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Abstract Experimental data clearly show a strong
and nonlinear dependence of damping from the maxi-
mum vibration amplitude reached in a cycle for macro-
and microstructural elements. This dependence takes a
completely different level with respect to the frequency
shift of resonances due to nonlinearity, which is com-
monly of 10–25% at most for shells, plates and beams.
The experiments show that a damping value over six
times larger than the linear one must be expected for
vibration of thin plates when the vibration amplitude
is about twice the thickness. This is a huge change!
The present study derives accurately, for the first time,
the nonlinear damping from a fractional viscoelastic
standard solid model by introducing geometric non-
linearity in it. The damping model obtained is nonlin-
ear, and its frequency dependence can be tuned by the
fractional derivative to match the material behaviour.
The solution is obtained for a nonlinear single-degree-
of-freedom system by harmonic balance. Numerical
results are compared to experimental forced vibration
responses measured for large-amplitude vibrations of a
rectangular plate (hardening system), a circular cylin-
drical panel (softening system) and a clamped rodmade
of zirconium alloy (weak hardening system). Sets of
experiments have been obtained at different harmonic
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excitation forces. Experimental results present a very
large damping increase with the peak vibration ampli-
tude, and the model is capable of reproducing them
with very good accuracy.
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1 Introduction

Large-amplitude vibrations have been deeply investi-
gated in the last few decades and still present a lot of
opportunities for ground-breaking research. Most of
the published studies deal only with geometric nonlin-
earities, which are due to the large amplitude of vibra-
tion with respect to a characteristic dimension of the
structure (e.g. the plate thickness), while the strains are
still small enough to allow application of linear elas-
ticity. This simplification is not appropriate for very
flexible biological structures, like arteries, where large
strains are observed during the heart beating cycle. In
this case, the stress–strain relationships are nonlinear
and can be described by hyperelasticity.

In case of nonlinear vibrations, the present knowl-
edge allows us to create sophisticated structural models
that produce very accurate mass and stiffness represen-
tations, which retain the geometric, and eventual mate-
rial, nonlinearity. The resulting problem is described by
a set of second-order, nonlinearly coupled, ordinary dif-
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6 M. Amabili

ferential equations. These systems can present soften-
ing or hardening nonlinearity, and the resonance has a
frequency shift of a fewor someper cent. Cases of inter-
nal resonances and very complex nonlinear dynamics
can arise. Depending on the geometry and material of
the structure, and eventually on the presence of a cou-
pled multi-field problem like fluid–structure interac-
tion, the modelling operation can be straightforward or
challenging and can have a different degree of approx-
imation. But it can be successfully implemented. How-
ever, in a vibration problem, this is not enough. The
vibration amplitude is mainly controlled by the mass
and the stiffness away from resonances, and it is fully
controlled by damping at resonance. Here, the funda-
mental role of the energy dissipated during a vibration
cycle comes into play. In case of small-amplitude vibra-
tions, the problem is linear and damping must be deter-
mined by experiments for that specific structure and
boundary conditions. In fact, dissipation at the bound-
aries and joints between different components can be
larger than the energy lost during the deformation of
the material. The last contribution can be evaluated by
applying viscoelastic constitutive equations, while the
other contributions are quite difficult to model and can
be very different from an application to another.

Recently published experimental data for plates and
shells [1,2] clearly show a strong and nonlinear depen-
dence of the damping value from the maximum vibra-
tion amplitude reached in a cycle. This dependence
takes a completely different level with respect to fre-
quency shift of resonances due to nonlinearity, which
is commonly of 10–25% at most for shells and plates.
The experiments show that, in case of damping, a value
over six times larger must be expected for vibration of
thin plates when the vibration amplitude is about twice
the thickness. This is a huge change!

Experiments in reference [1] have been performed
on plates made of different materials, with different
boundary conditions and sizes of the order of onemetre
wide and up to 3.3mm thickness; results show simi-
lar trend. Plates are hardening-type systems. But the
case of a curved panel, which is a softening system, is
also shown in [1], and a significant damping increase
with the vibration amplitude has been observed also in
this case. It is interesting to observe that all the experi-
ments reported in references [1,2] have been obtained
for small strains and linearly elastic materials. There-
fore, the change in damping cannot be attributed to
material nonlinearities.

A similar increase in damping has been observed
for sheets of 2D materials. In particular, graphene cir-
cular membranes of thickness 5nm and radius 2.5µm
have been experimentally tested [3]; the results show
hardening nonlinearity and a similar behaviour of the
damping versus the peak vibration amplitude, but at a
different space and timescale.

