ec + Eg (27)

3.3 Dynamic equations

The deployment is a slow and highly controlled pro-
cess, so the damping of hinges can be regarded as the
viscous damping which is proportional to the angular
velocity of the deployment [19]. According to the def-
inition of the Rayleigh’s dissipation function [20], the
dissipation function of the reflector antenna is derived
that

Ψ =
4n∑
i=1

ξ

∫ v

0
f (v)dv =

4n∑
i=1

1

2
· ξ ϕ̇2 = 2nξ ϕ̇2 (28)

where ξ is the damping coefficient of the hinges.
The Lagrange function L is

L = T − E (29)

Based on the Lagrange’s equations of the second
kind, the kinetic energy of the truss, the elastic energy
of the cable net, the gravity energy and the dissipative
damping forces of hinges are considered to obtain the
dynamic equation of the system, shown by Eq. (30).

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
+ ∂Ψ

∂ϕ̇
= Qϕ (30)

where Qϕ is the generalized moment corresponds to
the generalized coordinate ϕ.

As the reflector antennas are driven by the cable
that connected with motors, the driving force along the
cable can be calculated by

Ql = Qϕ

√
R2
1 + R2

2 − 2R1R2 cos(π − ϕ)

R1R2cos
( 1
2π − ϕ

) (31)

4 Numerical simulation

By using the dynamic model and equations in Sect. 3,
some numerical simulations are conducted in this sec-
tion and the results are compared with experimental
data in other literature.

4.1 Simulation parameters

The deployment process of a mesh reflector antenna
model with 18 parallelograms is simulated and ana-
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lyzed in this section. The parameters are shown in
Table 1.

The topology of the cable net is shown in Fig. 5, and
cable elements have been numbered according to rules
introduced in our companion paper [19]. The original
length of cable elements is shown in Table 2.

According to Eq. (31), the required driving force
at the beginning of the deployment, when the deploy-
ment angle is equal to zero, is extremely large. To get
rid of dead point, the deployment angle is designed
to vary from 1◦ to 90◦, and Eq. (32) shows the pre-
designed deployment motion. As shown in Fig. 6, the
deployment consists of three stages: uniform acceler-
ation, uniform speed, and uniform deceleration. The
antenna models are deployed smoothly in this pro-
cess and the angular velocity gradually decreases to
zero before the antennas are latched. This deployment

motion effectively avoids impact and vibration before
the latching, so it is considered as an ideal deployment
motion. The kinetic and potential energy under this pre-
designed motion can be calculated according to equa-
tions in Sects. 3.1 and 3.2.

ϕ =

⎧⎪⎪⎨
⎪⎪⎩

−ϕ0

(
5
2

t4

(T/5)3
− 3 t5

(T/5)4
+ t6

(T/5)5

)
+ϕs 0 ≤ t < T/5

−ϕ0t + Tϕ0/10+ϕs T/5 ≤ t < 4T/5

−ϕ0t + ϕ0

(
5
2

(t−4T/5)4

(T/5)3
− 3 (t−4T/5)5

(T/5)4
+ (t−4T/5)6

(T/5)5

)
+Tϕ0/10+ϕs 4T/5 ≤ t ≤ T

(32)

where ϕ0 = − 5π
8T + 5ϕs

4T ;ϕs = π
180 ; T = 10,000.

The coordinates of free nodes during the deployment
are solved by Eqs. (16–23) in Sect. 3.2, and the coor-
dinates in the deployed configuration are used as the
initial values in the numerical calculation. These coor-
dinates are obtained by the form finding [21], and the

corresponding surface accuracy is 1.112547× 10−5m.
Then, the elastic energy is calculated and shown in
Fig. 7. This curve is fitted by a four-order polynomial,
and the resulted formula is shown by Eq. (33).

Ec =

⎧⎪⎪⎨
⎪⎪⎩

0 , 0.0175 ≤ ϕ ≤ 1.415
768,694.98 − 2, 044, 332.781ϕ

+ 2, 036, 621.286ϕ2 − 900,821.57ϕ3

+ 149, 273.485ϕ4, 1.415 < ϕ ≤ 0.5π

(33)

By substituting kinetic and potential energy into
the dynamic equations in Sect. 3.3, the required driv-
ing force under the predesigned deployment motion is
derived by Eqs. (34) and (35). A, B,C, D and E are
shown by Eqs. (36-40) in the “Appendix”.

