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Abstract In this paper, a security analysis of the
pseudo-random bit generator based on multi-modal
maps is made, which reveals existence of serious secu-
rity problems. Depending on parameter k, there are
certain number of weak keys causing improper func-
tioning of this generator. Also, based on certain num-
ber of consecutive output bits, the initial values of
this pseudo-random number generator (PRNG) can be
obtained with attack which complexity is significantly
less than estimated key space. Although the assumed
safety of the example of cipher based on this PRNG
(when k = 3) is estimated at 2159, it is possible to carry
out successful known-plaintext attack with the com-
plexity less than 2128. For above-mentioned reasons,
analyzed PRNG cannot be considered safe for the use
in cryptographic systems.

Keywords Chaos · Pseudo-random number genera-
tor · Cryptanalysis · Cryptography

1 Introduction

Apseudo-random number generator (PRNG) produces
sequences which resembles to a sequence of true ran-
dom numbers, but they are computed from an ini-
tial seed value by some algorithm, and therefore they
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are completely deterministic [1]. Recently, chaos have
been widely used for secure communications and
encryption [2], and chaotic systems are often used as
the core component of PRNG [3]. A cryptographically
secure PRNG, in addition to common requirements,
should be highly unpredictable, and it should be com-
putationally unfeasible to compute any preceding bits
based on some known part of output sequence [1].

However, great number of existing PRNGs suffer
from serious security problems, and therefore they
are not safe for the use in cryptographic systems. A
problem that is very often encountered in chaos-based
PRNGs is problemwithweak keys and equivalent keys.
In great number of chaos-based PRNGs, the control
parameters of the used chaotic systems are based on the
secret key. In the case when the process of obtaining
the control parameters from the secret key have certain
shortcomings, there is a possibility that chaotic system
used in PRNG could evolve in an non-chaotic way [4].
In this situation, PRNGcannot produce pseudo-random
numbers required by the cryptosystem.

For example, in pseudo-random number generator
based on pseudorandomly enhanced logistic map [5],
initial condition and control parameter are calculated
on the basis of secret key. However, approximately 250

different secret keys produce the same initial condi-
tion and control parameter of enhanced logistic map,
which makes this PRNG non-resistant to brute-force
attack [6]. Above example indicate that there is a need
for a thorough security analysis of key space of existing
PRNGs.
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Another problem that is very often encountered in
PRNG design is predictability. Although cryptograph-
ically secure PRNG should be highly unpredictable,
it is often very easy to compute preceding bits based
on some known part of output sequence. For example,
Mersenne Twister is very fast PRNG which is con-
sidered unsafe for the use in cryptographic systems
because only 624 iterations is required in order to deter-
mine all of the parameters needed to predict its next out-
put bit [7]. For this reason, serious security analysis of
predictability of existing PRNGs is needed in order to
determinewhich PRNGcould be used in cryptographic
systems.

PRNGs are very important part of image encryp-
tion algorithms. Security of image encryption algo-
rithms depends largely on quality and security of its
underlying PRNG. For example, PRNG presented in
paper [8] have equivalent secret keyswhich can be used
for decryption of cipher-images of certain size [9,10].
Image encryption algorithm proposed in paper [11] use
PRNG, however, presence of weak keys and equiva-
lent keys was established [12]. Image encryption algo-
rithm based on nonlinear chaotic algorithm is break-
able through different attacks of variable complexity
because chaotic map used for generation of pseudo-
random numbers has a non-uniform distribution [13].
Chosen-ciphertext attack can be used in order to obtain
the equivalent version of the secret key of an image
encryption algorithm with compound chaotic stream
cipher based on perturbation [14]. Image encryption
algorithm based on chaos and line map is vulnerable to
differential cryptanalysis which demonstrates that the
security of the scheme depends only on the permutation
key [15]. Besides these, there are many other examples
of cryptanalyzed image encryption algorithms.