2 Literature review

Phenomenological nonlinear damping terms have been
added in a few studies [4–6] to the modified Duffing
equation (second-order differential equation with lin-
ear, quadratic and cubic stiffness terms), representing a
single-degree-of-freedom nonlinear system. For exam-
ple, in addition to the linear viscous damping term,Zait-
sev et al. [6] added two cubic damping terms: the first
one given by the velocity multiplied by the squared dis-
placement and the second one proportional to the cube
of the velocity. However, the nature of the damping is
not investigated in [4,5]. In reference [6], it is claimed
that nonlinear damping can be, in part, closely related
to material behaviour with a linear dissipation law that
operates within a geometrically nonlinear regime. A
model based on the Kelvin–Voigt viscoelastic model
was developed, but it was not capable of reproducing
the experimental results, showing that dissipation is not
well described by this viscoelastic model [6]. Ama-
bili [7] and Balasubramanian et al. [8] derived rigor-
ously linear, quadratic and cubic dissipation terms by
using the Kelvin–Voigt viscoelastic model for metal
and rubber plates,whichwere discretizedwith reduced-
order models retaining up to 54 degrees of freedom.
Comparison to experimental results in [8] was per-
formed, indicating that the nonlinear damping model
developed was not capable of reproducing the exper-
imental results. The Kelvin–Voigt viscoelastic model
was also used by Xia and Lukaziewicz [9,10] for mod-
elling free and forced nonlinear vibrations of sand-
wich rectangular plates with simply supported move-
able edges. They treated the two external layers as elas-
tic and the core as viscoelastic. The numerical solution
was obtained by direct integration of the equations of
motion by Runge–Kutta method. Nonlinear damping
terms appeared in the equations of motion due to the
viscoelastic model.

A forced spherical pendulum has been experimen-
tally and numerically investigated in [11] by Gottlieb
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Nonlinear damping in large-amplitude vibrations 7

and Habib, where a nonlinear damping with linear,
quadratic and cubic terms was introduced. The damp-
ing coefficients were obtained by fitting the experi-
mental results. A cubic damping, in addition to the
linear term, has been proposed in [12] for carbon
nanotubes and graphene sheets and [13] for nanome-
chanical and micromechanical resonators, without a
derivation. Jeong et al. [14] studied a microcantilever–
nanotube system with linear and cubic damping. The
nonlinear damping was geometrically obtained from
the specific arrangement of two viscous dashpots form-
ing an angle between their axes. De et al. [15] intro-
duced a dissipation mechanism due to the interaction
of the time-varying strain field in a MoS2 single-layer
resonator with its thermal phonons by using molecular
dynamics. They found that the energy dissipated has
4th and higher-order terms in the transverse vibration
amplitude.

Elliot et al. [16] observed many cases of nonlin-
ear damping for system that they modelled with linear
stiffness and nonlinear damping forces, which were
assumed to be proportional to the nth power of the
velocity.

A nonlinear viscoelastic model based on a single
integral formulation with four kernels and nonlinear
terms has been introduced for vibration of sandwich
plates by Mahmoudkhani and Haddadpour [17] and
Mahmoudkhani et al. [18]. No verification of its suit-
ability to represent experimental data at different exci-
tation levels has been attempted.

The fractional derivative has been introduced to
model viscoelasticity with success [19] since it allows
to build accurate viscoelastic material models with
very few mechanical elements [20]. Pérez Zerpa et
al. [21] applied a few linear viscoelastic material mod-
els with a fractional viscoelastic element to study the
dynamic response of arterial walls. The fractional stan-
dard linear solid, the fractional generalized Maxwell
model with two arms and the fractional Kelvin–Voigt
material model were considered. Spanos and Man-
ara [22] introduced a linear fractional viscoelastic
damper to study the geometrically nonlinear vibra-
tions of beams. Rossihkin and Shitikova [23] used
theRiemann–Liouville fractional derivative to describe
linear viscoelasticity of a rectangular plate undergo-
ing geometrically nonlinear free damped vibrations.
The use of the fractional derivative to derive nonlin-
ear damping has not been attempted yet.

The present study derives, for the first time, the non-
linear damping from a fractional viscoelastic standard
solid model by introducing geometric nonlinearity in
both the springs. The damping model obtained is non-
linear, and its frequencydependence canbe tunedby the
fractional derivative tomatch thematerial behaviour.At
the same time, the dynamic storage stiffness of the sys-
tem versus frequency is also modelled. The solution is
obtained for a nonlinear single-degree-of-freedom sys-
tem by harmonic balance. Numerical results are com-
pared to experimental forced vibration responses mea-
sured for large-amplitude vibrations of a rectangular
plate (hardening system), a circular cylindrical panel
(softening system) and a clamped rod made of zirco-
nium alloy (weak hardening system). Sets of experi-
ments have been obtained at different harmonic exci-
tation levels. Experimental results present a very large
damping increase with the peak vibration amplitude,
and themodel is capable of reproducing themwith great
accuracy.

3 Viscoelastic model

A continuous system, e.g. a beam, a plate or a curved
panel, is assumed to be discretized with a single-
degree-of-freedom nonlinear equation of motion; no
internal resonances are present. The model can be very
accurate if a suitable algorithm is used to obtain the
reduced-order problem [2,24]. Thematerial is assumed
to be linearly viscoelastic and the nonlinearity is of geo-
metric type.

Figure 1 shows a viscoelastic standard linear solid
material model [25–27]. The left side of the model is
composed by a spring in series with a dashpot (they
give theMaxwell model), while the right branch of the
model is simply a spring. The twobrancheswork in par-
allel. This classic viscoelastic model is extended here,
for the first time, to take into account geometric nonlin-
earities in the two springs in order to derive rigorously
the expression of nonlinear damping.

