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Abstract This study develops a novel back-stepping
controller with prescribed performance for
air-breathing hypersonic vehicles (AHVs) utilizing
non-affine models. For the velocity dynamics, a non-
affine control law is addressed to achieve prescribed
tracking performance. The altitude subsystem is rewrit-
ten as a strict feedback formulation to facilitate the
back-stepping control system design via a model trans-
formation approach. At each step of back-stepping
design, performance functions are constructed to force
tracking errors to fall within prescribed boundaries,
based on which desired transient performance and
steady-state performance are guaranteed for bothveloc-
ity and altitude control subsystems. Furthermore, the
exploited controllers are accurate model independent,
which guarantees control lawswith satisfactory robust-
ness against unknown uncertainties. Meanwhile, the
proposed control scheme can cope with unknown con-
trol gains. By the Lyapunov stability theory, the sta-
bility of the closed-loop control system is confirmed.
Finally, numerical simulations are given for an AHV
to validate the effectiveness of the proposed control
approach.
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List of symbols

m Vehicle mass
ρ̄ Density of air
q̄ Dynamic pressure
S Reference area
h Altitude
V Velocity
γ Flight-path angle
θ Pitch angle
α Angle of attack (α = θ − γ )

Q Pitch rate
T Thrust
D Drag
L Lift
M Pitching moment
Iyy Moment of inertia
c̄ Aerodynamic chord
zT Thrust moment arm
Φ Fuel equivalence ratio
δe Elevator angular deflection
Ni ith generalized force
N

α j
i jth order contribution of α toNi

N 0
i Constant term inNi

N δe
2 Contribution of δe toN2

βi (h, q̄) ith trust fit parameter
ηi ith generalized elastic coordinate
ζi Damping ratio for elastic mode ηi
ωi Natural frequency for elastic modeηi
Cαi

D ith order coefficient of α in D
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C
δie
D ith order coefficient of δe in D

C0
D Constant coefficient in D

Cαi

L ith order coefficient of α in L

Cδe
L Coefficient of δe contribution in L

C0
L Constant coefficient in L

Cαi

M,α ith order coefficient of α in M

C0
M,α Constant coefficient in M

Cαi

T ith order coefficient of α in T
C0
T Constant coefficient in T

h0 Nominal altitude for air density
approximation

ρ̄0 Air density at the altitudeh0
ψ̃i Constrained beam coupling constant for ηi
ce Coefficient of δein M
1/hs Air density decay rate

1 Introduction

As a strategic near-space weapon, air-breathing hyper-
sonic vehicles (AHVs) have seen significant develop-
ments in the past decade. Flight control design for
AHVs is a challenging and meaningful research area
since control systems should deal with system uncer-
tainties, complicated couplings and model nonlineari-
ties [1,2]. Thereby, the control gains usually are com-
pletely unknown due to system uncertainties, which
results in a problemof unknown control direction [3,4].
In particular, traditional affine control methodologies
are inadequate to handle such vehicles whose motion
models presenting non-affine formulations. In addition,
special requirements of transient performance are also
needed forAHV’s control systems owing to themaneu-
ver at hypersonic speeds [5–7].

It is well known that devising efficient control
approaches for AHVs is very important to com-
plete multiple flight tasks over a wide range of
flight envelopes. But varying flight environments,
unknown external disturbances, and unavoidable mod-
eling uncertainties make robust flight control design
for AHVs a challenging task [8,9]. By addressing a
robust tracking issue of AHVs subject to uncertainties
and disturbances, an inaccuracy model-based asymp-
totic tracking controller is exploited based on an affine
model of AHVs without using high-order time deriva-
tives of vehicle states [10]. To weaken the undesired
high-frequency chattering that may stimulate vehi-
cle’s flexible modes, a high-order sliding mode con-

trol design is presented for AHVs to provide robust
tracking of reference trajectories, while avoiding tra-
ditional robust controllers’ conservatism [1]. Further-
more, a terminal sliding mode control method is inves-
tigated for AHVs to achieve fast tracking of velocity
and altitude commands in the presence of paramet-
ric uncertainties and unknown disturbances [11]. For
an AHV with multiple disturbances, a hybrid control
frame incorporating fuzzy approximation and distur-
bance observer is studied to reject multiple source dis-
turbances, which guarantees the addressed controller
with better practicality than the ones that only considers
single type of disturbance [12]. By employing neural
networks to estimate unknowndynamics, a low compu-
tational controller is developed for a constrained AHV,
and simulation results prove the tracking performance
of that strategy despite of uncertainties, disturbances,
and control input constraints [13,14]. In [2], an active
disturbance rejection control strategy is proposed for
AHVs’ tracking system, and extended state observers
are constructed to estimate uncertainties for the sake of
further enhancing the controller’s robustness.

It has been proved that the altitude dynamics of
AHVs is easy to be rewritten as a strict feedback formu-
lation, whichmakes the recursive back-stepping design
realizable [15–17]. On the basis of a newly designed
nonlinear disturbance observer, a robust back-stepping
control scheme is developed to steer velocity and alti-
tude to track their reference commands, andmeanwhile
the problem of “explosion of terms” caused by back-
stepping design is handled by a tracking differentiator
[18]. The control approach exploited in [19] is to com-
bine back-stepping with sliding mode control such that
the addressed controller for AHVs with mismatched
uncertainties can provide robust tracking of reference
trajectories. Owing to the excellent capability of non-
linearity approximation, neural networks are incor-
porated with back-stepping design procedure, based
on which an adaptive nonlinear controller is devised
for AHVs [20]. Though the tracking performance and
robustness of that scheme are validated by numeri-
cal simulations in the presence of system uncertainties
and external disturbances, too many neural networks
and online learning parameters are required to guaran-
tee the robustness and convergence, which yields high
computational load and results in certain control time
delay. For this reason, great efforts are made to reduce
the required neural networks via a model transforma-
tion [14,18,21,22] and also to decrease the utilized
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online learning parameters based on advanced algo-
rithms [22–24].

