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Abstract In this paper, we probe the H∞ control
problem of state-delayed Markov jump systems with
partly unknown transition probabilities by using sliding
mode control approach. The H∞ performance index
is to improve the system performance of the control
system. The exact information of transition probabili-
ties is assumed to be partially known, and the bounds
of nonlinear function are unknown. Firstly, a sliding
mode observer is designed to estimate the unmeasured
state. Secondly, an integral slidingmode surface is con-
structed such that the reduced-order sliding motion is
insensitive to all admissible uncertainties, nonlineari-
ties and external disturbances. Thirdly, we design an
adaptive sliding mode controller to maintain the state
trajectories in the sliding mode surface. The sufficient
condition of stochastic stability for the closed-loop sys-
tem is derived via Lyapunov stability theory. Finally, a
numerical example is given to show the effectiveness
of the proposed results.
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1 Introduction

The study of time-delay systems [4,8,30,31] has
attracted considerable attention due to the fact that time
delays often occur in practical systems and may cause
poor systemperformance or even instability [24].Many
representative results on the stability analysis and con-
trol synthesis of time-delay systems were investigated
in [5,15,20].

Slidingmode control (SMC), recognized as an effec-
tive robust control algorithm, can handle model param-
eter uncertainties and external disturbances. Over the
past decades, some influential results for nonlinear or
linear uncertain time-delay systems by utilizing SMC
method have been published [2,9,10,12,13,15,21,27].
In [2], the mean-square and mean-module filtering
problems for a nonlinear polynomial stochastic sys-
tem subject to Gaussian white noises were addressed.
The problem of SMC approach for uncertain stochastic
systems with time delay was studied in [20].

Moreover, Markov jump systems (MJSs) with time
delays have widely used in power systems, aerospace
systems, networked control systems, and so on. The
mode switching [16] is determined by a Markov pro-
cess where the transition probabilities are memoryless.
In another research frontier, the transition rates of semi-
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Markov jump systems (S-MJSs) are related to jump
time, and the transition rates are memory, that is, the
transition probabilities rely on the full history knowl-
edge of previous switching sequences at each time.
Many representative results on the synthesis work of
S-MJSs have been investigated [7,32,33,42,45]. For
instance, the authors in [45] investigated the prob-
lem of robust adaptive SMC for S-MJSs with actuator
faults.Contrary toS-MJSs, the jump timeofMJSs com-
plies with exponential distribution, i. e., the transition
rate is not connected with jump time. Many problems
of stability analysis and stabilization for MJSs have
been researched [3,11,14,19,23,25,28,29,34,38,44]
and references therein. To mention a few, in [9], a
novel augmented sliding mode observer was proposed
to tackle the stabilization problem for a type of Marko-
vian stochastic jump systems. The problem of SMC for
a type of nonlinear uncertain stochastic systems with
Markovian switching in [19] was discussed. However,
the transition probabilities of MJSs mentioned in pre-
vious work are assumed to be totally known. In fact,
the exact information of the transition probabilities is
hard to obtain. Consequently, many studies on MJSs
with unknown transition probabilities were reported in
[6,39–41,43]. For instance, the authors investigated the
problems of a class of continuous-time and discrete-
time Markov jump linear systems (MJLSs) with partly
unknown transition probabilities in [40]. The robust
control problem of stochastic stability for MJLSs with
respect to norm-bounded transition probabilities was
considered in [6].

As we know, the system states are not available
[1,26,35] and the inevitable parameter uncertainties
often arise in practical systems. Therefore, the H∞
control and state estimation problems of state-delayed
MJSs with partly unknown transition probabilities,
unknown matched nonlinearities and model parame-
ter uncertainties have not been fully addressed due to
the following difficulties: (i) the system states are gen-
erally not available; (ii) the upper bounds of nonlineari-
ties caused the instability of the closed-loop system are
difficult to obtain such that they are hard to be tackled;
(iii) the detail knowledge of transition probabilities is
tough to obtain.

In this paper, the state estimation and H∞ control
problems are studied for state-delayedMJSswith partly
unknown transition probabilities, matched nonlinear-
ity, matched disturbance and model parameter uncer-
tainties. The main contributions of the work are as fol-

lows: firstly, this paper considers the SMC problem
of state-delayed MJSs subject to parameter uncertain-
ties, unknown nonlinearities and unknown transition
probabilities, which are more general in the realistic
industrial systems. Secondly, compared with existing
control approaches for MJSs [29,38], a novel adap-
tive sliding mode controller is constructed to guarantee
that all variables of state-delayed MJSs can be driven
onto the designed sliding mode surface in the presence
of admissible uncertainties, nonlinearities and external
disturbance. Thirdly, the theoretical results of this paper
can be extended to some existing studies onMJSswith-
out time delay. Finally, simulation results are exploited
to display the effectiveness of the proposed method.

The six sections of this paper are organized as
follows. The system description and some prelimi-
naries are given in Sect. 2. Sections 3 and 4 design
the integral sliding mode surface and adaptive slid-
ing mode controller, respectively. A numerical exam-
ple is used to testify the validity of the proposed con-
trol method in Sect. 5, and we conclude this paper in
Sect. 6.