Figure 2 presents a single-degree-of-freedom forced
vibration system based on an extended version of the
standard linear solid model, in which the two springs
are geometrically nonlinear. This material model can
be named geometrically nonlinear standard solid. The
spring on the right-side of Fig. 2 represents the geo-
metrically nonlinear stiffness of the system. In fact, for
very slow deformation, this is the only spring subjected
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Fig. 1 Standard linear solid model
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Fig. 2 Single-degree-of-freedom system with geometrically
nonlinear standard solid material model

to strain, due to the presence of the dashpot below the
spring on the left side of the model. Instead, this sec-
ond spring represents, together with the dashpot, the
viscoelastic characteristic of the system. For this rea-
son, this second springhas linear andnonlinear stiffness
that are different from those of the previous spring, and
must be characterized to satisfy the damping, or the
relaxation and creep, of the system.

In order to further improve the viscoelastic model,
the damper is replaced by a spring-pot [19] ele-
ment described by fractional derivative, as shown in
Fig. 3. The spring-pot shows an intermediate behaviour
between a linear spring and a linear dashpot, accord-

,c
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Fig. 3 Single-degree-of-freedom system with geometrically
nonlinear fractional solid material model

ing to the order of the fraction derivative. In the limit
case of fractional order one, it gives the system pre-
viously presented in Fig. 2. The model proposed has
the feature to be geometrically nonlinear, but it retains
material linearity.

The constitutive equation of the fractional standard
linear solid model can be written as [21,25]

(E1 + E2)
dαε

dtα
+ E2

τα
r

ε = dασ

dtα
+ σ

τα
r

, (1)

where σ is the stress, ε is the strain, E1 and E2 are
the stiffness moduli of the two springs in Fig. 1, t is
time, α is the order of the fractional derivative with
0 < α ≤ 1, τr = η/E1 is the relaxation time con-
stant, which is a characteristic of the viscoelastic mate-
rial, and η is the viscosity coefficient of the dashpot. In
Eq. (1), Dα

t = dα/dtα is the fractional derivative oper-
ator of order α. Before introducing the mathematical
description of the fractional derivative, it is assumed
that the system dynamic response x(t) is a periodic
forcedvibration that canbe represented by (i) a constant
component, (ii) a fundamental harmonic component
of frequency ω identical to the excitation frequency
and (iii) its super-harmonics. In nonlinear vibrations, it
means that quasi-periodic and chaotic dynamics can-
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Nonlinear damping in large-amplitude vibrations 9

not be represented by this description. This means that
it is assumed that no complex nonlinear mechanics
is observed in the system. Under this hypothesis, the
vibration response can be expanded in the complex
Fourier series [28]

x(t) =
∞∑

n=−∞
ane

i2nπ t/T , (2)

where

an = 1

T

T∫

0

x(t)e−i2nπ t/T dt, (3)

i is the imaginary unit and T is the period. It is assumed
that the zero-order value a0 of periodic functions has
zero fractional derivative. The fractional derivative of
order 0<α < 1, based on theWeyl integro-differential
operator, is defined as [29]

Dα
t x(t) = dαx(t)

dtα
=

∞∑

n=−∞
(i2nπ/T )αane

i2nπ t/T .

(4)

As previously stated, Eq. (4) is not the only defini-
tion available of fractional derivative. The most used
are probably the Reimann–Louisville left- and right-
hand formulations [29,30], the Caputo [30] and the
Grunwald–Letnikov one [30,31], which is particularly
suitable for numerical implementation. It is interesting
to observe that different definitions of fractional deriva-
tive lead out to expressions that are not equivalent. For
example, according to the Reimann–Louisville formu-
lation, the fractional derivative of a periodic function
is non-periodic, which makes it not convenient in deal-
ing with harmonic functions. However, the definition
of theWeyl fractional integral is in complete agreement
with the Riemann–Liouville definition of the fractional
derivative with the lower bound of the integral being
−∞ [29].

For x(t) = sin(ωt), where ω = 2π/T , the Weyl
fractional derivative of order α gives

Dα
t sin(ωt) = ωα

[
cos

(
α

π

2

)
sin(ωt)

+ sin
(
α

π

2

)
cos(ωt)

]
. (5)

For α = 1, the classical first derivative is obtained,
while α = 0 gives the original function.

After thismathematical parenthesis on the fractional
derivative, Eq. (1) can be rewritten as

σ + τα
r
dασ

dtα
= E2

(
ε + τα

r
dαε

dtα

)
+ E1τ

α
r
dαε

dtα
. (6)

The stiffness moduli E1 and E2 can be generalized to
be nonlinear functions of the strain in order to take into
account geometric nonlinearity.