Though excellent tracking performance can be
achieved by the above-mentioned control method-
ologies, there are still some shortcomings to these
approaches [1,8–24]. A fatal one is that these con-
trollers are devised using simplified affine models,
which harms their application validity in practice
since AHVs’ motion models are completely non-affine
[25,26]. Another is that it is difficult for these control
methods to guarantee prescribed output tracking per-
formance especially transient performance for AHVs’
hypersonic maneuver. In this paper, we propose a new
tracking controller with prescribed performance for
AHVs based on non-affine models using the back-
stepping design procedure, capable of guaranteeing
prescribed performance for tracking errors. The spe-
cial contributions are summarized as follows.

1. The addressed controller directly stems from a non-
affine model of AHVs, which avoids inappropriate
model simplifications under rigorous assumptions
and guarantees controllers with practicality.

2. Prescribed output tracking quality is achieved for
AHVs via prescribed performance control.

3. The presented control approach is independent on
accurate vehicle models and function estimations.
Thus its disturbance rejection ability is fine and the
computational cost is low.

The rest of this study is outlined as follows. Themotion
model ofAHVs is formulated in Sect. 2, and the prelim-
inary knowledge of prescribed performance is briefly
explained in Sect. 3. In Sect. 4, prescribed performance
back-stepping controllers are devised and the conver-
gence of closed-loop control system is proved. Simula-
tion results are shown in Sect. 5, and finally conclusions
are presented in Sect. 6.

2 Problem formulation

2.1 Vehicle model

The longitudinalmotionmodel considered in this paper
is formulated as [25,26]

V̇ = T cos (θ − γ )/m − D/m − g sin γ (1)

ḣ = V sin γ (2)

γ̇ = L/(mV ) + T sin (θ − γ )/(mV ) − g cos γ (3)

θ̇ = Q (4)

Q̇ =
(
M + ψ̃1η̈1 + ψ̃2η̈2

)
/Iyy (5)

k1η̈1 = −2ζ1ω1η̇1 − ω2
1η1 + N1 − ψ̃1M/Iyy

−ψ̃1ψ̃2η̈2/Iyy (6)

k2η̈2 = −2ζ2ω2η̇2 − ω2
2η2 + N2

− ψ̃2M/Iyy − ψ̃2ψ̃1η̈1/Iyy . (7)

The above vehicle model consists of five rigid body
states (velocity V , altitude h, flight-path angle γ , pitch
angle θ , and pitch rate Q) and two flexible states ( η1
and η2). The attack angle α = θ − γ . T , D, L , M ,
N1 and N2 denote thrust force, drag force, lift force,
pitching moment, the first generalized force, and the
second generalized force, respectively. Their details are
as follows [26]

T ≈ β1 (h, q̄)Φα3 + β2 (h, q̄) α3 + β3 (h, q̄) Φα2

+β4 (h, q̄) α2

+β5 (h, q̄) Φα + β6 (h, q̄) α + β7 (h, q̄)Φ

+β8 (h, q̄) ,

D ≈ q̄ SCα2

D α2 + q̄ SCα
Dα + q̄ SC

δ2e
D δ2e

+ q̄ SCδe
D δe + q̄ SC0

D,

M ≈ zTT + q̄ Sc̄Cα2

M,αα2 + q̄ Sc̄Cα
M,αα + q̄ Sc̄C0

M,α

+ q̄ Sc̄ceδe,

L ≈ q̄ SCα
Lα + q̄ SCδe

L δe + q̄ SC0
L ,

N1 = Nα2

1 α2 + Nα
1 α + N 0

1 ,

N2 = Nα2

2 α2 + Nα
2 α + N δe

2 δe + N 0
2 , q̄ = ρ̄V 2/2,

ρ̄ = ρ̄0 exp (−(h − h0)/hs) ,

where fuel equivalence ratio Φ and elevator angular
deflection δe are the control inputs, and they occur
implicitly in Eqs. (1)–(7). For more detailed definitions
of other parameters and coefficients, the reader could
refer to [25,26].

Remark 1 Traditionally, only the rigid body states are
measured and used for control designs, while the flex-
ible states are treated as system uncertainties that are
coped with by the controller’s robustness [14–16].

2.2 Control objective

The control goal sought is to devise non-affine pre-
scribed performance controllers Φ and δe via back-
stepping for AHVs such that velocity V and altitude
h track their reference commands Vref and href in the
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presence of parametric uncertainties. Meanwhile, all
closed-loop signals are bounded, and the transient prop-
erty’s tracking performance and the steady-state error
are characterized by performance functions.

3 Prescribed performance

By prescribed performance, we mean that the track-
ing error e evolves strictly within predefined decaying
bounds as follows:

−δρ(t) < e < δ̄ρ(t), (8)

where the performance function ρ(t) = (ρ0 − ρ∞)

e−lt +ρ∞ > 0 is bounded and strictly positive decreas-
ing with the property ρ∞ ≤ ρ(t) ≤ ρ0; ρ0 > ρ∞ > 0,
l > 0, 0 < δ̄ < 1, 0 < δ < 1 are design parameters.

If e remains within the adjustable neighborhood of
(8), the maximum overshoot of e is prescribed less
than max

{
δ̄ρ0, δρ0

}
, and the steady value e(∞) is no

more than max
{
δ̄ρ∞, δρ∞

}
. Thus, both transient per-

formance and steady-state performance of e are guar-
anteed by choosing appropriate design parameters for
(8).

Noting that it is hard to directly design controllers
using inequality constraint (8), a transformed function

Ψ (ε(t)) = δ̄eε(t)−δe−ε(t)

eε(t)+e−ε(t) is applied to convert (8) into
the following formulation.

e = Ψ (ε(t)) ρ(t), (9)

where ε(t) is a transformed error.
Since limε(t)→+∞ Ψ (ε(t)) = δ̄ and limε(t)→−∞

Ψ (ε(t)) = −δ, (9) is equivalent to (8). Furthermore,
Ψ (ε(t)) ∈ (−δ, δ̄

)
is bounded and strictly increasing.

From (9), we have

ε(t) = Ψ −1 (ε(t)) = 1

2
ln

(
e/ρ(t) + δ

δ̄ − e/ρ(t)

)
. (10)

ε̇(t) is derived as

ε̇(t) = r

[
ė − e

ρ̇(t)

ρ(t)

]
, (11)

with

ρ̇(t) = −l (ρ0 − ρ∞) e−lt ∈ [−l (ρ0 − ρ∞) , 0] ,

r = 1

2ρ(t)

[
1

e/ρ(t) + δ
− 1

e/ρ(t) − δ̄

]

= 1

2ρ(t)

[
1

Ψ (ε(t)) ρ(t)/ρ(t) + δ

− 1

Ψ (ε(t)) ρ(t)/ρ(t) − δ̄

]

= 1

2ρ(t)

[
1

Ψ (ε(t)) + δ
− 1

Ψ (ε(t)) − δ̄

]
.