In [1] the pseudo-random bit generator based on
multi-modal maps is proposed. This PRNG is proposed
as a cryptographically secure PRNG which should
be able to resist the chosen-plaintext attack. Unfortu-
nately, security analysis revealed existence of serious
security problems. In analyzed PRNG, initial values of
chaotic map are used as a secret key. Security analysis
revealed that many values of multi-modal map lead to
non-chaotic behavior, causing the existence of a cer-
tain number of weak keys. Therefore, it is not safe to
choose secret key in completely random manner.

Also, based on certain number of consecutive out-
put bits, an attacker can recover the initial values of
this PRNG with attack which complexity is signifi-

cantly less than estimated key space. It is considered
that some cipher or PRNG is broken if attacker can
exploit perceived weaknesses with a complexity lower
than a estimated key space [16]. Cipher or PRNGmust
have more than 2128 different secret keys in order to
resist brute-force attack [17]. Although the example of
cipher based on this PRNG (when k = 3) should be
able to resist the chosen-plaintext attack, it is possible
to carry out successful known-plaintext attack with the
complexity less than 2128.

The rest of this paper is organized as follows. In Sect.
2, the analyzed PRNG and gray-scale image cryptosys-
tem based on this PRNG are described. Security analy-
sis of analyzed PRNG and cipher based on this PRNG
is presented in Sect. 3. In Sect. 4, the conclusions are
drawn.

2 Description of the analyzed PRNG

In paper [1] PRNG is presented, which use k-modal
map and a combination of its k-time series. This PRNG
can be used for k > 0, and in the paper [1] example for
k = 3 is presented and analyzed. In this paper, we will,
for purposes of clarity, present only the case in which
k = 3. For general case of the analyzed PRNG, please
see reference [1].

An example of the k-modal map when k = 3 have 3
subintervals, and it is presented by the following equa-
tion:

fβ(x) = β

⎧
⎪⎨

⎪⎩

( 13 − x) · x, forx ∈ [0, 1
3 );

( 23 − x) · (x − 1
3 ), forx ∈ [ 13 , 2

3 );
(1 − x) · (x − 2

3 ), forx ∈ [ 23 , 1];
(1)

where β ∈ [0, 36]. Depending on the value of this
parameter the system can be unimodal, bi-modal, or
tri-modal. In general case map have k subintervals and
β ∈ [0, 4 · k2].

The example of PRNG proposed in [1] for k = 3 is
described by following steps.

Step 1: Set the value of k > 0. In this example
k = 3.
Step 2: Compute the values of β j , for j = 1, . . . , k,
by following formulas:
β1 = 4 · k;
β j = j · β1; for j ≥ 2.
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For k = 3, β1 = 4 · 3 = 12, β2 = 2 · 12 = 24 and
β3 = 3 · 12 = 36.
Step 3: For each j ≤ k, split the domains of func-
tions fβ j (x) into 2· j regions δ

j
1 , . . . , δ

j
2· j which are

separated by the values a j
1 , . . . a

j
2· j−1. For k = 3,

there are three functions fβ j (x). Function fβ1(x)

is defined in interval x ∈ [0, 1
3 ) which is divided

into two regions δ11 and δ12 split by a11 = 1
6 . For

each x1i+1 = fβ1(x
1
i ) corresponding value of ζ 1

i+1
is obtained in following way. If x1i+1 ∈ δ11 (x1i+1 <

a11), then ζ 1
i+1 = 0. If x1i+1 ∈ δ12 (x1i+1 > a11) then

ζ 1
i+1 = 1.
Intervals for the other two functions are divided in
a similar way. Function fβ2(x) is defined in inter-
val x ∈ [0, 2

3 ) which is divided into four regions
δ21, δ

2
2, δ

2
3, δ

2
4 separated by a21 = 0.1521, a22 =

0.40174, a23 = 0.5954. If x2i ∈ (δ21 ∪δ23), then ζ 2
i =

0, otherwise ζ 2
i = 1. Function fβ3(x) is defined

in interval x ∈ [0, 1] which is divided into six
regions δ31, . . . , δ

3
6 separated by a

3
1 = 0.1465, a32 =

0.396, a33 = 0.639, a34 = 0.8335, a35 = 0.9572. If
x3i ∈ (δ31 ∪ δ33 ∪ δ35), then ζ 3

i = 0, and otherwise
ζ 3
i = 1.
Step 4: A k chaotic sequences, based on initial val-
ues x10 , . . . , x

k
0 , are generated by x j

i+1 = fβ j (x
j
i ).