Assuming that the continuous system could be dis-
cretized into the single-degree-of-freedom system rep-
resented in Fig. 3, where the two springs are nonlinear
and provide elastic forces given by k1x + k2x2 + k3x3

and k̃1x + k̃2x2 + k̃3x3, respectively, then the constitu-
tive Eq. (6) can be rewritten as

F + τα
r
dαF

dtα
= k1x + k2x

2 + k3x
3

+ τα
r
dα

dtα
(k1x + k2x

2 + k3x
3)

+ τα
r
dα

dtα
(k̃1x + k̃2x

2 + k̃3x
3), (7)

where F is the viscoelastic force acting on the mass,
τr = c/k̃1, c is the damping coefficient of the spring-
pot, x is the displacement of the mass, k1 and k̃1 are the
linear coefficients of the two springs, k2 and k̃2 are the
quadratic coefficients and k3 and k̃3 are the cubic coeffi-
cients. Here, it must be stressed that, while k1, k2 and k3
are the geometrically nonlinear stiffness coefficients,
k̃1, k̃2 and k̃3 are geometrically nonlinear viscoelas-
tic coefficients having the same units of their stiffness
counterparts but different values. Equation (7) is a frac-
tional differential equation, and its solution gives the
dynamic viscoelastic force F(t) acting on the mass.

In case of forced harmonic excitation of frequency
ω and modal amplitude f̃ , the equation of motion for
the system can be written as

mẍ + F(t) = f̃ sin(ωt + φ), (8)

where m is the modal mass of the system and φ is a
phase angle.
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10 M. Amabili

4 Harmonic balance solution

Assuming the vibration displacement x to be expressed
as

x(t) = a0 + a1 sin(ωt) + · · · , (9)

the solution of the ordinary nonlinear differential equa-
tion (7) can be expressed as

F(t) = f0 + f1s sin(ωt) + f1c cos(ωt) + · · · , (10)

where a0, a1, f0, f1s, f1c are coefficients to be deter-
mined. Higher harmonics and sub-harmonics of the
excitation frequencyω are neglected in Eqs. (9 and 10).
Since the first-order harmonic is generally larger than
other harmonics and is the one measured with great
accuracy in the experiments, in the following analysis
just the constant terms (zero-order) and the first-order
harmonic are considered; additional harmonics can be
obtained in similar way.

The following elementary trigonometric transfor-
mations are used in the derivations

sin2(ωt) = 1

2
− 1

2
cos(2ωt), (11)

sin3(ωt) = 3

4
sin(ωt) − 1

4
sin(3ωt). (12)

The following expressions are obtained from Eq. (9)
making use of (5), (11) and (12)

x2 = a20 + 2a0a1 sin(ωt) + a21/2, (13)

x3 = a30 + (3/2)a0a
2
1

+ 3a20a1 sin(ωt) + (3/4)a31 sin(ωt), (14)

Dα
t x(t) = ωαa1 [cos(απ/2) sin(ωt)

+ sin(απ/2) cos(ωt)] , (15)

Dα
t x

2(t) = ωα2a0a1 [cos(απ/2) sin(ωt)

+ sin(απ/2) cos(ωt)] , (16)

Dα
t x

3(t) = ωα
(
3a20a1 + (3/4)a31

)
[cos(απ/2) sin(ωt)

+ sin(απ/2) cos(ωt)] . (17)

The zero-order terms, once inserted in Eq. (7), give the
following algebraic equation

f0 = k1a0 + k2
(
a20 + a21/2

)
+ k3

(
a30 + 3a0a

2
1/2

)
,

(18)

since it has been assumed that the fractional derivative
of constant terms is zero.

The terms multiplied by sin(ωt) give the expression

f1s
[
1 + τα

r ωα cos(απ/2)
] − f1cτ

α
r ωα sin(απ/2)

= k1a1 + k22a0a1 + k3
(
3a20a1 + (3/4)a31

)

+ τα
r ωα cos(απ/2)

[
(k1 + k̃1)a1

+(k2 + k̃2)2a0a1

+ (k3 + k̃3)
(
3a20a1 + (3/4)a31

)]
. (19)

The terms multiplied by cos(ωt) are governed by the
equation

f1c
[
1 + τα

r ωα cos(απ/2)
] + f1sτ

α
r ωα sin(απ/2)

= τα
r ωα sin(απ/2)

[
(k1 + k̃1)a1 + (k2 + k̃2)2a0a1

+ (k3 + k̃3)
(
3a20a1 + (3/4)a31

)]
. (20)

The solution of the linear algebraic equations (19)
and (20) is

f1s = A

1 + τ 2αr ω2α + 2τα
r ωα cos(απ/2)

, (21)

f1c = B

1 + τ 2αr ω2α + 2τα
r ωα cos(απ/2)

, (22)

where

A = k1a1 + k22a0a1 + k3
(
3a20a1 + (3/4)a31

)

+ τα
r ωα cos(απ/2)

[
(2k1 + k̃1)a1

+(2k2 + k̃2)2a0a1

+ (2k3 + k̃3)
(
3a20a1 + (3/4)a31

)]

+ τ 2αr ω2α
[
(k1 + k̃1)a1 + (k2 + k̃2)2a0a1

+ (k3 + k̃3)
(
3a20a1 + (3/4)a31

)]
, (23)

B = τα
r ωα sin(απ/2)

[
k̃1a1 + k̃22a0a1

+ k̃3
(
3a20a1 + (3/4)a31

)]
. (24)

It is interesting to observe that Eq. (21) gives the force in
phase with the displacement x , i.e. the elastic response
of the material, which is a function of the frequency
according to the present viscoelastic model. For some
materials like metals, this effect can be very small. On
the other side, Eq. (22) gives the damping force, which
is 90 degrees out-of-phase with respect to the displace-
ment. Equations (21) and (22) are inserted intoEq. (10),
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Nonlinear damping in large-amplitude vibrations 11

which is finally introduced in the equation of motion
(8). The right-hand term in Eq. (8) can be rewritten as

f̃ sin(ωt + φ) = f̃ [cosφ sin(ωt) + sin φ cos(ωt)] .