Noticing the fact that 0 < ρ∞ ≤ ρ(t) ≤ ρ0 and
Ψ (ε(t)) ∈ (−δ, δ̄

)
, r is bounded and satisfies r ≥

1
2ρ0

(
1
δ

+ 1
δ̄

)
> 0.

4 Controller design

Based on the analyses of [22,23], we decompose the
motion model of AHVs into the velocity subsystem
(i.e., Eq. (1)) and the altitude subsystem (i.e., Eqs. (2)–
(5)) for the simplicity of control design.

4.1 Velocity controller design

According to the timescale principle [3], the velocity is
slower dynamics compared with the altitude and atti-
tude angles. When velocity varies, the altitude and atti-
tude angles are considered to reach their steady con-
stants. Thus, the velocity subsystem can be expressed
as the following non-affine formulation.

⎧⎨
⎩
V̇ = ϕV (V, Φ)

uV = Φ

yV = V
(12)

where ϕV (V, Φ) is a continuous unknown function,
uV and yV are the control input and output of velocity
subsystem, respectively.

By mean value theorem [27], (12) further becomes

⎧⎨
⎩
V̇ = βV 1(V ) + βV 2(V )Φ

uV = Φ

yV = V
(13)

with βV 2(V ) = ∂ϕV (V,Φ∗)
∂Φ∗ 	= 0, Φ∗ ∈ (0, Φ).
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Remark 2 βV 2(V ) 	= 0 is the controllability condition
of (13). There is no need of priori knowledge about sign
of βV 2(V ) that may not be easily obtained in practice.

Assumption 1 [28] The reference command Vref and
its time derivative V̇ref are bounded. That is, there exist
positive constants V̄ref and

¯̇Vref such that |Vref | ≤ V̄ref
and

∣∣V̇ref
∣∣ ≤ ¯̇Vref .

Define velocity tracking error eV

eV = V − Vref (14)

Employ a performance function ρV (t) = (
ρV 0

− ρV∞
)
e−lV t + ρV∞ to constrain eV

−δV ρV (t) < eV < δ̄V ρV (t) (15)

where ρV 0 > 0, ρV∞ > 0, lV > 0, 0 < δV < 1, 0 <

δ̄V < 1 are design parameters and satisfy ρV 0 > ρV∞,
−δV ρV 0 < eV (0) < δ̄V ρV 0, ρV∞ ≤ ρV (t) ≤ ρV 0.

We transform (15) as

eV = ΨV (εV (t)) ρV (t) (16)

where ΨV (εV (t)) = δ̄V eεV (t)−δV e−εV (t)

eεV (t)+e−εV (t) ∈ (−δV , δ̄V
)
is

a transformed function, εV (t) is a transformed error,
and its formulation is

εV (t) = Ψ −1
V (εV (t)) = 1

2
ln

(
eV /ρV (t) + δV

δ̄V − eV /ρV (t)

)
.

(17)

Taking time derivative along (17) leads to

ε̇V (t) = rV

[
ėV − eV

ρ̇V (t)

ρV (t)

]

= rV

[
βV 1(V ) + βV 2(V )Φ − V̇ref − eV

ρ̇V (t)

ρV (t)

]

(18)

with rV = 1
2ρV (t)

[
1

eV /ρV (t)+δV
− 1

eV /ρV (t)−δ̄V

]
≥

1
2ρV 0

(
1
δV

+ 1
δ̄V

)
> 0, ρ̇V (t) = −lV (ρV 0 − ρV∞) e−lV t

∈ [−lV (ρV 0 − ρV∞) , 0).
From the fact that eV = ΨV (εV (t)) ρV (t), we

obtain eV = V − Vref = ΨV (εV (t)) ρV (t), that is,
V = ΨV (εV (t)) ρV (t) + Vref . Then (18) becomes

ε̇V (t) = rV [βV 1(ΨV (εV (t)) ρV (t) + Vref)

+ βV 2(V )Φ − V̇ref

− ΨV (εV (t)) ρV (t)
ρ̇V (t)

ρV (t)

]

= rV [βV 1(ΨV (εV (t)) ρV (t) + Vref)

+ βV 2(V )Φ − V̇ref − ΨV (εV (t)) ρ̇V (t)
]
.

(19)

Define Lyapunov function

LV = ε2V (t)

2
(20)

Invoking (19), L̇V is derived as

L̇V = εV (t)ε̇V (t)

= εV (t)rV [βV 1(ΨV (εV (t)) ρV (t)

+ Vref) + βV 2(V )Φ − V̇ref

− ΨV (εV (t)) ρ̇V (t)]

= εV (t)rVβV 2(V )Φ

+ εV (t)rV [βV 1(ΨV (εV (t)) ρV (t) + Vref)

− V̇ref − ΨV (εV (t)) ρ̇V (t)
]
. (21)

The boundedness of ΨV (εV (t)), ρV (t) and Vref leads
to that βV 1(ΨV (εV (t)) ρV (t) + Vref) is also bounded.
Thereby, there is a positive constant β̄V 1 such that
|βV 1(ΨV (εV (t)) ρV (t) + Vref)| ≤ β̄V 1. Then L̇V

becomes

L̇V ≤ εV (t)rVβV 2(V )Φ + |εV (t)| rV�V (22)

with�V = β̄V 1+¯̇Vref+max{δV , δ̄V }lV (ρV 0 − ρV∞) >

0.
The control law Φ is chosen as

⎧
⎨
⎩

Φ = NV (ξV )
[
κV 1εV (t) + κV 2rV εV (t)

2

]

ξ̇V = κV 1rV ε2V (t) + κV 2r2V ε2V (t)
2

(23)

where NV (ξV ) = eξ2V cos(πξV /2) is a Nussbaum
function [3,4]; κV 1, κV 2 > 0 are design parameters.