Each sequence x j is used to produce binary
sequence ζ j by following procedure described in
Step 3. When k = 3, initial values x10 , x

2
0 , x

3
0 are

used to obtain binary sequences ζ 1, ζ 2, ζ 3. Finally,
output bits of the analyzed PRNG Z are obtained
by Zi = ζ 1

i ⊕ ζ 2
i ⊕ ζ 3

i .

2.1 Gray-scale image cryptosystem based on the
analyzed PRNG

In paper [1], a stream cipher algorithm for gray-scale
images is presented, in order to demonstrate the appli-
cation and quality of the proposed PRNG. Secret key
of this cipher consist of initial conditions x10 , . . . , x

k
0

of the k-modal chaotic map. According to the IEEE
floating-point standard, the computational precision of
the 64-bit double-precision number is 253. Key space
depends on the number of initial conditions k. In ana-
lyzed example, k = 3, so the key space is estimated at
253 · 253 · 253 = 2159 [1].

This stream cipher is used for encryption of images
represented with N × M pixels. First, one column of

random values R(l, 1) ∈ {0, 1, . . . , 255} is added to
the image where l = 1, . . . , N . This image is called
augmented image and its size is N × (M + 1) pixels.
Denote by Pi bits of augmented image. Then cipher
image bits are calculated by:

Ci =
{
Pi ⊕ Zi ⊕ I Vi , for 0 ≤ i < 8;
Pi ⊕ Zi ⊕ Ci−8, for i ≥ 8; (2)

where Ci is the ith bit of cipher image, Zi is the ith bit
produced by analyzed PRNGand I V is an initialization
vector of 8 bits.

3 Security analysis

All identified shortcomings of the analyzed PRNGwill
be shown on the example for k = 3 which is presented
in detail in paper [1], but these shortcomings exist in
the general case as well.

3.1 Weak keys

In analyzed PRNG, initial values of chaotic map are
used as a secret key. It is very important that the secret
key is selected in a random manner. Therefore, initial
values x10 , . . . , x

k
0 should be random in order to prevent

attacks on the secret key. On the other hand, if initial
values of chaotic map are not selected carefully, then it
is possible that chaotic map evolves in an non-chaotic
way. This problem is especially important in hardware
realizations of chaotic maps, because chaotic behavior
could be degraded or even lost due to variation in the
values of the circuit elements such as capacitance or
transconductance ratios [18,19].

Chaotic k-modal map have certain number of fixed
points ( fβ(x) = x) depending on values of k and β j .
When k = 3, function fβ1(x) have two fixed points 0
and 1

4 . If some x1i is equal to one of these fixed points,
then all subsequent states of fβ1(x) will be equal to
each other and therefore all values of ζ 1

i+s , for s > 0
will have same value (zero or one). For that reason,
instead of three functions, only two functions will have
output bits based on chaotic behavior, which reduces
security of the analyzed PRNG.

Due to the fact that the chaotic k-modal map is
quadratic function, each of these two fixed points can
be obtained on the basis of two values, for example
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fβ1(0) = fβ1(
1
3 ) = 0 and fβ1(

1
12 ) = fβ1(

1
4 ) = 1

4 .
Each value 0, 1

3 ,
1
12 ,

1
4 can be obtained on the basis of

two values (8 values in total), and so on. Therefore, if
we consider I iterations required to obtain I output bits
of analyzed PRNG, there is 2I values of x10 which lead
to one of these two fixed points. However, due to con-
straints caused by discretization of real numbers, the
vast majority of these values will be found in the same
intervals of length 1

253
which is why a greater number

of real values will be represented with the same dis-
cretized values.