(25)

The zero-order terms inserted in Eq. (8) give the fol-
lowing algebraic equation

k1a0 + k2
(
a20 + a21/2

)
+ k3

(
a30 + 3a0a

2
1/2

)
= 0.

(26)

The terms multiplied by sin(ωt) give the expression

−mω2a1 + f1s = f̃ cosφ, (27)

where the symbol f1s stays for the long expression
given inEq. (21) once (23) is substituted in it. The terms
multiplied by cos(ωt) are governed by the equation

f1c = f̃ sin φ, (28)

where f1c is obtained by Eq. (22) once (24) is substi-
tuted in it. Equations (26–28) form a set of three nonlin-
ear transcendental equations that can be solved numer-
ically. In order to simplify considerably the numeri-
cal solution of the equations, it is convenient to set
y = cosφ, z = sin φ and to add the 4th equation
y2 + z2 = 1. This transformation allows to find
the roots of polynomial equations in the unknowns
a0, a1, y and z; the phase angle is then obtained as
φ = cos−1 y.

Linear and nonlinear damping terms appear in
Eq. (28). Equation (24) shows that the two nonlin-
ear damping terms depend on the geometric viscoelas-
tic coefficients k̃2 and k̃3, but they do not depend on
the nonlinear stiffness k2 and k3. The quadratic damp-
ing term reduces the linear damping, while the cubic
ones increase it. Damping is also frequency dependent.
The presence of viscoelasticity changes the natural fre-
quency of the system since it changes the stiffness,
even if the effect can be very small for many mate-
rials, specifically, for those respecting the relationship
τα
r ωα << 1. In the narrow frequency region around
the resonance, the denominator in Eqs. (21) and (22) is
almost constant, as well the quantity ωα .

The amplitude of the damping force f1c can be writ-
ten as

f1c = γ
[
k̃1a1 + k̃22a0a1 + k̃3

(
3a20a1 + (3/4)a31

)]
,

(29)

where γ is a damping coefficient given by

γ = τα
r ωα sin(απ/2)

1 + τ 2αr ω2α + 2τα
r ωα cos(απ/2)

. (30)

For α = 1, Eq. (30) simplifies into

γ = τrω

1 + τ 2r ω2 . (31)

In case of small damping, i.e. for τrω << 1, Eq. (31)
gives γ � τrω. Equation (29) is a nonlinear expres-
sion involving the amplitudes of the zero-order (mean
value) a0 and the first-order harmonic a1 of the vibra-
tion displacement x . In general, a0 is smaller than a1.

In case of systems with only linear and cubic stiff-
ness, the zero-order displacement a0 = 0. Then, for
α = 1, the damping force FD is obtained by Eq. (29)
multiplied by cos(ωt); taking Eqs. (9) and (13) into
account, it gives

FD(t) = τr

1 + τ 2r ω2

[
k̃1 ẋ + (3/2) k̃3x

2 ẋ
]
. (32)

Therefore, the nonlinear damping term is of the type
x2 ẋ , which agrees with the expression phenomenolog-
ically introduced in references [12,13]; the same term
was also obtained in the specific configuration of two
inclined linear dashpots in [14].

The formulation (29) is more complicated than
(32) and must be used for systems that present also
quadratic stiffness. Equation (29) is the first general
and accurate derivation of nonlinear damping for vibra-
tion of a geometrically nonlinear system. In fact, previ-
ous derivations based on the Kelvin–Voigt viscoelastic
model were not capable of reproducing the experimen-
tal results, as previously discussed. This approach is
valid for continuous systems discretized with a single
degree of freedom and can be extended to systems dis-
cretized with any number of degrees of freedom.
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12 M. Amabili

It is convenient to rewrite the system parameters in
the following form:

k1
m

= ω2
n,

k2
m

= β2
k1
h

,
k3
m

= β3
k1
h2

, (33a–c)

τr = 1

ωn

[
2ζ

sin(απ/2)

]1/α
, (33d)

k̃1 = k1,
k̃2
m

= β̃2
k1
h

,
k̃3
m

= β̃3
k1
h2

, (33e–g)

where ωn = √
k/m is the natural frequency, used to

non-dimensionalize the excitation frequencyω;β2, β3,

β̃2, β̃3 are the non-dimensional nonlinear stiffness
parameters of the two nonlinear springs, ζ is the damp-
ing ratio, which is traditionally used in linear viscous
damping models, and h is a characteristic dimension
of the system used to non-dimensionalize the vibration
amplitude x and its zero-order and first-order harmonic
a0 and a1; for plates and shells, h is the thickness. It
is observed that the introduction of the damping ratio
in the expression of the relaxation time, see Eq. (33d),
allows to link a traditional viscoelastic parameter, τr , to
a coefficient, ζ , commonly used by the vibration com-
munity. Equation (33e) is introduced just for conve-
nience, but a different value of k̃1 can be assumed with
the only consequence that Eq. (33d) must be modified
accordingly.