Ql =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l ′ ×
{

1
2

11∑
j=2

[
(m1 + mt + mf) A + (2m2 + m3 + md) B + ( 1

6m2R2
2 + 1

12m3
)
C
] + ( 4

3m2 + 2
3m3

+ 2md) × R2
2 ϕ̈ +

(
5
6m2 + 1

6m3 + 1
2mt + 1

2mf + 1
8md

)
D − [6 (mt + mf + md + m1 + m3) + 12m2]

× gR2 cos
( 1
2π − ϕ

)+ 4nξ ϕ̇
}
, 0.0175 ≤ ϕ ≤ 1.362

l ′ ×
{

1
2

11∑
j=2

[
(m1 + mt + mf) A + (2m2 + m3 + md) B + ( 1

6m2R2
2 + 1

12m3
)
C
] + ( 4

3m2 + 2
3m3

+ 2md) × R2
2 ϕ̈ +

(
5
6m2 + 1

6m3 + 1
2mt + 1

2mf + 1
8md

)
D − [6 (mt + mf + md + m1 + m3) + 12m2]

× gR2 cos
( 1
2π − ϕ

)+ E +4nξ ϕ̇} , 1.362 < ϕ ≤ 0.5π

(34)

l ′ =
√
R2
1 + R2

2 − 2R1R2 cos(π − ϕ)

R1R2cos
( 1
2π − ϕ

) (35)

4.2 Comparisons with the lumped mass model

The simulated driving force under the predesigned
deployment motion is shown in Fig. 8. In the simu-
lation, the antenna model is deployed within 10,000s,
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Table 1 Parameters of the antenna model with 18 parallelo-
grams

Parameter Symbol Unit Value

Aperture m 4.8

Focal length m 1.5

Longeron length R2 m 0.8335

Batten length R1 m 1.6

Mass of three-dimensional hinges mt kg 0.36

Mass of five-dimensional hinges mf kg 0.48

Mass of the sleeve md kg 0.1

Mass of the longeron m2 kg 0.0875

Mass of the batten m1 kg 0.168

Mass of the diagonal rod m3 kg 0.24

Tensile stiffness of cable elements ke N/mm 15

and the acceleration of gravity g is set to 0. According
to Ref. [12], the damping coefficient ξ is set to 1 (Nm)
/(deg/s) in the following simulation.

The antennamodel is deployed slowly and smoothly,
and the whole process lasts 10,000s. As shown in

Fig. 8a, the required driving force is very small at first,
and then it starts to increase rapidly due to the stretch-
ing of the cable net. The trend of the curve in Fig. 8a
agrees well with the experimental data (Fig.13 in Ref.
[15] and Fig. 14 in Ref. [22]). This proves that the cable
tensions have great influences on the driving forces of
reflector antennas, so the accurate calculation of cable
tensions is essential.

Then, the antenna model is deployed within 180s,
and the simulation results are shown in Figs. 10 and 11.
Likewise, the acceleration of gravity g is set to 0. The
deployment occurs in a shorter time and the speed is
faster, so the requireddriving forcebefore the stretching
of the cable net increases obviously (see the compari-
son between Figs. 8a and 10a). Meanwhile, the kinetic
energy in Fig. 10b is significantly larger than that in
Fig. 9a.

Figure 10b displays the variation of energy dur-
ing the deployment, and this figure matches the result
of Fig. 21 in Ref. [13]. Through the comparison of
Figs. 8, 9 and 10, it can be found that the speed
of deployment has influences on kinetic energy and
the driving force at the initial stage. In the previous

Fig. 5 Topology of the
cable net
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Table 2 Original length of
cable elements (mm)

Location Original length

Front net l1∼6 = 786.53 l8,15,20,25,31,36 = 844.58

l38,49,58,67,77,87 = 794.17 l10,11,17,22,27,29 = 784.23

l40,51,60,69,75,85 = 805.86 l41,46,55,64,73,80 = 805.85

l9,16,21,26,32,34 = 820.03 l12,14,19,24,30,35 = 820.03

l39,50,59,68,78,84 = 1046.58 l44,53,62,71,81,90 = 1071.45

l45,54,63,72,82,89 = 1071.46 l42,48,57,66,76,86 = 1046.57

Rear net l92∼97 = 786.53 l98,104,108,112,117,121 = 844.58

l122,131,138,145,153,161 = 794.17 l100,101,106,110,114,115 = 784.23

l124,133,140,147,151,159 = 805.86 l125,129,136,143,150,155 = 805.85

l99,105,109,113,118,119 = 820.03 l102,103,107,111,116,120 = 820.03

l123,132,139,146,154,158 = 1046.58 l127,134,141,148,156,163 = 1071.45

l128,135,142,149,157,163 = 1071.46 l126,130,137,144,152,160 = 1046.57

Tension ties l7 = 814.99 l13,18,23,28,33,37 = 925.79

l43,52,61,70,79,88 = 1250.13 l47,56,65,74,83,91 = 1158.73

Fig. 6 Predesigned
deployment motion. a
Deployment angle. b
Angular velocity
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lumped mass model, the rotation of rods is mostly
ignored and this makes the calculated kinetic energy
inaccurate. Figure 11 shows the comparison of results
by using the model in this paper (curve A) and in
previous Refs. [12,15,16] (curve B). It shows that
the driving force and kinetic energy obtained using
the presented model are obviously larger, and these
differences may even bigger if the deployment is
faster.