When we consider functions fβ2(x) and fβ3(x), the
number of fixed points is even greater. Function fβ2(x)
is piecewise function composed of two quadratic

functions and have four fixed points 0, 7
24 ,

69−√
153

144 ,

69+√
153

144 and each of these fixed points can be obtained
on the basis of four values, except for 0. There-
fore, there is approximately 4I values of x20 which
lead to one of these fixed points in I iterations.
Function fβ3(x) is piecewise function composed of
three quadratic functions and have six fixed points

0, 11
36 ,

35−√
73

72 , 35+√
73

72 , 54
72 ,

64
72 and each of these fixed

points can be obtained on the basis of six values,
except for 0. Therefore, there is approximately 6I val-
ues of x30 which lead to some of these fixed points in I
iterations.

If all three initial conditions x10 , x
2
0 , x

3
0 are equal to

some appropriate fixed point, then the analyzed PRNG
would generate a sequence in which all bits would be
equal to each other. There are 2 · 4 · 6 = 48 such weak
keys. It is not such a big number compared to the total
key space of 2159 different keys. However, the question
is howmany keys will lead to a situationwhere all three
values x1i , x

2
i , x

3
i are equal to some of the fixed points.

Great number of real values x10 , x
2
0 , x

3
0 lead to some

fixed point; however, the vast majority of these values
is lost in the process of discretization. On the other
hand, there are some examples of quadratic functions
in literature, in which 89% of initial points lead to fixed
points [20].

Piecewise chaotic map could guarantee chaotic
behavior under the condition that certain guidelines
on selecting the initial conditions are followed [21].
However, if initial conditions, which are used as secret
key, are chosen bymethodwhich is not completely ran-
dom, then the secret key is susceptible to cryptographic
attacks. Because certain number of weak keys exists,
analyzed PRNG [1] should be used with caution.

3.2 Cryptanalysis of the analyzed PRNG

Basic property of a cryptographically secure PRNG is
unpredictability [1]. PRNG is considered unpredictable
if an attacker cannot predict value of next output bit
with a probability greater than 50%, based on n con-
secutive output bits of some PRNG. Also, if PRNG is
cryptographically secure, it is computationally unfea-
sible to compute any preceding bits, based on n con-
secutive output bits. In this section, we will show that
initial values of chaotic k-modal map can be obtained
with attacks which complexity is significantly less than
estimated key space.

First, we will present attack 1. Assume that the
attacker knows the values of the first n output bits
of the analyzed PRNG Z0, . . . Zn−1. First, attacker
should guess values of all ζ

j
i for i < n and j ≤ k.

For each i there are 2k possibilities. However, because
attacker know value of Zi and Zi = ζ 1

i ⊕ . . . ⊕ ζ k
i ,

only 2k−1 guesses are needed in order to obtain val-
ues of ζ

j
i for some particular i . For example, when

k = 3 and attacker try to guess values of (ζ 1
i , ζ 2

i , ζ 3
i ),

there are 8 possibilities (0,0,0), (0,0,1), (0,1,0), (0,1,1),
(1,0,0), (1,0,1), (1,1,0), (1,1,1). However, based on
known value Zi , the number of possible values is
reduced to 4. For example, if Zi = 0, then (ζ 1

i , ζ 2
i , ζ 3

i )

can have only some of the values (0,0,0), (0,1,1),
(1,0,1), (1,1,0). Therefore, instead of (2k)n guesses,
only (2k−1)n guesses are needed in order to obtain all
ζ
j
i .

When the values ζ
j
0 , . . . , ζ

j
n−1 are known, by using

reverse interval mapping [22], attacker can narrow the
interval in which the x j

0 is located for approximately 2n

times (up to a precision limit). Example of this process
will be shown on function fβ1(x)when k = 3. Accord-
ing to Eq. 1, fβ1(x) = β1 · ( 13 − x) · x = −12x2 + 4x
which is defined in interval x ∈ [0, 1