5 Experimental results

Three mechanical systems are considered: (i) a hard-
ening type constituted by a stainless steel rectangular
plate; (ii) a softening type, given by a stainless steel
circular cylindrical panel; (iii) a hollow rod in zirco-
nium alloy, which is an example of weak hardening
system.

5.1 Hardening system: rectangular plate

Experiments havebeen conductedonan almost squared,
AISI 304 stainless steel plate (see Fig. 4) with the fol-
lowing dimensions and material properties: in-plane
dimensions a = 0.25 m and b = 0.24 m, thickness
h = 0.0005 m, Young’s modulus E = 193 × 109 Pa,
mass density ρ = 8000 kg/m3 and Poisson ratio ν =

0.29. The thin plate was bolted to an AISI 410 stain-
less steel rectangular frame. The boundary conditions
are almost those of a clamped plate, with blocked dis-
placements in the three directions at the plate edges
and rotation constrained by rotational springs of very
high rotational stiffness. The experimental set-up of
the nonlinear vibration measurement is illustrated in
Fig. 4. The plate has been subjected to harmonic excita-
tion, increasing or decreasing the excitation frequency
by very small steps in the spectral neighbourhood of
the lowest natural frequency to characterize the nonlin-
ear vibration responses. The excitation has been pro-
vided by an electrodynamical exciter (shaker), model
B&K 4810. A piezoelectric miniature force transducer
B&K 8203, of the weight of 3.2g, has been applied to
the plate at a/5 and 4b/5 to measure the force exci-
tation and has been connected to the shaker with a
stinger. The plate response has beenmeasured by using
a laser Doppler vibrometer Polytec (sensor head OFV-
505 and controller OFV-5000) in order to have non-
contactmeasurementwith no introduction of additional
inertia. The laser beam has been pointed to the centre
of the plate during nonlinear tests since the goal was to
investigate the nonlinear vibration of the fundamental
mode, which has maximum displacement at that loca-
tion. The natural frequency of the fundamental mode
is 72.45Hz, and the mode shape has a half-wave in
both the in-plane directions, with zero displacements
at the edges. The closed-loop control used in the exper-
iments keeps constant the amplitude of the harmonic
excitation force, after filtering the signal from the load
cell in order to use only the harmonic component with
the given excitation frequency. Experiments have been
performed increasing and decreasing the excitation fre-
quency (up and down); the frequency step used in this
case is 0.05Hz, 16 periods have been measured with
128 points per period, and 40 periods have been waited
before data acquisition every time that the frequency is
changed.

Figure 5 shows the first-order harmonic of the
forced vibrations (displacement, directly measured by
using the laser Doppler vibrometer with displacement
decoder, divided by the plate thickness h; measure-
ment position at the centre of the plate) of the plate
in vertical position in the spectral neighbourhood of
the fundamental natural frequency, versus the non-
dimensional excitation frequencyω/ωn , for four differ-
ent harmonic excitation force levels: 0.1, 0.3, 0.7 and
0.9 N. Experiments are compared to numerical sim-
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Nonlinear damping in large-amplitude vibrations 13

Fig. 4 Schematic of the nonlinear vibration measurement set-
up: a laser Doppler vibrometer with displacement and velocity
decoders is used to read out the vibration of the structure at
an antinode M. As an example of structure, the tested rectan-
gular plate is shown, with indication of the excitation point E
and the measurement pointM. The vibration and the force input
signals are received by an analog–digital converter (front-end)
connected to a computer. The converter is capable of produc-
ing the excitation signal through a closed-loop control, drawn
on the side, where the feedback comes from the load cell sig-
nal Q(t) measuring the harmonic force excitation provided to
the structure at that specific excitation frequency. The excitation

signal v(t) produced by the controller goes to a power amplifier
and becomes V (t); then, it drives the suspended electrodynamic
exciter (shaker), which is mechanically connected to the tested
structure through a stinger and the piezoelectric miniature load
cell. The excitation force F(t) is applied by the exciter to the
structure, and it is measured by the load cell, which closes the
loop providing the signal Q(t). The software installed on the
computer allows to analyse the different harmonics contained in
the signal or to identify complex nonlinear dynamics. It finally
produces the frequency–amplitude curves for the zero-order and
first-order harmonic at different excitation forces
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14 M. Amabili

Fig. 5 Nonlinear vibrations of rectangular plate (hardening sys-
tem) versus excitation frequency for different harmonic exci-
tation forces; first-order harmonic. Comparison of experiments
(small dots) and numerical simulations (circles)

ulations. Results show a clear hardening-type nonlin-
earity with an increase of about 10% of the resonance
frequency for vibration amplitude around 1.5 times the
plate thickness. This nonlinear behaviour is reduced
with respect to the one of a perfectly flat plate that
presents a frequency increase of about 30% for vibra-
tion amplitude around 1.5 times the plate thickness
[32]. The reason of the reduced nonlinearity is due to
the initial geometric imperfections, which have been
measured [32]. The hysteresis between the two curves
obtained increasing and decreasing the excitation fre-
quency is clearly visible for all the five excitation levels.
Sudden increments (jumps) of the vibration amplitude
are observed, as expected for hardening-type nonlinear
systems in case of small damping.