Substituting Φ into (22), we get

L̇V ≤ εV (t)rVβV 2(V )NV (ξV )
[
κV 1εV (t) + κV 2rV εV (t)

2

]
+ |εV (t)| rV�V .

(24)

By Young’s inequality, we obtain |εV (t)| rV�V ≤
κV 2
2 r2V ε2V (t) + �2

V
2κV 2

. Then (24) becomes
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L̇V ≤ εV (t)rV βV 2(V )NV (ξV )

[
κV 1εV (t) + κV 2rV εV (t)

2

]
+ κV 2

2
r2V ε2V (t) + �2

V

2κV 2

= κV 1ε
2
V (t)rVβV 2(V )NV (ξV )

+ κV 2

2
r2V ε2V (t) [βV 2(V )NV (ξV ) + 1]

+ �2
V

2κV 2
+ κV 1ε

2
V (t)rV − κV 1ε

2
V (t)rV

= κV 1ε
2
V (t)rV [βV 2(V )NV (ξV ) + 1]

+ κV 2

2
r2V ε2V (t) [βV 2(V )NV (ξV ) + 1]

+ �2
V

2κV 2
− κV 1ε

2
V (t)rV

=
[
κV 1ε

2
V (t)rV + κV 2

2
r2V ε2V (t)

]

× [βV 2(V )NV (ξV ) + 1] + �2
V

2κV 2
− κV 1ε

2
V (t)rV

= −κV 1rV ε2V (t) + [βV 2(V )NV (ξV ) + 1] ξ̇V + �2
V

2κV 2

≤ −ιV LV + [βV 2(V )NV (ξV ) + 1] ξ̇V + �2
V

2κV 2
(25)

with ιV = κV 1
ρV 0

(
1
δV

+ 1
δ̄V

)
.

Being multiplied by eιV t on both sides of (25), we
have

d

dt

(
LV e

ιV t
) ≤ βV 2(V )NV (ξV ) ξ̇V e

ιV t + ξ̇V e
ιV t

+ �2
V

2κV 2
eιV t . (26)

Integrating (26) over [0, t] yields

0 ≤ LV ≤ LV (0) + e−ιV t

×
∫ t

0
βV 2(V )NV (ξV ) ξ̇V e

ιV τdτ

+ e−ιV t
∫ t

0
ξ̇V e

ιV τdτ +
∫ t

0

�2
V

2κV 2
e−ιV (t−τ)dτ (27)

Since
∫ t
0

�2
V

2κV 2
e−ιV (t−τ)dτ = �2

V
2κV 2

1
ιV

(
1 − e−ιV t

) ∈[
0,

�2
V

2κV 2

1
ιV

)
, we know that

∫ t
0

�2
V

2κV 2
e−ιV (t−τ)dτ is

bounded. Thus, (27) becomes

0 ≤ LV ≤ LV 0+e−ιV t
∫ t

0
βV 2(V )NV (ξV ) ξ̇V e

ιV τdτ

+ e−ιV t
∫ t

0
ξ̇V e

ιV τdτ (28)

withLV 0 = LV (0) + �2
V

2κV 2

1
ιV
.

By Lemmas 1 and 2 presented in [29], we know
that LV , e−ιV t

∫ t
0 βV 2(V )NV (ξV ) ξ̇V eιV τdτ and e−ιV t∫ t

0 ξ̇V eιV τdτ are bounded. Hence all the closed-loop
signals are bounded, and there exists a positive con-
stant ε̄V such that |εV (t)| ≤ ε̄V . The inversion transfor-
mation of (17) is eV /ρV (t)+δV

δ̄V −eV /ρV (t)
= e2εV (t), which yields

eV = δ̄V e2εV (t)−δV
1+e2εV (t) ρV (t). Finally, we have−δV ρV (t) <

δ̄V e−2ε̄V −δV
1+e−2ε̄V

ρV (t) ≤ eV ≤ δ̄V e2ε̄V −δV
1+e2ε̄V

ρV (t) <

δ̄V ρV (t). Thus the prescribed performance for eV is
guaranteed.

4.2 Altitude controller design

Define altitude tracking error eh as

eh = h − href (29)

Define a performance function ρh(t) = (ρh0 − ρh∞)

e−lh t + ρh∞ > 0 to constrain eh .

−δhρh(t) < eh < δ̄hρh(t) (30)

where ρh0 > 0, ρh∞ > 0, lh > 0, 0 < δh < 1, 0 <

δ̄h < 1 are design parameters and satisfy ρh0 > ρh∞,
−δhρh0 < eh(0) < δ̄hρh0, ρh∞ ≤ ρh(t) ≤ ρh0.

Define transformed error εh(t) as

εh(t) = 1

2
ln

(
eh/ρh(t) + δh

δ̄h − eh/ρh(t)

)
(31)

The command of γ is selected as

γd = arcsin

[−μhεh(t) + ḣref + ρ̇h(t)eh/ρh(t)

V

]

(32)

where μh > 0 is a design parameter, ρ̇h(t) =
−lh (ρh0 − ρh∞) e−lh t .

If γ→γ d , the corresponding dynamics for εh(t) is
derived as
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Guaranteeing prescribed output tracking performance 531

μh ε̇h(t) + εh(t) = 0 (33)

Thus εh(t) is bounded, and there exists a positive
constant ε̄h such that |εh(t)| ≤ ε̄h . The inver-
sion transformation of (31) is eh/ρh(t)+δh

δ̄h−eh/ρh(t)
= e2εh(t),

from which we have eh = δ̄he2εh (t)−δh
1+e2εh (t) ρh(t). Finally,

we obtain −δhρh(t) <
δ̄he−2ε̄h−δh
1+e−2ε̄h

ρh(t) ≤ eh ≤
δ̄he2ε̄h−δh
1+e2ε̄h

ρh(t) < δ̄hρh(t).