3 ) divided into
two regions δ11 and δ12 split by a11 = 1

6 . Assume that
the attacker knows the first 3 values of ζ 1

i which will
in this example be ζ 1

0 = 0, ζ 1
1 = 0 and ζ 1

2 = 1.
Therefore, x10 ∈ δ11, x

1
1 ∈ δ11 and x12 ∈ δ12. Based on

x11 = fβ1(x
1
0) ∈ δ11, attacker can determine in which

part of interval δ11 = [0, 1
6 ) is x10 located by solving

equation 1
6 = fβ1(x). There are two solutions of this

quadratic equation 4+2
√
2

24 and 4−2
√
2

24 , and because only
4−2

√
2

24 ∈ [0, 1
6 ), attacker now knows that x10 is located

in interval [0, 4−2
√
2

24 ).
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Based on x12 = fβ1( fβ1(x
1
0)) ∈ δ12, attacker can

further reduce the interval in which x10 is located by

solving equation 4−2
√
2

24 = fβ1(x). Only one solution

of this quadratic equation 4−
√

8+4
√
2

24 ∈ [0, 4−2
√
2

24 )

so attacker now knows that x10 is located in interval

(
4−

√
8+4

√
2

24 , 4−2
√
2

24 ). In this way, on the basis of only
three known values of ζ 1

i , search interval for x10 was

reduced from [0, 1
3 ) to (

4−
√

8+4
√
2

24 , 4−2
√
2

24 ) and there-
fore search for x10 is about 9 times shorter. A simi-
lar procedure can be applied on functions fβ2(x) and
fβ3(x) in order to narrow the intervals in which x20 and
x30 are located.

When k = 3, there are three initial values x10 , x
2
0 , x

3
0

for which key space is estimated at 253 · 253 · 253 =
2159 [1]. By knowing n consecutive output bits of ana-
lyzed PRNG, attacker needs only (22)n guesses in order
to find all ζ

j
i for i < n and j ≤ 3 which enables

reduction in search interval for each x j
0 for approxi-

mately 2n < 253 times. Reduction in search interval
for some x j

0 by more than 253 times is not possible,
because precision of 253 is used. Therefore, if values
of 53 consecutive output bits of analyzed PRNG are
known, complexity of only 2106 is needed in order
to recover initial values x10 , x

2
0 , x

3
0 (or x1i , x

2
i , x

3
i ). If

value of some x j
i is recovered, it is very easy to cal-

culate value of x j
0 . Complexity of 2106 is drastically

less than 2159 reported in [1] or 2128 recommended
in [17], so example of analyzed PRNG (when k = 3)
cannot be considered safe for the use in cryptographic
systems.

Also, there is another approach that can exploit the
previously described weakness of the analyzed PRNG,
which will be called attack 2. Assume that the attacker
knows the values of the first n output bits of the ana-
lyzed PRNG Z0, . . . Zn−1. In this version of the attack,
attacker should guess values of all x j

0 for 1 < j ≤ k.
When k = 3, attacker only need to guess values of
x20 , x

3
0 . Based on x20 , x

3
0 attacker can produce binary

sequences ζ 2
i , ζ 3

i (for i < n) by following procedure
described in Step 3 of the analyzed PRNG. After that,
attacker can calculate values of sequence ζ 1

i by using
ζ 1
i = Zi ⊕ ζ 2

i ⊕ ζ 3
i . When the values ζ 1

i are known, by
using reverse interval mapping procedure described in
attack 1, attacker can narrow the interval in which the
x10 is located for approximately 2n times. If n = 53,
then the complexity of only 2106 is needed in order to
recover initial values x10 , x

2
0 , x

3
0 , because attacker need

to guess only two values x20 , x
3
0 in order to calculate

value of x10 .

3.3 Example 1 of cryptanalysis of the analyzed PRNG

In this section example of the attack 1will be described.
Assume that user of the analyzed PRNG randomly
selected initial values x10 = 0.149284547945563,
x20 = 0.519067023060468, x30 = 0.881509362057897
which will be considered as a secret key. Based on this
initial values, user generate sequence of 53 bits Z =
001101011000 011100011110110100110110011010
10011110110 by using analyzed PRNG for k = 3.
Assume that the attacker knows the values of the first 53
output bits Z , but do not know initial values x10 , x

2
0 , x

3
0 .