Notations:The superscript “T ” represents thematrix
transposition, and R

n shows the n -dimensional
Euclidean space. (�,F ,P) denotes the probability
space, where {Ft }t≥0 satisfies the usual condition.
P {·} represents the probability. LP

F0
([−τ ,0] ;Rn) is the

family of all F0-measurable C ([−τ, 0] ;Rn)-valued
random variables ϑ = {ϑ (θ) : −τ ≤ θ ≤ 0} so that
supE ‖ϑ (θ)‖22 < ∞, where E{·} denotes the mathe-
matical expectation on the given probability measure
P . I and 0 indicate the identity matrix and zero matrix,
respectively. The notation Xi > 0 implies that Xi is
real symmetric and positive definite. ‖·‖1 and ‖·‖ refer
to the 1-norm and usual Euclidean vector norm, respec-
tively. λmax(P) indicates the maximum eigenvalue of
a real symmetric matrix P . The notation diag{·} repre-
sents a diagonal matrix. L2[0,∞) stands for the space
of square integral vector function. The symbol “∗”
denotes a symmetric term.

2 System description and preliminaries

Assume that {rt , t ≥ 0} is a finite-state Markov
jumping process taking discrete values in state space
S = {1, 2, . . . , s} . Then the transition probabilities
� = (

πi j
)
s×s (i, j = 1, 2, . . . , s) can be denoted as

follows:
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Pr (rt+υ = j | rt = i) =
{

πi jυ + o (υ) , i �= j,
1 + πi iυ + o (υ) , i = j,

where πi j satisfies πi j > 0 when i �= j ; υ > 0 and
limυ→0 o(υ)/υ = 0, πi i = −∑s

j=1, j �=i πi j for each
mode i.

The following state-delayed MJSs are defined on a
complete probability space (�,F ,P):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ (t) = (A (rt ) + 	A (rt , t)) x (t)
+ (Ad (rt ) + 	Ad (rt , t)) x (t − τ)

+B (u (t) + f (x, t) + d (t)) ,

x (t, r0) = φ (t, r0) , t ∈ [−τ, 0] , r0 ∈ S
y (t) = C (rt ) x (t)

(1)

where x (t) ∈ R
n, u (t) ∈ R

m, f (x, t) ∈ R
m,

d (t) ∈ R
m and y (t) ∈ R

p are, respectively, the state
vector, control input, nonlinear function, disturbance
and system output. For each rt ∈ S, A (rt ) ∈ R

n×n,

Ad (rt ) ∈ R
n×n, B ∈ R

n×m and C (rt ) ∈ R
p×n are

constant systemmatrices with appropriate dimensions.
	A (rt , t) ∈ R

n×n and 	Ad (rt , t) ∈ R
n×n are system

parameter uncertainties. φ (t, r0) ∈ LP
F0

([−τ, 0] ;Rn)

denotes a initial vector-valued continuous function. τ

is a known time delay.
The specific information of transition probabilities

is hard to be achieved such that some elements inmatrix
� are unknown. For instance, for system (1) with four
operation modes, the transition probability matrix �

may be written as

� =

⎡

⎢⎢
⎣

? π12 ? ?
? π22 π23 ?

π31 ? ? ?
π41 ? ? π44

⎤

⎥⎥
⎦ ,

where “?” denotes the inaccessible elements. For nota-
tional convenience, ∀i ∈ S, define S = Siκ ∪ Siuκ with

Siκ
�= { j : πi j is known

}
, Siuκ

�= { j : πi j is unknown
}
.

Denote π i
κ

�= ∑
j∈Siκ πi j throughout the article. For

simplicity, state-delayed MJSs (1) can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ (t) = (Ai + 	A(i, t)) x (t)
+ (Adi + 	Ad (i, t)) x (t − τ)

+B (u (t) + f (x, t) + d (t)) ,

x (t, r0) = φ (t, r0) , t ∈ [−τ, 0] , r0 ∈ S
y (t) = Ci x (t) ,

(2)

where A (rt ) = Ai , Ad (rt ) = Adi and C (rt ) = Ci .
	A (rt , t) = 	A(i, t) and 	Ad (rt , t) = 	Ad (i, t)

denote the system parameter uncertainties, which sat-
isfy the following forms:

[	A (i, t) 	Ad (i, t)] = Ei F (i, t) [Hi Hdi ] , (3)

where Ei , Hi and Hdi are constant matrices with com-
patible dimensions for each i ∈ S, and unknown time-
varying matrix function F (i, t) satisfies

FT (i, t) F (i, t)) ≤ I , i ∈ S. (4)

Thematched disturbance d (t) is bounded as ‖d (t) ‖ ≤
d, where d is a known scalar. The nonlinear function
f (x, t) satisfies

‖ f (x, t) ‖ ≤ α + β‖y (t) ‖, (5)

where α > 0 and β > 0 are unknown constants.
Besides, assume rank(B) = m for each i ∈ S.

The following definitions are necessary for this
paper.