(1) Model transformation
By the timescale principle [3], attitude angles are faster
dynamics compared with the velocity. When attitude
angles vary, the velocity is considered to keep a con-
stant. Thus, the altitude subsystem can be formulated
as the following non-affine model.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = ϕh1(x1, x2)
ẋ2 = x3
ẋ3 = ϕh3(x, δe)
uh = δe
yh = x1

(34)

where ϕh1(x1, x2), ϕh3(x, δe) are continuous unknown
functions; uh and yh are the control input and output
of altitude subsystem, respectively; x1 = γ , x2 = θ ,
x3 = Q, x = [x1, x2, x3]

Define z1 = x1, z2 = ż1 = ẋ1 = ϕh1(x1, x2). Then
we have

ż2 = ∂ϕh1(x1, x2)

∂x1
ẋ1 + ∂ϕh1(x1, x2)

∂x2
ẋ2

= ∂ϕh1(x1, x2)

∂x1
ϕh1(x1, x2) + ∂ϕh1(x1, x2)

∂x2
x3

�= Fh1(x) (35)

Define z3 = ż2 = Fh1(x), and the time derivative of z3
is

ż3 = ∂Fh1(x)
∂x1

ẋ1 + ∂Fh1(x)
∂x2

ẋ2 + ∂Fh1(x)
∂x3

ẋ3

= ∂Fh1(x)
∂x1

ϕh1(x1, x2) + ∂Fh1(x)
∂x2

x3

+ ∂Fh1(x)
∂x3

ϕh3(x, δe) = ∂Fh1(x)
∂x1

ϕh1(x1, x2)

+ ∂Fh1(x)
∂x2

x3 + ∂Fh1(x)
∂x3

ϕh3(x, δe)

�= Γh(z3, δe) (36)

Finally, we obtain the following formulation

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1 = z2
ż2 = z3
ż3 = Γh(z3, δe)
uh = δe
yh = z1 = x1 = γ

(37)

Utilizing mean value theorem [27], (37) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1 = z2
ż2 = z3
ż3 = Γh0(z3, 0) + Γh1(z3, δ∗

e )δe
uh = δe
yh = z1 = x1 = γ

(38)

where Γh1(z3, δ∗
e ) = ∂Γh(z3,δ∗

e )

Γh(z3,δ∗
e )

	= 0, δ∗
e ∈ (0, δe);

Γh0(z3, 0) is a continuous unknown function.

Remark 3 Γh1(z3, δ∗
e ) 	= 0 is the controllability con-

dition of (38), and the strict restriction on the sign of
Γh1(z3, δ∗

e ) is released.

(2) Prescribed performance back-stepping controller
design

Step 1 Define tracking error eh1

eh1 = z1 − z1d = z1 − γd (39)

Define a performance function ρh1(t)=(ρh10 − ρh1∞)

e−lh1t + ρh1∞ > 0 to constrain eh1

−δh1ρh1(t) < eh1 < δ̄h1ρh1(t) (40)

where ρh10 > 0, ρh1∞ > 0, lh1 > 0, 0 < δh1 <

1, 0 < δ̄h1 < 1 are design parameters and sat-
isfy ρh10 > ρh1∞, −δh1ρh10 < eh1(0) < δ̄h1ρh10,
ρh1∞ ≤ ρh1(t) ≤ ρh10.

We convert (40) into the following formulation

eh1 = Ψh1 (εh1(t)) ρh1(t) (41)

whereΨh1 (εh1(t))= δ̄h1eεh1(t)−δh1e−εh1(t)

eεh1(t)+e−εh1(t) ∈ (−δh1, δ̄h1
)

is a transformed function and εh1(t) is a transformed
error. From (41), we get the formulation of εh1(t)
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εh1(t) = Ψ −1
h1 (εh1(t)) = 1

2
ln

(
eh1/ρh1(t) + δh1

δ̄h1 − eh1/ρh1(t)

)
.

(42)

Furthermore, ε̇h1(t) is derived as

ε̇h1(t) = rh1

[
ėh1 − eh1

ρ̇h1(t)

ρh1(t)

]

= rh1

[
ż1 − γ̇d − eh1

ρ̇h1(t)

ρh1(t)

]

= rh1

[
z2 − γ̇d − eh1

ρ̇h1(t)

ρh1(t)

]
(43)

where rh1 = 1
2ρh1(t)

[
1

eh1/ρh1(t)+δh1

− 1
eh1/ρh1(t)−δ̄h1

]
≥ 1

2ρh10δh1
+ 1

2ρh10 δ̄h1
> 0.

The virtual control law is designed as

z2d = −kh1εh1(t) + γ̇d + eh1
ρ̇h1(t)

ρh1(t)
(44)

where kh1 > 0 is a design parameter, ρ̇h1(t) =
−lh1 (ρh10 − ρh1∞) e−lh1t .

Step 2 Define tracking error eh2

eh2 = z2 − z2d (45)

Construct a performance function ρh2(t) = (ρh20
−ρh2∞) e−lh2t + ρh2∞ > 0 to constrain eh2

−δh2ρh2(t) < eh2 < δ̄h2ρh2(t) (46)

where ρh20 > 0, ρh2∞ > 0, lh2 > 0, 0 < δh2 <

1, 0 < δ̄h2 < 1 are design parameters and sat-
isfy ρh20 > ρh2∞, −δh2ρh20 < eh2(0) < δ̄h2ρh20,
ρh2∞ ≤ ρh2(t) ≤ ρh20.

Equation (46) is further converted into the following
formulation

eh2 = Ψh2 (εh2(t)) ρh2(t) (47)

whereΨh2 (εh2(t))= δ̄h2eεh2(t)−δh2e−εh2(t)

eεh2(t)+e−εh2(t) ∈ (−δh2, δ̄h2
)

is a transformed function and εh2(t) is a transformed
error. From (47), we have

εh2(t) = Ψ −1
h2 (εh2(t)) = 1

2
ln

(
eh2/ρh2(t) + δh2

δ̄h2 − eh2/ρh2(t)

)
.

(48)

The time derivative of εh2(t) is

ε̇h2(t) = rh2

[
ėh2 − eh2

ρ̇h2(t)

ρh2(t)

]

= rh2

[
ż2 − ż2d − eh2

ρ̇h2(t)

ρh2(t)

]

= rh2

[
z3 − ż2d − eh2

ρ̇h2(t)

ρh2(t)

]
(49)

where rh2 = 1
2ρh2(t)

[
1

eh2/ρh2(t)+δh2
− 1

eh2/ρh2(t)−δ̄h2

]
≥

1
2ρh20

(
1

δh2
+ 1

δ̄h2

)
> 0.

The virtual control law is devised as

z3d = −kh2εh2(t) + ż2d + eh2
ρ̇h2(t)

ρh2(t)
(50)

where kh2 > 0 is a design parameter, ρ̇h2(t) =
−lh2 (ρh20 − ρh2∞) e−lh2t .