4.3 Influences of gravity

As the ground test is indispensable before the reflector
antenna is applied in space, the simulation about the
deployment under gravity is provided in this section to
show the influences of gravity in ground tests. The sim-
ulation lasts for 10,000s and the acceleration of gravity
g is set to 9.8 N/kg. It can be seen from Fig. 12 that

the required driving force is negative at first and then
becomes positive. This is because the reduced grav-
itational potential is more than the increased kinetic
energy, and some braking forces are required to obtain
the deployment motion in Fig. 6. But as the antenna
is driven by the cable, there is only tension force but
not pressure force in the cable, and the negative force
is unfeasible. Therefore, the antenna model cannot be
deployed as the motion described in Fig. 6, and the
actual deployment may be faster.

Figure 12a proves that the antenna may deploy by
itself under the influence of gravity. So, the driving
force obtained by ground tests without gravity com-
pensation devices cannot provide accurate references
for the deployment in space. As shown in Fig. 12b,
before the cable net is stretched, the potential energy
mainly consists of the gravitational potential and it
decreases with the increasing of the deployment angle.
After the cable net is tensioned, the potential energy
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Fig. 7 Elastic potential
energy of the cable net

Fig. 8 Driving force under
the predesigned deployment
motion. a Overall graph. b
Partial enlargement graph
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Fig. 9 Variation of energies
during the deployment. a
Kinetic energy. b Potential
energy
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consists of the gravitational potential and the elas-
tic energy, and the total potential energy increases in
the deployment process. In general, the deployment
is a process in which the elastic potential energy is
stored.

4.4 Discussions of the “ideal deployment motion”
and “feasible deployment motion”

The deployment of the antenna model with 12 par-
allelograms is simulated in this section. The aperture
and focal length are the same as the antenna model in
Sect. 4.1. Other parameters are listed in Table 3.
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Fig. 10 Deployment within
3min. a Driving force under
predesigned motion. b
Variation of energies during
deployment
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Fig. 11 Comparison to
previous model. a
Comparison of driving
force. b Comparison of
kinetic energy
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Fig. 12 Deployment under
gravity. a Driving force
under predesigned motion.
b Variation of potential
energy
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Table 3 Parameters of the antenna model with 12 parallelo-
grams

Parameter Symbol Unit Value

Longeron length R2 m 1.242

Batten length R1 m 1.6

Mass of three-dimensional hinges mt kg 0.3

Mass of five-dimensional hinges mf kg 0.4

Mass of the sleeve md kg 0.1

Mass of the longeron m2 kg 0.131

Mass of the batten m1 kg 0.168

Mass of the diagonal rod m3 kg 0.295

Tensile stiffness of cable elements ke N/mm 15

The topology of the cable net is shown in Fig. 13,
and the original length of cable elements is listed in
Table 4. The surface accuracy obtained by the form
finding is 1.85072× 10−5m. The predesigned deploy-
ment motion is the same as it is in Fig. 6, and 14 shows
the simulation result.
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Fig. 13 Topology of the cable net

As shown in Fig. 14a, the driving force is nega-
tive at the end of the deployment, but the negative
force is unfeasible for cable-drivenmechanisms. That’s
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Table 4 Original length of cable elements (mm)

Location Original length

Front net l1∼6 = 1201.81 l10,11,17,22,27,29 = 1195.79

l8,15,20,25,31,36=1254.97 l9,12,14,16,19,21,24,26,30,32,34,35 = 1530.78

Rear net l38∼43 = 1201.81 l46,47,52,56,60,61 = 1195.79

l44,50,54,58,63,67 = 1254.97 l45,48,49,51,53,55,57,59,62,64,65,66 = 1530.78

Tension ties l7 = 597.51 l13,18,23,28,33,37 = 837.21

Fig. 14 Deployment of the
antenna model with 12
parallelograms. a Driving
force under the predesigned
motion. b Variation of
energies during deployment
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Fig. 15 Modified
deployment motion. a
Deployment angle. b
Angular velocity
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because the angular velocity is designed to decrease at
the later stage of deployment (as shown in Fig. 6), and
the corresponding kinetic energy decreases aswell. But
meanwhile, the potential energy in Fig. 14b starts to
decrease, too. The decreased potential energy is con-
sumed by fiction, damping, as well as transferred to
kinetic energy, which leads to the continuous acceler-
ation instead of the predesigned deceleration. There-
fore, even though the predesigned motion in Fig.6 is
the “ideal deployment motion”, it is not the “feasible
deployment motion” at this condition

Inorder to obtain a feasible driving force, the deploy-
ment motion is changed to the curve shown in Fig. 15,
and the corresponding simulation results are shown in
Fig. 16.