Definition 1 [17] Introduce the stochastic positive
functional candidate of system (2) as V (x (t) , i),
which has twice differentiable on x (t). Its infinitesi-
mal operator LV (x (t) , i) is defined as

LV (x (t) , i) =
lim

	t→0+
1

	t

[
E{V (x (t + 	t) , rt+	t

) | x (t) , rt = i}
−V (x (t) , i)} .

Definition 2 [22] For system (2) with u (t) = 0, the
equilibriumpoint is stochastically stable, if for any x (t)
defined on [−τ, 0] , and r0 ∈ S
∫ ∞

0
E{‖x (θ, x (t) , r0)‖2}dθ < +∞.

3 Observer-based sliding mode control

In fact, the exact information of nonlinearity is gen-
erally not available. Therefore, the unknown constant
parameters α and β are estimated by α̂ (t) and β̂ (t) via
adaptive control strategy, respectively. Define the esti-
mation errors of each parameter as α̃ (t) = α̂ (t) − α

and β̃ (t) = β̂ (t) − β.
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3.1 Observer design

For state-delayed MJSs (1), a sliding mode observer is
synthesized as follows:

⎧
⎨

⎩

˙̂x (t) = Ai x̂ (t) + Adi x̂ (t − τ) + B (u (t) + ue (t))
+Li

(
y (t) − Ci x̂ (t)

)
,

ŷ (t) = Ci x̂ (t) ,

(6)

where x̂ (t) ∈ R
n is the estimator state and Li ∈ R

n×p

is the observer gain matrix to be designed later for
each i ∈ S. ue (t) is designed to weaken the effect
of unknown nonlinearity f (x, t). Assume se (t) =
BT Xie (t) in state estimation error space for the fol-
lowing derivations, and Xi > 0 satisfies equation
BT Xi = NiCi , in which Ni will be designed later.

Let the estimation error be e (t)
�= x (t) − x̂ (t) .

Recalling (6) and (2), the estimate error dynamics can
be obtained as follows:

ė (t) = (Ai + 	A (i, t) − LiCi ) e (t)

+ (Adi + 	Ad (i, t)) e (t − τ)

+	A (i, t) x̂ (t) + 	Ad (i, t) x̂ (t − τ)

+ B ( f (x, t) + d (t) − ue (t)) ,

ye (t) = Cie (t) , (7)

where ye(t) denotes the error systemoutput.Now intro-
duce the following H∞ performance index:

J = E
{∫ ∞

0

(
yTe (θ) ye (θ) − γ 2dT (θ) d (θ)

)
dθ

}
.

The performance J < 0 can be converted into the fol-
lowing form:

E

(

sup
0 �=d(t)∈L2

‖ye (t)‖
‖d (t)‖

)

< γ.

Define the following integral sliding mode surface:

ζ (t) = Fx̂ (t) −
∫ t

0
F (Ai + BKi ) x̂ (h) dh, (8)

where F ∈ R
m×n is a constant matrix and Ki ∈ R

m×n

is selected such that Ai + BKi is Hurwitz and FB > 0
(see [18]).

Remark 1 It should be pointed out that the terms Fx̂ (t)
and

∫ t
0 F (Ai + BKi ) x̂(ϕ)dϕ are continuous in sliding

mode surface (8). Thus, the designed integral sliding

manifold (8) is always continuous despite the presence
of switching term (Ai + BKi ).

It follows from (8) that

ζ̇ (t) = F ˙̂x (t) − F (Ai + BKi ) x̂ (t)

= FB (u (t) + ue (t)) + FAdi x̂ (t − τ)

+ FLiCi e (t) − FBKi x̂ (t) .

Let ζ̇ (t) = 0, the equivalent control law can be derived
as

ueq (t)=Ki x̂ (t) − (FB)−1 FAdi x̂ (t − τ)

− (FB)−1 FLiCi e (t) − ue (t) . (9)

Substituting (9) into (6) yields

˙̂x (t)=(Ai +BKi ) x̂ (t)+ F̄ Adi x̂ (t − τ)+F̄ LiCi e (t) .

(10)

where F̄ = I − B (FB)−1 F. The robust control term
ue (t) is designed as

ue (t) =
(∣∣α̂ (t)

∣∣+
∣∣∣β̂ (t)

∣∣∣ ‖y (t)‖ + ρ1

)
sgn(se (t)),

˙̂α (t) = cα ‖se (t)‖ ,
˙̂
β (t) = cβ ‖se (t)‖ ‖y (t)‖ ,(11)

where cα and cβ are chosen positive constants.

3.2 Stability analysis

The sufficient conditions of stochastic stability for aug-
mented system consisted of (7) and (10) are derived in
the following theorem.