Step 3 Define tracking error eh3

eh3 = z3 − z3d (51)

Devise a performance function ρh3(t) = (ρh30
−ρh3∞) e−lh3t + ρh3∞ > 0 to constrain eh3

−δh3ρh3(t) < eh3 < δ̄h3ρh3(t) (52)

with ρh30 > 0, ρh3∞ > 0, lh3 > 0, 0 < δh3 < 1,
0 < δ̄h3 < 1 being design parameters and satisfying
ρh30 > ρh3∞, −δh3ρh30 < eh3(0) < δ̄h3ρh30, ρh3∞ ≤
ρh3(t) ≤ ρh30.

We transform (52) into an equivalent formulation

eh3 = Ψh3 (εh3(t)) ρh3(t) (53)

whereΨh3 (εh3(t))= δ̄h3eεh3(t)−δh3e−εh3(t)

eεh3(t)+e−εh3(t) ∈ (−δh3, δ̄h3
)

is a transformed function and εh3(t) is a transformed
error. The inversion of (53) is as follows

εh3(t) = Ψ −1
h3 (εh3(t)) = 1

2
ln

(
eh3/ρh3(t) + δh3

δ̄h3 − eh3/ρh3(t)

)
.

(54)

ε̇h3(t) is derived as

ε̇h3(t) = rh3

[
ėh3 − eh3

ρ̇h3(t)

ρh3(t)

]

= rh3

[
ż3 − ż3d − eh3

ρ̇h3(t)

ρh3(t)

]
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= rh3

[
Γh0(z3, 0)+Γh1(z3, δ

∗
e )δe − ż3d − eh3

ρ̇h3(t)

ρh3(t)

]

= rh3
[
Γh0(z3, 0) + Γh1(z3, δ

∗
e )δe − ż3d

− Ψh3 (εh3(t)) ρh3(t)
ρ̇h3(t)

ρh3(t)

]

= rh3
[
Γh0(z3, 0) + Γh1(z3, δ

∗
e )δe − ż3d

− Ψh3 (εh3(t)) ρ̇h3(t)] (55)

with rh3 = 1
2ρh3(t)

[
1

eh3/ρh3(t)+δh3
− 1

eh3/ρh3(t)−δ̄h3

]
≥

1
2ρh30

(
1

δh3
+ 1

δ̄h3

)
> 0.

Define Lyapunov function

Lh = ε2h1(t)

2
+ ε2h2(t)

2
+ ε2h3(t)

2
. (56)

Employing (43), (49) and (55), L̇h is

L̇h = εh1(t)ε̇h1(t) + εh2(t)ε̇h2(t) + εh3(t)ε̇h3(t)

= εh1(t)rh1

[
z2 − γ̇d − eh1

ρ̇h1(t)

ρh1(t)

]

+ εh2(t)rh2

[
z3 − ż2d − eh2

ρ̇h2(t)

ρh2(t)

]

+ εh3(t)rh3
[
Γh0(z3, 0) + Γh1(z3, δ

∗
e )δe − ż3d

− Ψh3 (εh3(t)) ρ̇h3(t)]

= εh1(t)rh1

[
eh2 + z2d − γ̇d − eh1

ρ̇h1(t)

ρh1(t)

]

+ εh3(t)rh3Γh1(z3, δ
∗
e )δe + εh3(t)rh3

× [
Γh0(z3, 0) − ż3d

− Ψh3 (εh3(t)) ρ̇h3(t)] . (57)

Substituting (44) and (50) into (57) leads to

L̇h = εh1(t)rh1 [eh2 − kh1εh1(t)] + εh2(t)rh2

× [eh3 − kh2εh2(t)]

+ εh3(t)rh3
[
Γh0(z3, 0) + Γh1(z3, δ

∗
e )δe − ż3d

− Ψh3 (εh3(t)) ρ̇h3(t)]

= εh1(t)rh1 [Ψh2 (εh2(t)) ρh2(t) − kh1εh1(t)]

+ εh2(t)rh2 [Ψh3 (εh3(t)) ρh3(t) − kh2εh2(t)]

+ εh3(t)rh3Γh1(z3, δ
∗
e )δe + εh3(t)rh3 [Γh0(z3, 0)

− ż3d − Ψh3 (εh3(t)) ρ̇h3(t)
]

= rh1
[
Ψh2 (εh2(t)) ρh2(t)εh1(t) − kh1ε

2
h1(t)

]

+ rh2
[
Ψh3 (εh3(t)) ρh3(t)εh2(t) − kh2ε

2
h2(t)

]

+ εh3(t)rh3Γh1(z3, δ
∗
e )δe

+ εh3(t)rh3 [Γh0(Ψh3 (εh3(t)) ρh3(t)

+ z3d, 0) − ż3d − Ψh3 (εh3(t)) ρ̇h3(t)
]

(58)

It is easy to conclude that there exists a positive con-
stant �h such that

∣∣Γh0(Ψh3 (εh3(t)) ρh3(t) + z3d, 0)
−ż3d − Ψh3 (εh3(t)) ρ̇h3(t)

∣∣ ≤ �h . Furthermore,
ρh2∞ ≤ ρh2(t) ≤ ρh20,

ρh3∞ ≤ ρh3(t) ≤ ρh30, rh1 ≥ 1

2ρh10

(
1

δh1
+ 1

δ̄h1

)
> 0,

rh2 ≥ 1

2ρh20

(
1

δh2
+ 1

δ̄h2

)
> 0,

Ψh2 (εh2(t)) = δ̄h2e
εh2(t) − δh2e

−εh2(t)

eεh2(t) + e−εh2(t)
∈ (−δh2, δ̄h2

)
,

Ψh3 (εh3(t)) = δ̄h3e
εh3(t) − δh3e

−εh3(t)

eεh3(t) + e−εh3(t)
∈ (−δh3, δ̄h3

)
.