5.2 Softening system: circular cylindrical panel

Tests have been carried on a stainless steel circu-
lar cylindrical panel, with the following dimensions
and material properties: length 0.199m, radius 2m,
opening angle = 0.066 rad, thickness h = 0.0003m,
E =195 ×109 Pa, ρ =7800kg/m3 and ν = 0.3. This
is a shallow shell and the fundamental mode presents
one half-wave in both in-plane directions. The panel
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Fig. 6 Forced nonlinear vibrations of the circular cylindrical
panel (softening system) versus excitation frequency for different
harmonic excitation forces. Comparison of experiments (small
dots) and numerical simulations (circles) for the first-order har-
monic

was inserted into a heavy rectangular steel frame made
of several thick parts, having V -grooves designed to
hold the panel and to avoid transverse (radial) displace-
ments at the edges. Practically all the in-plane displace-
ments normal to the edges were allowed at the edges;
in-plane displacements parallel to the edges were elas-
tically constrained by silicon inserted in the supporting
grooves. The experimental set-up is similar to the one
of the rectangular plate described in Sect. 5.1. The exci-
tation point has been chosen at 1/4 of the length and
1/3 of the curvilinear width.

Figure 6 shows the measured and calculated vibra-
tion displacement for the first-order harmonic versus
the excitation frequency in the neighbourhood of the
fundamental mode for five different force levels: 0.01,
0.05, 0.1, 0.15 and 0.2N. The 0.01N level gives a
good evaluation of the natural frequency, identified
at 95.2Hz. The hysteresis between the two curves
obtained for the same harmonic excitation force (one
increasing the frequency, the other decreasing it) is
clearly visible for the three larger excitation levels (0.1,
0.15 and 0.2N). Jumps of the vibration amplitude are
observed when increasing and decreasing the excita-
tion frequency; these indicate softening-type nonlin-
earity.
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Nonlinear damping in large-amplitude vibrations 15

Fig. 7 Nonlinear vibrations of the clamped zirconium rod (hard-
ening system) versus excitation frequency for different harmonic
excitation forces; first-order harmonic. Comparison of experi-
ments (small dots) and numerical simulations (circles)

5.3 Weak hardening system: hollow rod in zirconium
alloy

A hollow rod of annular section made of zirconium
alloy has been experimentally studied. It is 0.9m
long with external and internal diameters of 9.50
and 8.28mm, respectively, giving a wall thickness of
0.61mm; E = 98 ×109 Pa, ρ = 6450kg/m3 and ν =
0.37.Theboundary conditionswere designed to bevery
close to perfectly clamped ends, allowing to manually
release axial stresses in case of temperature variations.
The excitation point has been chosen 50mmaway from
one end, in order to reduce the interaction between the
vibrating rod and the electrodynamic exciter. The fun-
damental mode of vibration has a natural frequency of
33.79Hz and very low damping. Nonlinear vibration
tests have been conducted in the frequency neighbour-
hoodof thismode at several different levels of harmonic
excitation. The maximum vibration amplitudes of the
first-order harmonic observed in a cycle are presented
in Fig. 7 for harmonic forces of 0.1, 0.15, 0.2 and 0.35N
versus the excitation frequency. Both experiments and
numerical simulations are presented. They show a very
weak hardening behaviour, since the change in the nat-
ural frequency is less than 1% for vibration amplitudes
up to 3.6 times the wall thickness h = 0.61 mm, which
is used to non-dimensionalize the vibration amplitude.

6 Comparison of numerical and experimental
results

Calculations have been done for order of the fractional
derivative α = 1. In fact, for the three studied cases,
the damping is low and results calculated for different
order of the fractional derivative are practically coin-
cident; therefore, it is convenient to apply the clas-
sical first derivative. The system parameters used in
the numerical simulations are given in Table 1 for the
three cases. The presence of quadratic stiffness for the
plate, in addition to the linear and the cubic stiffness, is
a consequence of the initial geometric imperfections.
The damping parameters ζ, β̃2 and β̃3 are identified
from the experiments. The stiffness and mass param-
eters ωn, β2 and β3 can be obtained by modelling the
system [1,32,33] or can be identified by experimental
data without any necessity of developing a model. A
very good agreement of the full model and the identi-
fied stiffness parameters has been shown for plates and
shells [2]. The identification procedure of stiffness has
been previously reported [2].