Theorem 1 Given a scalar γ > 0, the sliding mode
surface is given by (8). If there exist positive definite
symmetric matrices Xi ∈ R

n×n , matrices Yi ∈ R
n×p,

Ni ∈ R
m×p, Li ∈ R

n×p, positive scalars εi1, εi2, εi3
and εi4 , ∀i ∈ S such that
[

�1i �2i

∗ �3i

]
< 0, ∀i ∈ Siκ , (12)

[
�1i �2i

∗ �3i

]
< 0, ∀i ∈ Siuκ , (13)

Xi (Ai + BKi ) + (Ai + BKi )
T Xi + X j ≥ 0,

∀ j ∈ Siuκ , j = i, (14)

AT
i Xi + Xi Ai − YiCi − CT

i Y
T
i + X j ≥ 0,

∀ j ∈ Siuκ , j = i, (15)
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Xi (Ai + BKi ) + (Ai + BKi )
T Xi + X j ≤ 0,

∀ j ∈ Siuκ , j �= i, (16)

AT
i Xi + Xi Ai − YiCi − CT

i Y
T
i + X j ≤ 0,

∀ j ∈ Siuκ , j �= i, (17)

BT Xi = NiCi , (18)

where

�1i =

⎡

⎢
⎢
⎢
⎢
⎣

�11i Xi F̄ Adi 0 0 0
∗ �22i 0 0 0
∗ ∗ �33i Xi Adi Xi B
∗ ∗ ∗ �44i 0
∗ ∗ ∗ ∗ −γ 2 I

⎤

⎥
⎥
⎥
⎥
⎦

,

�2i =

⎡

⎢
⎢
⎢
⎢
⎣

Xi F̄ 0 0 0 0 0
0 0 0 0 0 0
0 Xi Ei Xi Ei Xi Ei Xi Ei CT

i Y
T
i

0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

�11i =
(
1 + π i

κ

) [
Xi (Ai + BKi ) + (Ai + BKi )

T Xi

]

+ Q1 + εi1H
T
i Hi +

∑

j∈Siκ , j �=i

πi j X j + πi i Xi ,

�33i =
(
1 + π i

κ

) (
AT
i Xi + Xi Ai − YiCi − CT

i Y
T
i

)

+ εi4H
T
i Hi + CT

i Ci +
∑

j∈Siκ , j �=i

πi j X j + πi i Xi ,

�1i =

⎡

⎢⎢⎢⎢
⎣

�11i Xi F̄ Adi 0 0 0
∗ �22i 0 0 0
∗ ∗ �33i Xi Adi Xi B
∗ ∗ ∗ �44i 0
∗ ∗ ∗ ∗ −γ 2 I

⎤

⎥⎥⎥⎥
⎦

,

�2i =

⎡

⎢⎢⎢⎢
⎣

Xi F̄ 0 0 0 0 0
0 0 0 0 0 0
0 Xi Ei Xi Ei Xi Ei Xi Ei CT

i Y
T
i

0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

,

�11i =
⎛

⎝1 +
∑

j∈Siκ , j �=i

πi j

⎞

⎠ [Xi (Ai + BKi )

+ (Ai + BKi )
T Xi

]
+ εi1H

T
i Hi

+
∑

j∈Siκ , j �=i

πi j X j ,

�33i =
⎛

⎝1 +
∑

j∈Siκ , j �=i

πi j

⎞

⎠
(
AT
i Xi + Xi Ai − YiCi

−CT
i Y

T
i

)
+ εi4H

T
i Hi +

∑

j∈Siκ , j �=i

πi j X j

+ Q2 + CT
i Ci ,

�22i = �22i = − Q1 + εi2H
T
di Hdi ,

�44i = �44i = − Q2 + εi3H
T
di Hdi ,

�3i = �3i = − diag{Xi , ε1i I, ε2i I, ε3i I, ε4i I, Xi },

then the resulting closed-loop system composed of (7)
and ( 10) is stochastically stable. In addition, the state
observer gain is calculated by

Li = X−1
i Yi , i ∈ S.

Proof Take the Lyapunov functional as follows:

V1
(
x̂, e, i

) = x̂ T (t) Xi x̂ (t) + eT (t) Xie (t)

+
∫ t

t−τ

x̂ T (t) Q1 x̂ (t) dt + c−1
α α̃2 (t)

+
∫ t

t−τ

eT (t) Q2e (t) dt + c−1
β β̃2 (t) .

(19)

Letting d (t) = 0, by Definition 1, we have

LV1
(
x̂, e, i

) = 2x̂ T (t) Xi
[
(Ai + BKi )x̂ (t)

+ F̄ LiCi e (t) + F̄ Adi x̂ (t − τ)
]

+ x̂ T (t) Q1 x̂ (t)

+ 2eT (t) Xi (Ai + 	A (i, t)

− LiCi )e (t)

+ 2eT (t) Xi	A (i, t) x̂ (t)

+ 2c−1
α α̃ (t) ˙̃α (t)

+ 2eT (t) Xi (Adi + 	Ad (i, t)) e (t − τ)

+ 2eT (t) Xi	Ad (i, t) x̂ (t − τ)

+ 2eT (t) Xi B ( f (x, t) − ue (t))

− x̂ T (t − τ) Q1 x̂ (t − τ)

+ eT (t) Q2e (t)

+ eT (t − τ) Q2e (t − τ)

+ x̂ T (t)
s∑

j=1

πi j X j x̂ (t)

+ eT (t)
s∑

j=1

πi j X j e (t)

+ 2c−1
β β̃ (t) ˙̃

β (t) . (20)
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The following term in (20) can be converted into

2x̂ T (t) Xi F̄ LiCi e (t) ≤ x̂ T (t) Xi F̄ X−1
i F̄ T Xi x̂ (t)

+ eT (t)CT
i LT

i Xi LiCi e (t) .