Then (58) becomes

L̇h ≤ rh1
[
δ̄h2ρh20 |εh1(t)| − kh1ε

2
h1(t)

]

+ rh2
[
δ̄h3ρh30 |εh2(t)| − kh2ε

2
h2(t)

]

+ εh3(t)rh3Γh1(z3, δ
∗
e )δe + |εh3(t)| rh3�h

= rh1 |εh1(t)|
[
δ̄h2ρh20 − kh1 |εh1(t)|

]

+ rh2 |εh2(t)|
[
δ̄h3ρh30 − kh2 |εh2(t)|

]

+ εh3(t)rh3Γh1(z3, δ
∗
e )δe + |εh3(t)| rh3�h . (59)

Finally, the actual control law δe is chosen as

⎧⎨
⎩

δe = Nh3 (ξh3)
[
κh31εh3(t) + κh32rh3εh3(t)

2

]

ξ̇h3 = κh31rh3ε2h3(t) + κh32r2h3ε
2
h3(t)

2

(60)

where Nh3 (ξh3) = eξ2h3 cos(πξh3/2) is a Nussbaum
function [3,4]; κh31, κh32 > 0 are design parameters.

Invoking (60), (59) becomes

L̇h ≤ rh1 |εh1(t)|
[
δ̄h2ρh20 − kh1 |εh1(t)|

]

+ rh2 |εh2(t)|
[
δ̄h3ρh30 − kh2 |εh2(t)|

]

+ εh3(t)rh3Γh1(z3, δ
∗
e )Nh3 (ξh3) [κh31εh3(t)

+ κh32rh3εh3(t)

2

]
+ |εh3(t)| rh3�h . (61)

Based on Young’s inequality, we get |εh3(t)| rh3�V ≤
κh32
2 r2h3ε

2
h3(t) + �2

h
2κh32

. Then (61) further becomes

L̇h ≤ rh1 |εh1(t)|
[
δ̄h2ρh20 − kh1 |εh1(t)|

]

+ rh2 |εh2(t)|
[
δ̄h3ρh30 − kh2 |εh2(t)|

]

+ εh3(t)rh3Γh1(z3, δ
∗
e )Nh3 (ξh3)[

κh31εh3(t) + κh32rh3εh3(t)

2

]
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+ κh32

2
r2h3ε

2
h3(t) + �2

h

2κh32
= rh1 |εh1(t)|

[
δ̄h2ρh20 − kh1 |εh1(t)|

]

+ rh2 |εh2(t)|
[
δ̄h3ρh30 − kh2 |εh2(t)|

]

+Γh1(z3, δ
∗
e )Nh3 (ξh3)

×
[
κh31rh3ε

2
h3(t) + κh32r2h3ε

2
h3(t)

2

]

+ κh32

2
r2h3ε

2
h3(t) + �2

h

2κh32
= rh1 |εh1(t)|

[
δ̄h2ρh20 − kh1 |εh1(t)|

]

+ rh2 |εh2(t)|
[
δ̄h3ρh30 − kh2 |εh2(t)|

]

+Γh1(z3, δ
∗
e )Nh3 (ξh3) ξ̇h3

+ κh32

2
r2h3ε

2
h3(t) + �2

h

2κh32
= rh1 |εh1(t)|

[
δ̄h2ρh20 − kh1 |εh1(t)|

]

+ rh2 |εh2(t)|
[
δ̄h3ρh30 − kh2 |εh2(t)|

]

+Γh1(z3, δ
∗
e )Nh3 (ξh3) ξ̇h3

− κh31rh3ε
2
h3(t) + κh31rh3ε

2
h3(t)

+ κh32

2
r2h3ε

2
h3(t) + �2

h

2κh32
= rh1 |εh1(t)|

[
δ̄h2ρh20 − kh1 |εh1(t)|

]

+ rh2 |εh2(t)|
[
δ̄h3ρh30 − kh2 |εh2(t)|

]

− κh31rh3ε
2
h3(t) + Γh1(z3, δ

∗
e )

×Nh3 (ξh3) ξ̇h3 + ξ̇h3 + �2
h

2κh32
(62)

If |εh1(t)| ≤ δ̄h2ρh20/kh1 and |εh2(t)| ≤ δ̄h3ρh30/kh2,
then εh1(t) and εh2(t) are bounded. Else if |εh1(t)| >

δ̄h2ρh20/kh1 and |εh2(t)| > δ̄h3ρh30/kh2, we obtain
rh1 |εh1(t)|

[
δ̄h2ρh20 − kh1 |εh1(t)|

]
< 0 and rh2 |εh2(t)|[

δ̄h3ρh30 − kh2 |εh2(t)|
]

< 0. Moreover, we easily
know that there exist adequately small constants0 <

κH1 < rh1kh1and0 < κH2 < rh2kh2such that
rh1 |εh1(t)|

[
δ̄h2ρh20 − kh1 |εh1(t)|

] + κH1ε
2
h1(t) < 0

and rh2 |εh2(t)|
[
δ̄h3ρh30 − kh2 |εh2(t)|

]+κH2ε
2
h2(t) <

0. Thus (62) becomes

L̇h ≤ rh1 |εh1(t)|
[
δ̄h2ρh20 − kh1 |εh1(t)|

]

+κH1ε
2
h1(t) − κH1ε

2
h1(t) + rh2 |εh2(t)|[

δ̄h3ρh30 − kh2 |εh2(t)|
] + κH2ε

2
h2(t) − κH2ε

2
h2(t)

− κh31rh3ε
2
h3(t) + Γh1(z3, δ

∗
e )

×Nh3 (ξh3) ξ̇h3 + ξ̇h3 + �2
h

2κh32
≤ −κH1ε

2
h1(t) − κH2ε

2
h2(t) − κh31rh3ε

2
h3(t)

+Γh1(z3, δ
∗
e )Nh3 (ξh3) ξ̇h3 + ξ̇h3 + �2

h

2κh32
≤ −ιh Lh + Γh1(z3, δ

∗
e )Nh3 (ξh3) ξ̇h3 + ξ̇h3

+ �2
h

2κh32
(63)

with ιh = min
{
2κH1, 2κH2,

κh31
ρh30

(
1

δh3
+ 1

δ̄h3

)}
.