Figure 5 shows the comparison of the numerical and
experimental results for the plate. The same system
parameters are used to simulate the different five excita-
tion levels. The comparison is very good and shows that
the nonlinear damping is perfectly capable of repro-
ducing the experimental results. In case of linear vis-
cous damping model, the damping ratio values identi-
fied from the experiments are given in Table 2. There-
fore, the damping increases 6.4 times with the vibra-
tion amplitude in this case. Despite the large variation
of the linear damping necessary to model the dynamic
response, the nonlinear damping is fully representing it.
The nonlinear damping is completely described by the
two parameters ζ and β̃3. Differently from the stiffness,
the dissipation parameters cannot be modelled with the
present knowledge and must be identified from exper-
iments. It is important to observe that these two are
not material parameters, but geometrically nonlinear
characteristics of the whole structure and its material.

An excellent agreement between experimental and
numerical results is obtained also for the curved panel.
The comparison is illustrated in Fig. 6. In case of linear
viscous dampingmodel, the damping ratio values iden-
tified from the experiments are given in Table 3. The
damping increases 1.6 times with the vibration ampli-
tude in this case. The dissipation is described by only
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16 M. Amabili

Table 1 System parameters for the rectangular plate, the circular cylindrical panel and clamped rod cases; derivative of order α = 1

h (m) ωn (rad/s) ζ β2 β3 β̃2 β̃3

Plate 0.0005 455 0.0023 0.130 0.158 0 2.30

Panel 0.00033 598 0.0096 0.223 0 0 0.225

Rod 0.00061 212.3 0.0004 0 0.0017 0 0.096

Table 2 Equivalent damping ratio in case of linear viscous
damping for the rectangular plate

Excitation (N) Damping ratio ζ

0.01 (linear) 0.0023

0.1 0.0043

0.3 0.0075

0.7 0.0125

0.9 0.0148

Table 3 Equivalent damping ratio in case of linear viscous
damping for the circular cylindrical panel

Excitation (N) Damping ratio ζ

0.01 (linear) 0.0096

0.05 0.0098

0.1 0.0112

0.15 0.0131

0.2 0.0154

two parameters: ζ and β̃3, while β̃2 is null also in this
case.

The clamped rod is the last example that is presented
here for validation of the theory; in fact, experiments
have been conducted on three of the most classical
continuous systems in order to show the validity of
the formulation. The comparison of the experimental
results to those obtained by the identified one-degree-
of-freedom model is presented in Fig. 7. Also in this
case the agreement is satisfactory. There is a narrow
frequency region after the resonance where some addi-
tional nonlinear phenomena are observed that are not
captured by the model (it would require more degrees
of freedom to model it), but this is a small difference.
Table 4 shows the damping ratio values identified from
the experiments. The damping is doubled in this case
between the linear case and the larger excitation level

Table 4 Equivalent damping ratio in case of linear viscous
damping for the clamped zirconium rod

Excitation (N) Damping ratio ζ

0.01 (linear) 0.0004

0.1 0.0004

0.15 0.00058

0.2 0.0006

0.35 0.0008

investigated. Also in this case, it has been observed that
the quadratic nonlinear damping parameter β̃2 is null.

7 Numerical results in case of medium damping

Since the three experimentally studied cases have
damping ratio below 0.01, the effect of the fractional
derivative on the vibration response is insignificant. For
this reason, additional calculations have been done for
the plate by changing the damping ratio to ζ = 0.03,
i.e. increasing it by 13 times with respect to the experi-
mental case previously shown. A harmonic force exci-
tation of 15N has been applied. The relaxation time is
obtained fromEq. (33d). The forced vibration response
versus frequency is shown in Fig. 8 for three val-
ues of the order of fractional derivative: α = 1, 0.8,
0.6. Numerical results show that the order of the frac-
tional derivative changes the qualitative behaviour of
the vibration response. In particular, the frequency of
the peak of the vibration amplitude is moved to the
right by decreasing the value of α; at the same time,
the curve becomes steeper on the right side of the peak.
Therefore, the order of fractional derivative is a fur-
ther viscoelastic parameter to be identified in case of
nonlinear vibrations of systems with medium and large
damping ratio; this is the case of structures made of
rubber, fabrics or biological materials.
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Fig. 8 Nonlinear vibrations of the hardening system (rectangu-
lar plate) for largely increased damping ζ =0.03 versus excitation
frequency for different orders of the fractional derivative; plot of
the first-order harmonic; excitation 15N; o, α = 1; *, α =0.8;
�, α =0.6

8 Conclusions

This study derives for the first time the correct non-
linear damping. In particular, geometrically nonlinear
viscoelasticity is applied to the fractional linear solid
model. Identification of the nonlinear damping param-
eters from experimental cases shows that the nonlinear
dissipation force is cubic of the type x2 ẋ for systems
with only cubic stiffness, while the zero-order displace-
ment also appears in the case of quadratic stiffness giv-
ing rise to a more complicated expression. Even if the
formulation allows for a quadratic nonlinear damping
term, the corresponding coefficient has been identified
to be zero in the cases investigated. However, this term
could appear in the study of more complicated prob-
lems with additional degrees of freedom, as those aris-
ing for internal resonances. The approach introduced
is valid for continuous systems discretized with a sin-
gle degree of freedom; it can be extended to systems
discretized with any number of degrees of freedom.
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