First, attacker should guess values of ζ 1
i , ζ 2

i , ζ 3
i for

all i < 53. Because Z0 = 0, (ζ 1
0 , ζ 2

0 , ζ 3
0 ) can have

only some of the four values (0,0,0), (0,1,1), (1,0,1),
(1,1,0). Also, because Z2 = 1, (ζ 1

2 , ζ 2
2 , ζ 3

2 ) can have
only some of the four values (0,0,1), (0,1,0), (1,0,0),
(1,1,1). Therefore, instead of 2159 guesses, only 2106

guesses are needed in order to obtain all ζ 1
i , ζ 2

i , ζ 3
i for

i < 53. Guessed values of ζ 1
i , ζ 2

i , ζ 3
i are shown in

Table 1.
Based on the values of ζ 1

i , ζ 2
i , ζ 3

i , attacker can nar-

row the interval [ai , bi ] in which the x j
i is located by

using reverse interval mapping. This process will be
shown in detail for x1i which are calculated by function
fβ1(x) = β1 · ( 13 − x) · x = −12x2 + 4x . Function
fβ1(x) is defined in interval x ∈ [0, 1

3 ) divided into two
regions δ11 and δ12 split by a

1
1 = 1

6 .
Based on values of ζ 1

i shown in Table 2, we can
determine in which region of interval [0, 1

3 ) is each x1i
located.Wewill beginwith x152 which is located in inter-
val [0, 0.166666666666667] ( 16 is represented with
0.166666666666667 when precision of 253 is used)
because ζ 1

52 = 0. Bounds of interval in which next
value x151 is located can be obtained by using reverse
interval mapping. If ζ 1

i = 0, we can calculate ai by
solving equation ai+1 = fβ1(ai ) and calculate bi by
solving equation bi+1 = fβ1(bi ). If ζ 1

i = 1, we can
calculate ai by solving equation bi+1 = fβ1(ai ) and
calculate bi by solving equation ai+1 = fβ1(bi ).

Value of a52 = 0 and because ζ 1
51 = 0, value of

a51 is calculated by solving equation 0 = fβ1(a51) =
−12(a51)2 + 4 · a51. There are two solutions of
this quadratic equation a51 = 0 and a51 = 1

3 .
Because of ζ 1

51 = 0, attacker know that x151 ∈
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Table 1 Values of ζ 1
i , ζ 2

i , ζ 3
i

i Zi ζ 1
i ζ 2

i ζ 3
i

0 0 0 0 0

1 0 1 1 0

2 1 0 0 1

3 1 0 0 1

4 0 1 0 1

5 1 1 0 0

6 0 0 0 0

7 1 0 1 0

8 1 1 0 0

9 0 1 0 1

10 0 0 0 0

11 0 0 1 1

12 0 0 1 1

13 1 0 1 0

14 1 1 0 0

15 1 0 0 1

16 0 0 0 0

17 0 1 0 1

18 0 0 1 1

19 1 1 0 0

20 1 1 0 0

21 1 1 1 1

22 1 0 1 0

23 0 1 0 1

24 1 1 1 1

25 1 1 1 1

26 0 0 1 1

27 1 1 1 1

28 0 0 0 0

29 0 0 0 0

30 1 0 1 0

31 1 1 0 0

32 0 1 1 0

33 1 0 1 0

34 1 0 1 0

35 0 1 1 0

36 0 1 0 1

37 1 0 0 1

38 1 1 0 0

39 0 0 1 1

40 1 0 1 0

41 0 0 1 1

42 1 0 1 0

Table 1 continued

i Zi ζ 1
i ζ 2

i ζ 3
i

43 0 1 0 1

44 0 1 1 0

45 1 1 0 0

46 1 1 0 0

47 1 0 0 1

48 1 0 1 0

49 0 1 1 0

50 1 1 0 0

51 1 0 0 1

52 0 0 1 1

δ11 and therefore only 0 ∈ [0, 1
6 ] will be used as

bound a51. Value of b52 = 0.166666666666667
so value of b51 is calculated by solving equation
0.166666666666667 = −12(b51)2 + 4 · b51. Only one
solution b51 = 0.048815536468909 of this quadratic
equation is from interval δ11 so attacker knows that x51
is located in interval [0, 0.048815536468909]. Bounds
of interval in which x1i is located is calculated in same
manner based on values of ζ 1

i , ai+1, bi+1 for all i from
50 down to 0. All values of ai , bi for i < 53 are shown
in Table 2.