(21)

From (3) and (4), the following terms can be also,
respectively, simplified as

2eT (t) Xi	A (i, t) x̂ (t)

≤ ε−1
i1 eT (t) Xi Ei E

T
i Xi e (t)

+ εi1 x̂
T (t) HT

i Hi x̂ (t) , (22)

2eT (t) Xi	Ad (i, t) x̂ (t − τ)

≤ ε−1
i2 eT (t) Xi Ei E

T
i Xi e (t)

+ εi2 x̂
T (t − τ) HT

di Hdi x̂ (t − τ) , (23)

2eT (t) Xi	Ad(i, t)e (t − τ)

≤ ε−1
i3 eT (t) Xi Ei E

T
i Xi e (t)

+ εi3e
T (t − τ) HT

di Hdi e (t − τ) , (24)

2eT (t) Xi	A (i, t) e (t)

≤ ε−1
i4 eT (t) Xi Ei E

T
i Xi e (t)

+ εi4e
T (t) HT

i Hie (t) . (25)

Similarly, by the condition se (t) = BT Xie (t) , one
can obtain

2c−1
α α̃ (t) ˙̃α (t) + 2c−1

β β̃ (t) ˙̃
β (t)

+ 2eT (t) Xi B [ f (x, t)

−
(∣∣α̂ (t)

∣∣+
∣∣∣β̂ (t)

∣∣∣ ‖y (t)‖ + ρ1

)
sgn (se (t))

]

≤ −2ρ1 ‖se (t)‖ < 0. (26)

Substituting (21)–(26) into (20) yields

LV1
(
x̂, e, i

) ≤ ηT (t)� (i) η (t) ,

where

�(i) =

⎡

⎢⎢
⎣

�11i Xi F̄ Adi 0 0
∗ �22i 0 0
∗ ∗ �33i Xi Adi

∗ ∗ ∗ �44i

⎤

⎥⎥
⎦ ,

η (t) = [ x̂ T (t) x̂ T (t − τ) eT (t) eT (t − τ)
]T

,

�11i = Xi (Ai + BKi ) + (Ai + BKi )
T Xi + Q1

+ εi1H
T
i Hi +

s∑

j=1

πi j X j

+ Xi F̄ X−1
i F̄ T Xi , (27)

�22i = −Q1 + εi2H
T
di Hdi ,

�44i = −Q2 + εi3H
T
di Hdi ,

�33i = AT
i Xi + Xi Ai + ε−1

i1 Xi Ei E
T
i Xi

+ ε−1
i2 Xi Ei E

T
i Xi + ε−1

i3 Xi Ei E
T
i Xi

+ ε−1
i4 Xi Ei E

T
i Xi + Q2 + CT

i Y
T
i X−1

i YiCi

−YiCi − CT
i Y

T
i +

s∑

j=1

πi j X j . (28)

For i ∈ Siκ , the term Xi (Ai + BKi )+(Ai + BKi )
T Xi

+∑s
j=1 πi j X j in (27) can be rewritten as follows:

�(i) = Xi (Ai + BKi ) + (Ai + BKi )
T Xi +

s∑

j=1

πi j X j

=
⎛

⎝1 +
∑

j∈Siκ
πi j

⎞

⎠ [Xi (Ai + BKi )

+ (Ai + BKi )
T Xi

]
+
∑

j∈Siκ
πi j X j

+
∑

j∈Siuκ

πi j [Xi (Ai + BKi )

+ (Ai + BKi )
T Xi

]
+
∑

j∈Siuκ

πi j X j

=
(
1 + π i

κ

) [
Xi (Ai + BKi ) + (Ai + BKi )

T Xi

]

+
∑

j∈Siκ
πi j X j +

∑

j∈Siuκ

πi j [Xi (Ai + BKi )

+ (Ai + BKi )
T Xi + X j

]
.

Then, ∀ j ∈ Siuκ and if i ∈ Siκ , obviously, �(i) < 0
can be achieved by (12) and (16). Besides, ∀ j ∈ Siuκ

and if i /∈ Siκ , we have

� (i) =
⎛

⎝1 +
∑

j∈Siκ , j �=i

πi j

⎞

⎠ [Xi (Ai + BKi )

+ (Ai + BKi )
T Xi

]
+

∑

j∈Siκ , j �=i

πi j X j

+ πi i

[
Xi (Ai + BKi ) + (Ai + BKi )

T Xi + Xi

]

+
∑

j∈Siuκ , j �=i

πi j [Xi (Ai + BKi )

+ (Ai + BKi )
T Xi + X j

]
.

Then, we can obtain �(i) < 0 by (13), (14) and (16).
Similarly, for i ∈ Siκ , the term AT

i Xi + Xi Ai −
YiCi −CT

i Y
T
i +∑s

j=1 πi j X j in (28) can be simplified
as:
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�(i) =
(
1 + π i

κ

) (
AT
i Xi + Xi Ai − YiCi − CT

i Y
T
i

)

+
∑

j∈Siκ
πi j X j +

∑

j∈Siuκ

πi j

(
AT
i Xi + Xi Ai

−YiCi − CT
i Y

T
i + X j

)
.