In comparison with the driving force in Fig. 14a,
there are no negative values in Fig. 16a. It means the
driving force becomes more feasible by changing the
deployment motion to the modified motion in Fig. 15.

As shown in Fig. 16b, the potential energy decreases
while the kinetic energy increases at the end of the
deployment. In this condition, the increased kinetic
energy can be provided by the transformation of the
potential energy, and not too much driving force is
required. So the driving force is approximate to zero at
the end. The motion in Fig. 15 is feasible, but the angu-
lar velocity increases rapidly at the later stage of the
deployment, and the antennamodel obtains a very large
speed before it is latched. Large impacts and vibrations
become inevitable, and these will bring about the per-
formance deterioration. Simulation results show that
the deployment motion in Fig. 15 is not ideal though it
is feasible.

The topology in Fig. 17 is adopted to obtain a
feasible and ideal deployment motion, and the origi-
nal length of cable elements is listed in Table 5. The
surface accuracy of this cable net in the deployed
configuration is 1.40076 × 10−5m. Other parameters
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Fig. 16 Deployment of the
antenna model with 12
parallelograms. a Driving
force under the modified
motion. b Variation of
energies during deployment
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Fig. 17 Topology of the cable net

remain unchanged, and the simulation result is shown
in Fig. 18.

The antenna model is deployed according to the
motion in Fig. 6. Although the topology of the cable net
is changed, the surface accuracy in the deployed state
remains at the same level. There are also no negative
values in Fig. 18a, so the driving force is feasible in
theory. As shown in Fig. 6, the velocity decreases con-
tinuously before the antenna is latched and this helps
to reduce impacts and vibrations. Under this circum-
stance, the deployment is both feasible and ideal. The
numerical examples in this section show that the topol-
ogy and parameters design as well as the motion plan-
ning should be combined to obtain a smooth and fea-
sible deployment motion.

Table 5 Original length of cable elements (mm)

Location Original length

Front net l1∼12 = 1200.80 l15,19,22,25,28,31,34,37,40,43,46,16 = 615.23

l14,18,21,24,27,30,33,36,39,42,45,48 = 1250.09

Rear net l50∼61 = 1200.80 l63,64,66,68,70,72,74,76,78,80,82,84 = 615.23

l62,65,67,9,71,73,75,77,79,81,83,85 = 1250.09

Tension ties l13 = 593.80 l17,20,23,26,29,32,35,38,41,44,47,49 = 837.91

Fig. 18 Deployment of the
antenna model with 12
parallelograms. a Driving
force under the predesigned
motion. b Variation of
energies during deployment.
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5 Conclusion

This paper conducts the dynamic modeling and analy-
sis of mesh reflector antennas considering the motion
feasibility. Unlike previous simplifiedmodels, the truss
model in this paper consists of hinges whose mass is
concentrated on their centroids and rods with mass
evenly distributed along their length. The rigid body
motion of the truss is fully considered, the transla-
tion and rotation parameters are derived and the cor-
responding kinetic energy of the truss under the pre-
designed deployment motion is calculated. Then, the
cable net is discretized into multiple cable elements
that are modeled by springs. The slacked and tensioned
state of cable elements during the deployment are cap-
tured by updating the stiffness matrix of cable ele-
ments real-timely. The elastic energy of the cable net
can be obtained by solving the systematic equilibrium
equations. Finally, the dynamic equations are formu-
lated based on Lagrange equations, and the required
driving force under predesigned deployment motion is
derived.

Several numerical examples are provided and sim-
ulation results agree well with experimental data in
other literature. Simulations show that the kinetic
energy calculated in this paper is more accurate than
results obtained by previous approaches. Meanwhile,
the influence of gravity on the deployment process
is also analyzed. The feasibility of the predesigned
deployment motion in inverse dynamics is discussed.
It is proven that the previous motion planning can-
not ensure the feasibility of the deployment, and
the topology and parameters design as well as the
motion planning should be combined in the analy-
sis and design to obtain smooth and feasible deploy-
ment motions. The work in this paper provides a
general and effective way to analyze the deployment
of mesh reflector antennas and the conclusions can
be used in the design and drive control of these
devices.
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Appendix
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