Being multiplied by eιh t on both sides of (63) leads
to
d

dt

(
Lhe

ιh t
) ≤ Γh1(z3, δ

∗
e )Nh3 (ξh3) ξ̇h3e

ιh t

+ξ̇h3e
ιh t + �2

h

2κh32
eιh t (64)

Integrating (64) over [0, t], we obtain

0 ≤ Lh ≤ Lh(0) + e−ιh t

×
∫ t

0
Γh1(z3, δ

∗
e )Nh3 (ξh3) ξ̇h3e

ιhτdτ

+e−ιh t
∫ t

0
ξ̇h3e

ιhτdτ +
∫ t

0

�2
h

2κh32
e−ιh(t−τ)dτ

(65)

Noticing
∫ t
0

�2
h

2κh32
e−ιh(t−τ)dτ = �2

h
2κh32

1
ιh

(
1 − e−ιh t

) ∈[
0,

�2
h

2κh32
1
ιh

)
, we know that

∫ t
0

�2
h

2κh32
e−ιh(t−τ)dτ is

bounded. Furthermore, (65) becomes

0 ≤ Lh ≤ Lh0 + e−ιh t
∫ t

0
Γh1(z3, δ

∗
e )

× Nh3 (ξh3) ξ̇h3e
ιhτdτ + e−ιh t

∫ t

0
ξ̇h3e

ιhτdτ (66)

with Lh0 = Lh(0) + �2
h

2κh32
1
ιh
.

Invoking Lemmas 1 and 2 presented in [29], we
have that Lh , e−ιh t

∫ t
0 Γh1(z3, δ∗

e )Nh3 (ξh3) ξ̇h3eιhτdτ
and e−ιh t

∫ t
0 ξ̇h3eιhτdτ are all bounded. Thus, all the

closed-loop signals are bounded. From the bounded-
ness of εi (t), i = h1, h2, h3, we know that there exist
positive constant ε̄i , i = h1, h2, h3 such that |εi (t)| ≤
ε̄i , i = h1, h2, h3. Further, the inversions of εi (t), i =
h1, h2, h3 are ei /ρi (t)+δi

δ̄i−ei /ρi (t)
= e2εi (t), i = h1, h2, h3.

That is, ei = δ̄i e2εi (t)−δi
1+e2εi (t)

ρi (t), i = h1, h2, h3, which

leads to −δiρi (t) <
δ̄i e−2ε̄i −δi
1+e−2ε̄i

ρi (t) ≤ ei ≤
δ̄i e2ε̄i −δi
1+e2ε̄i

ρi (t) < δ̄iρi (t), i = h1, h2, h3. Obviously,
the prescribed performance for eh1, eh2 and eh3 is guar-
anteed.

The design procedure of velocity and altitude con-
trollers is completed. The structure of the addressed
control approach is presented in Fig. 1.
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Fig. 1 The structure of the proposed control strategy

Remark 4 It is apparent that the developed control laws
(23), (44), (50) and (60) do not rely on vehicle models,
which guarantees the control system with satisfactory
robustness against uncertainties.

Remark 5 The above analysis reveals that prescribed
output tracking performance for tracking errors eV , eh ,
eh1, eh2 and eh3 is achieved by selecting appropriate
design parameters for (15), (30), (40), (46) and (52).

Remark 6 The addressed control laws (23), (44), (50)
and (60) are designed based on non-affine models
(12) and (37) only using equal transformations from
(12), (37) to (13), (38), on the basis of which the pro-
posed control methodology presents good practicality
because there is no need of model simplification.

5 Simulation results

In this section, the effectiveness of presented control
strategy is verified through simulation. Moreover, to
show the superiority, the investigated controller is com-
pared with a dynamic surface control-based neural
control scheme proposed in [20]. The design param-
eters are chosen as follows: ρV 0 = 10, ρV∞ = 1.5,
lV = 0.05, δV = δ̄V = 0.9, κV 1 = −15, κV 2 = 0.5,
ρh0 = 0.4, ρh∞ = 0.1, lh = 0.05, δh = δ̄h = 0.5,
μh = 15, ρh10 = 0.087, ρh1∞ = 0.026, lh1 = 0.1,
δh1 = δ̄h1 = 0.5, kh1 = 0.02, ρh20 = 0.087,
ρh2∞ = 0.026, lh2 = 0.1, δh2 = δ̄h2 = 0.5,
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Fig. 2 Velocity tracking performance
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Fig. 3 Velocity tracking error

123



536 X. Bu

0 10 20 30 40 50 60 70 80
8.5

8.51

8.52

8.53

8.54

8.55

8.56

8.57
x 104

Time [s]

A
lti

tu
de

 [f
t]

href
The proposed controller
The controller in [21]
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Fig. 5 Altitude tracking error
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kh2 = 0.02, ρh30 = 0.087, ρh3∞ = 0.026, lh3 = 0.1,
δh3 = δ̄h3 = 0.5, κh31 = −40, κh32 = 0.5. Moreover,
all the model coefficients in (1)–(7) are assumed to be
uncertain by defining C = C0 [1 + 0.3 sin(0.05π t)],
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Fig. 9 The response of γ

where C denotes the value of uncertain coefficient and
C0 is the normal value of C .

The tracking performance of the presented control
approach is depicted in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12 and 13. Figures 2, 3, 4, 5, 6, 7 and 8 show that all
the tracking errors are forced to fall within prescribed
boundaries in the presence of parametric uncertainties.
Thus, the pursued control objective is achieved. Fur-
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ther, it is observed from Figs. 3, 4 and 5 that veloc-
ity and altitude tracking error converge to zero faster
when using the proposed controllers than by employing
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the strategy of [20], which indicates that better tran-
sient performance can be provided by the addressed
controller than by the one presented in [20]. Besides,
the responses of attitude angles and control inputs, as
shown in Figs. 9, 10, 11, 12 and 13, reveal that these
variables are bounded and varywithout high-frequency
chattering. To sum up, the addressed control approach
can provide robust tracking of velocity and altitude
commands with better transient performance in com-
parison with the control method of [20].

6 Conclusions

In this paper, a prescribed performance controller is
exploited for AHVs within the back-stepping frame-
work. The control laws are devised utilizing non-affine
models. Prescribed boundaries are constructed by
introducing performance functions to constrain track-
ing errors. Desired transient performance is guaranteed
for control systems. The presented controlmethod does
not need accurate models or the signs of control gains.
Both the robustness and practicality of the controller
are fine. The stability of the closed-loop control system
is proved via Lyapunov synthesis. Finally, the tracking
performance and superiority of the design is validated
by numerical simulation results.
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