Then, ∀ j ∈ Siuκ and if i ∈ Siκ , it is straightforward that
�(i) < 0 can be obtained by (12) and (17). Besides,
∀ j ∈ Siuκ and if i /∈ Siκ , we have

� (i) =
⎛

⎝1 +
∑

j∈Siκ , j �=i

πi j

⎞

⎠
(
AT
i Xi + Xi Ai

− YiCi − CT
i Y

T
i

)
+

∑

j∈Siκ , j �=i

πi j X j

+πi i

(
AT
i Xi + Xi Ai − YiCi − CT

i Y
T
i + Xi

)

+
∑

j∈Siuκ , j �=i

πi j

(
AT
i Xi + Xi Ai

− YiCi − CT
i Y

T
i + X j

)
.

Then, we can obtain �(i) < 0 by (13), (15) and (17).
It can be shown that �i < 0 are obtained by linear

matrix inequalities (LMIs) (12)–( 18). Then we have
LV1

(
x̂, e, i

)
< 0 for ∀η (t) �= 0. The resulting closed-

loop system with d (t) = 0 is stochastically stable.
Next, under sliding mode observer (6) and slid-

ing mode surface (8), we will approve that state-
delayed MJSs (2) are stochastically stable with a dis-
turbance attenuation level γ, i.e., d (t) �= 0.Hence, the
infinitesimal generator of stochastic Lyapunov func-
tional V1

(
x̂, e, i

)
as (19) is deduced as follows:

LV1
(
x̂, e, i

) = ηT (t)�iη (t) + 2eT (t) Xi Bd (t) .

According to EV1
(
x̂, e, i

) = E
∫∞
0 LV1

(
x̂, e, i

)
dt >

0, for d (t) ∈ L2[0,∞), the system performance J can
be converted into

J ≤ E
{∫ ∞

0

(
yTe (t) ye (t) − γ 2dT (t) d (t)

+LV1
(
x̂, e, i

))}
dt

= E
∫ ∞

0
ξ T (t)�iξ (t) dt,

where ξ (t)=
[
x̂ T (t)x̂ T (t−τ) eT (t)eT (t−τ) dT (t)

]T
.

By employing LMIs (12)–(18), we have �i < 0,
which implies that J < 0. Thus, it yields

E

(

sup
0 �=d(t)∈L2

‖ye (t)‖
‖d (t)‖

)

< γ.

Note that equality constraint (18) can be rewritten
as

tr

[(
BT Xi − NiCi

)T (
BT Xi − NiCi

)]
= 0.

Introduce the following condition:
(
BT Xi − NiCi

)T (
BT Xi − NiCi

)
< σi I,

where scalar σi > 0, which will be designed later.
Then, by Schur complement, one can obtain

[
−σi I

(
BT Xi − NiCi

)T

∗ −I

]

< 0. (29)

Hence, the above feasible problem with equality con-
straint will be converted into the following minimiza-
tion problem:

min σi , subject to (12)−(17) and (29). (30)

Thus, the overall closed-loop system composed of (7)
and ( 10) is stochastically stable by Definition 2. The
proof is completed. 
�
Remark 2 It is worthwhile to point out that (12), (14)
and ( 15) in Theorem 1 will not be checked simultane-
ously due to Siκ ∩ Siuκ = ∅.

Remark 3 Note that (30) is a minimization problem
involving linear objective and LMIs constraints, it
admits a global infimum and if this infimum equals
zero, the observed-based adaptive SMC problem is
solvable.

Remark 4 It is seen that conditions (12)–(18) will
unavoidably contain LMIs. For each i ∈ S, these
unknown variables Xi , Yi and Li in Theorem 1 are
connected with system mode i . Therefore, the system
mode of state-delayed MJSs in (2) decides the compu-
tational complexity of the proposed methodology.

4 Adaptive sliding mode controller design

In this section, we will design an adaptive SMC law
to guarantee the finite-time reachability of the sliding
mode surface.
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Theorem 2 Suppose that Theorem 1 has feasible solu-
tion, the adaptive SMC law is synthesized as

u (t) = uib + uic, i = 1, 2, . . . , s, (31)

where uib and uic are linear control input part and
discontinuous control input part, respectively. They are,
respectively, designed as

uib = −liζ (t) + Ki x̂ (t) − FAdi x̂ (t − τ) ,

uic = −
(
δi (t) + ∣∣α̂ (t)

∣∣+
∣∣
∣β̂ (t)

∣∣
∣ ‖y (t)‖

+ κ + ρ1) sgn(ζ (t)),

where κ and ρ1 are small positive constants, δi (t) is
given by

δi (t) = max
i∈S

{∥∥∥(FB)−1 FLi

∥∥∥ ‖y (t)‖

+
∥∥∥(FB)−1 FLiCi

∥∥∥
∥∥x̂ (t)

∥∥
}

, (32)

the above two adaptive gains are designed as

˙̂α (t) = cα ‖se (t)‖ ,
˙̂
β (t) = cβ ‖se (t)‖ ‖y (t)‖ .