In Table 2, we can see that the interval [ai , bi ]
is shorter for smaller i , for all i > 5. For i =
5 we have a5 = b5 which means that attacker
found exact value of x15 represented by precision
of 253. Therefore, attacker can easily calculate all
remaining values of x1i and obtain initial secret value
x10 = 0.149284547945563. A similar procedure is
applied on functions fβ2(x) and fβ3(x) in order to
obtain secret values x20 = 0.519067023060468, x30 =
0.881509362057897. Therefore, when values of 53
consecutive output bits of analyzed PRNG are known,
complexity of only 2106 is needed in order to recover
initial values x10 , x

2
0 , x

3
0 .

3.4 Example 2 of cryptanalysis of the analyzed PRNG

In this section, example of the attack 2 will be
described. Parameters of the analyzed PRNG will be
the same as in previous example, k = 3, x10 =
0.149284547945563, x20 = 0.519067023060468, x30 =
0.881509362057897. Consequently, user generates
same sequence of 53 bits Z = 0011010110000111000
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Table 2 Reverse interval mapping for x10

i ζ 1
i ai bi

0 0 0.149284547945563 0.149284547945563

1 1 0.329707676718519 0.329707676718519

2 0 0.0143448818285955 0.0143448818285955

3 0 0.0549102196982657 0.0549102196982657

4 1 0.183459292065321 0.183459292065321

5 1 0.329949426119979 0.329949426119979

6 0 0.013398218917072 0.013398218917078

7 0 0.05143872842649 0.051438728426512

8 1 0.17400360032035 0.17400360032041

9 1 0.33268736618806 0.33268736618807

10 0 0.0025788612984296 0.0025788612984403

11 0 0.01023563888656 0.010235638886602

12 0 0.039685335905247 0.039685335905404

13 0 0.13984223299004 0.13984223299052

14 1 0.32469873042847 0.32469873042878

15 0 0.033643735210394 0.03364373521154

16 0 0.12099212981469 0.12099212981835

17 1 0.30829937353362 0.30829937353764

18 0 0.092615449466147 0.092615449479803

19 1 0.26753034010679 0.26753034013106

20 1 0.21125156583656 0.2112515658953

21 1 0.30947957446261 0.30947957452546

22 0 0.088587013520321 0.088587013735732

23 1 0.26017614650789 0.26017614691155

24 1 0.22840505858532 0.22840505949122

25 1 0.28759378355063 0.28759378489292

26 0 0.15785291826326 0.15785292215892

27 1 0.33240114740231 0.33240114822636

28 0 0.0037183127990086 0.0037183160767644

29 0 0.014707340995179 0.014707353813697

30 0 0.056233693430936 0.056233740180374

31 1 0.18698803440113 0.18698815830541

32 1 0.32837777706425 0.32837783749414

33 0 0.019527300088638 0.019527534621082

34 0 0.073533414969531 0.073534243183796

35 1 0.22924770247315 0.22924955368782

36 1 0.2863339203585 0.28633670082198

37 0 0.16148232843653 0.16149031405959

38 1 0.33301080497872 0.33301179781758

39 0 0.0012849014419571 0.0012888651239656

40 0 0.0051197941072419 0.005135526416169

41 0 0.020164628928561 0.020225622085822

42 0 0.075779168596326 0.075993578878185

Table 2 continued

i ζ 1
i ai bi

43 1 0.2342068856675 0.23467402714416

44 1 0.27783332038394 0.27859315914117

45 1 0.18300285672158 0.18503703454899

46 1 0.32928368833975 0.33013088006721

47 0 0.012686744581452 0.016001784479426

48 0 0.048815536468909 0.060934452639392

49 1 0.166666666666667 0.19918172033602

50 1 0.32064658875188 0.33333333333333

51 0 0 0.048815536468909

52 0 0 0.166666666666667

11110110100110110011010100111 10110 as in pre-
vious example.