(33)

Then the state trajectories will be attracted to sliding
mode surface (8) in finite time.

Proof The Lyapunov function candidate of system (6)
is taken as

V2 (t) = 1

2
ζ T (t) (FB)−1 ζ (t) .

The infinitesimal generator of V2 (t) along the trajec-
tories of sliding mode dynamics (10) is derived as fol-
lows:

LV2 (t) = −liζ
T (t) ζ (t) − δi (t) ζ T (t) sgn (ζ (t))

−
(∣
∣α̂ (t)

∣
∣+
∣
∣∣β̂ (t)

∣
∣∣ ‖y (t)‖ + ρ1

)

sT (t) sgn (ζ (t))

+ ζ T (t) (FB)−1 FLi
(
y (t) − Ci x̂ (t)

)

+ ζ T (t) ue (t) − κζ T (t) sgn(ζ (t)). (34)

By employing ζ T (t) sgn(se (t)) ≤ ‖ζ (t)‖1, the fol-
lowing term in (34) can be converted into

−
(∣∣α̂ (t)

∣∣+
∣∣∣β̂ (t)

∣∣∣ ‖y (t)‖ + ρ1

)
ζ T (t) sgn (ζ (t))

+ ζ T (t) ue (t) ≤ 0. (35)

According to conditions (32) and (35), one can get

LV2 (t) ≤ −li ‖ζ (t)‖2 − κ ‖ζ (t)‖
≤ −κ ‖ζ (t)‖ ≤ −κ̃V

1
2
2 (t) ,

where κ̃ = κ
√
2/λmax[(FB)−1] > 0. Hence, there

exists an instant t̃ = 2
√
V2(0)/κ̃ to ensure V2 (t) = 0,

i.e., ζ (t) = 0 when t ≥ t̃ . Meanwhile, the system
state trajectories can reach the predefined sliding mode
surface in finite time. The proof is finished. 
�

The design procedure of the work is generalized as
follows.

Detailed design procedure:

(I) According to equation (8), we choose the proper
matrices F and Ki .

(II) Addressing the optimization problem in (30), we
can obtain the optimal solutions Xi , Yi and Ni .
Then, the observer gains can be computed as Li =
X−1
i Yi .

(III) Design the robust controller ue(t) and the adap-
tive SMC law according to (11) and (31), respec-
tively, where the adaptive laws of α(t) and β(t) are
designed in (33).

Remark 5 It should be pointed out that according to the
physical characterization of the nonlinearity, it is diffi-
cult to capture the exact information of every compo-
nent fi (x, t) of the vector-valued function nonlinearity
f (x, t). Therefore, we can integrate the adaptive con-
trol strategy into SMCproblem for state-delayedMJSs.
Then, an adaptive SMC law is synthesized to guarantee
that all variables of state-delayedMJSs are drawn to the
designed sliding manifold in the existence of admissi-
ble uncertainties, nonlinearities and disturbance.

5 Numerical example

Thematrices in (1) with four operationmodes are given
as follows:

A1 =
⎡

⎣
−1.86 1.5 0.2

0 −3.279 −2.3
0 2.928 −2.082

⎤

⎦ ,

A2 =
⎡

⎣
−1.86 1.5 0.2

0 −4.279 −2.3
0 2.928 −2.082

⎤

⎦ ,

A3 =
⎡

⎣
−1.86 1.5 0.2

0 −5.279 −2.3
0 2.928 −2.082

⎤

⎦ ,
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A4 =
⎡

⎣
−1.86 1.5 0.2

0 −6.279 −2.3
0 2.928 −2.082

⎤

⎦ , B =
⎡

⎣
−2
−2
−1

⎤

⎦ ,

Ad1 =
⎡

⎣
0.5 0.5 0.1
0.1 0.1 0
0 0.1 0.2

⎤

⎦ , Ad2 =
⎡

⎣
0.2 0.1 0.1
0.1 0.1 0
0 0.1 0.2

⎤

⎦ ,

Ad3 =
⎡

⎣
0.2 0.1 0
0.1 0.1 0
0.2 0.1 0.8

⎤

⎦ , Ad4 =
⎡

⎣
0.2 0.2 0.1
0.1 0.1 0
0 0.1 0

⎤

⎦ ,

C1 =
⎡

⎣
0.5 −0.2 0.1

−0.2 0.1 −0.5
0.2 0.2 0

⎤

⎦ ,

C2 =
⎡

⎣
0.5 −0.2 0.1

−0.2 0.1 −0.15
0.2 0.2 0

⎤

⎦ ,

C3 =
⎡

⎣
0.5 −0.2 0.1

−0.2 0.1 −0.15
0.2 0.2 0

⎤

⎦ ,

C4 =
⎡

⎣
0.5 −0.2 0.1

−0.2 0.1 −0.25
0.2 0.2 0

⎤

⎦ ,

E1 =
⎡

⎣
0.2 0.2 0.2
0 0.2 0.1
0 0 0.3

⎤

⎦ , E2 =
⎡

⎣
0.2 0.2 0.2
0 0.2 0.1
0 0 0.3

⎤

⎦ ,

E3 =
⎡

⎣
0.2 0.2 0.2
0 0.2 0.1
0 0 0.3

⎤

⎦ , E4 =
⎡

⎣
0.2 0.2 0.2
0 0.2 0.1
0 0 0.5

⎤

⎦ ,

H1 =
⎡

⎣
0.2 0 0
0 0.2 0
0.2 0.2 1

⎤

⎦ , H2 =
⎡

⎣
0.2 0 0
0 0.2 0
0.2 0.2 1

⎤

⎦ ,

H3 =
⎡

⎣
0.1 0 0
0 0.2 0
0.2 0.2 1

⎤

⎦ , H4 =
⎡

⎣
0.1 0.1 0
0 0.2 0
0.2 0.2 1

⎤

⎦ ,

Hd1 =
⎡

⎣
0.2 0 0.1
0 0.1 0
0.2 0.2 0.1

⎤

⎦ , Hd2 =
⎡

⎣
0.2 0 0.1
0 0.1 0
0.2 0.2 0.1

⎤

⎦ ,

Hd3 =
⎡

⎣
0.1 0 0
0 0.1 0
0.2 0 0

⎤

⎦ , Hd4 =
⎡

⎣
0.1 0.1 0
0 0.1 0
0 0 0.1

⎤

⎦ .

The transition matrix � is given as

� =

⎡

⎢⎢
⎣

−2.4 2.2 ? ?
? −1.9 1.7 ?
1.2 ? −1.8 ?
2.6 ? ? −2.8

⎤

⎥⎥
⎦ ,

where “?” is unavailable element. Thematrices K1, K2,
K3 and K4 are computed as

K1 = [1.1560 0.1524 −0.0334
]
,

K2 = [1.3392 −0.4797 −0.2292
]
,

K3 = [2.1802 −0.7285 −0.1829
]
,

K4 = [1.8693 −1.2579 −0.0559
]
.

The nonlinearity f (x, t), external disturbance d (t)
and time-varying matrix function F (i, t) for four sub-
systems are given as f (x, t) = 0.28+0.2 sin(200t)x1

(t) , d (t) = exp (−t)
√
x21 + x22 + x23 , F (1, t) =

F (2, t) = F (3, t) = F (4, t) = 0.02 sin (200t) ,

respectively.
For delay τ ∈ [−2.5, 0), the initial conditions

are, respectively, set as x (0) = [
0.5 −0.5 0.2

]T
and

x̂ (0) = [0.2 −0.1 0.1
]T
. We set F = [− 0.3 − 0.2

− 0.1
]
. The adaptive parameters are, respectively,

selected as α̂ (0) = 0, β̂ (0) = 0, cα = 0.4 and cβ =
2.5 in (33). The observer-based adaptive SMC law is
designed in (31) with l1 = l3 = 0.85, l2 = l4 = 0.80,
κ = 0.1 and ρ1 = 1. By handling the optimal problem
in (30), we have

L1 =
⎡

⎣
0.9544 0.0485 1.3991

−1.8289 −0.6447 3.4118
−2.1039 −2.6729 1.3803

⎤

⎦ ,

L2 =
⎡

⎣
1.1280 0.1743 1.0889

−3.1106 −2.5079 5.0254
−6.1187 −12.7171 1.0538

⎤

⎦ ,

L3 =
⎡

⎣
2.7137 2.9771 −0.7232

−1.7651 −1.2084 3.0056
−2.1684 −5.5754 −1.1733

⎤

⎦ ,

L4 =
⎡

⎣
2.1372 1.0096 1.6076

−2.6619 −0.5535 7.0478
−1.7736 −3.6856 2.4934

⎤

⎦ .

The simulation results are illustrated in Figs. 1–7.
Figure 1 shows the switching signal r (t), and Fig. 2
plots the error trajectories. Figures 3 and 4 depict
original system state responses and state estimation
responses, respectively. In Fig. 5, the curve denotes the
integral sliding mode surface function ζ (t). Figures 6
and 7 demonstrate the responses of estimation values
α̂ (t) and β̂ (t), respectively.
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Fig. 1 Trajectory of r (t)
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Fig. 2 State estimation error trajectories e (t)
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Fig. 3 State trajectories x (t)
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Fig. 4 State estimation trajectories x̂ (t)
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Fig. 5 Sliding mode surface ζ (t)

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (Sec.)

α̂(t)

Fig. 6 Estimation of α (t)
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Fig. 7 Estimation of β (t)

6 Conclusion

The SMC problem has been studied for state-delayed
MJSswith disturbances,matchednonlinearities, param-
eter uncertainties, partly unknown transition probabil-
ities and unmeasured states. Construct an appropriate
sliding mode surface to ensure the sliding motion to
be stochastically stable. The designed observer-based
adaptive sliding mode controller can regulate the effect
of unknown nonlinearity and guarantee the finite-time
reachability. The effectiveness of the proposed control
scheme has been illustrated via a numerical example.
Future research will focus on the control problem for
nonlinear state-delayed MJSs by using fuzzy control
approach [36,46].
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