Assume that the attacker knows the values of the
first 53 output bits Z , but do not know initial values
x10 , x

2
0 , x

3
0 . In this attack, attacker guesses values of

x20 , x
3
0 and generates corresponding binary sequences

ζ 2
i , ζ 3

i (for i < 53). If the attacker tries all possi-
ble values of x20 , x

3
0 , he will need a maximum of 2106

guesses in order to obtain initial values used for gener-
ation of sequence Z . When the search reaches the val-
ues of the users secret key x20 = 0.519067023060468,
x30 = 0.881509362057897, attacker can generate cor-
responding binary sequences ζ 2

i , ζ 3
i which are shown

in Table 1. After that, attacker can calculate values of
sequence ζ 1

i (shown in Tables 1, 2) by using ζ 1
i =

Zi ⊕ ζ 2
i ⊕ ζ 3

i .
Based on the values of ζ 1

i for i < 53, attacker can
calculate value of x10 = 0.149284547945563 by using
reverse intervalmapping procedure described in Exam-
ple 1. Because x10 can be calculated on the basis of
x20 , x

3
0 and known Z , this attack requires complexity of

only 2106 in order to recover initial values (secret key)
x10 , x

2
0 , x

3
0 .

3.5 Cryptanalysis of the gray-scale image
cryptosystem based on the analyzed PRNG

In paper [1] a stream cipher algorithm for gray-scale
images, based on analyzed PRNG, is proposed. The
proposed cipher should be able to resist the chosen-
plaintext attack. However, in this section, vulnerability
of this cipher to known-plaintext attack will be demon-
strated on example when k = 3. Consequently, ana-
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lyzed cipher is vulnerable to chosen-plaintext attack as
well.

If attacker know53consecutive plaintext bits Pi , . . . ,
Pi+52 for some i ≥ 8, then it is simple to obtain val-
ues of Zi , . . . , Zi+52 by using Eq. 2. Based on Eq. 2,
Zi = Pi ⊕Ci−8 ⊕Ci . When attacker know 53 consec-
utive output bits of analyzed PRNG, by applying one
of the attacks from previous subsections, initial val-
ues (secret key) x10 , x

2
0 , x

3
0 can be obtained with attack

which complexity is only 2106. One column of ran-
dom values R(l, 1) ∈ {0, 1, . . . , 255} which is added
to the plaintext image can to a lesser extent slow down
this attack. Attacker can simply guess value of corre-
sponding R(l, 1) ∈ {0, 1, . . . , 255}, and ordinal num-
ber of byte of augmented image in which it is located.
Because there are only 53 output bits that attacker try
to reconstruct, there are only 53

8 options for the location
of this byte. Therefore, complexity of this attack, when
only 53 bits of plaintext are known, is approximately
2106·28·23 = 2117 which is less than2159 reported in [1]
or 2128 recommended in [17]. Therefore, the example
of analyzed cipher (when k = 3) cannot be considered
safe.

Complexity of this attack for some k > 0 is (2k−1)n .
By using some k > 3, required complexity of this
attack would reach over 2159. However, for larger k, the
number of weak keys significantly increases because
there are 2 · 4 · . . . · 2(k − 1) · 2k combinations of
fixed points for which analyzed PRNG would generate
a sequence in which all bits would be equal to each
other. The number of keys leading to this non-chaotic
behavior is much greater. Therefore, there is no value
of k for which analyzed cipher can be considered com-
pletely safe.

4 Conclusion

In this paper, a security analysis of the pseudo-random
bit generator based on multi-modal maps [1] is pre-
sented. Unfortunately, some serious security problems
are found. Depending on parameter k, there are certain
number of fixed points andmuch greater number of val-
ues which lead to these fixed points of chaotic k-modal
map, which can be considered as weak keys. Also,
based on certain number of consecutive output bits,
the initial values of this PRNG can be obtained with
attack which complexity is significantly less than esti-
mated key space. Although the assumed safety of the

example of cipher based on this PRNG (when k = 3) is
estimated at 2159, it is possible to carry out successful
known-plaintext attack with the complexity less than
2128. For above-mentioned reasons, analyzed PRNG
cannot be considered safe for the use in cryptographic
systems.
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